/* * Sound driver for Silicon Graphics 320 and 540 Visual Workstations' * onboard audio. See notes in Documentation/sound/oss/vwsnd . * * Copyright 1999 Silicon Graphics, Inc. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #undef VWSND_DEBUG /* define for debugging */ /* * XXX to do - * * External sync. * Rename swbuf, hwbuf, u&i, hwptr&swptr to something rational. * Bug - if select() called before read(), pcm_setup() not called. * Bug - output doesn't stop soon enough if process killed. */ /* * Things to test - * * Will readv/writev work? Write a test. * * insmod/rmmod 100 million times. * * Run I/O until int ptrs wrap around (roughly 6.2 hours @ DAT * rate). * * Concurrent threads banging on mixer simultaneously, both UP * and SMP kernels. Especially, watch for thread A changing * OUTSRC while thread B changes gain -- both write to the same * ad1843 register. * * What happens if a client opens /dev/audio then forks? * Do two procs have /dev/audio open? Test. * * Pump audio through the CD, MIC and line inputs and verify that * they mix/mute into the output. * * Apps: * amp * mpg123 * x11amp * mxv * kmedia * esound * need more input apps * * Run tests while bombarding with signals. setitimer(2) will do it... */ /* * This driver is organized in nine sections. * The nine sections are: * * debug stuff * low level lithium access * high level lithium access * AD1843 access * PCM I/O * audio driver * mixer driver * probe/attach/unload * initialization and loadable kernel module interface * * That is roughly the order of increasing abstraction, so forward * dependencies are minimal. */ /* * Locking Notes * * INC_USE_COUNT and DEC_USE_COUNT keep track of the number of * open descriptors to this driver. They store it in vwsnd_use_count. * The global device list, vwsnd_dev_list, is immutable when the IN_USE * is true. * * devc->open_lock is a semaphore that is used to enforce the * single reader/single writer rule for /dev/audio. The rule is * that each device may have at most one reader and one writer. * Open will block until the previous client has closed the * device, unless O_NONBLOCK is specified. * * The semaphore devc->io_mutex serializes PCM I/O syscalls. This * is unnecessary in Linux 2.2, because the kernel lock * serializes read, write, and ioctl globally, but it's there, * ready for the brave, new post-kernel-lock world. * * Locking between interrupt and baselevel is handled by the * "lock" spinlock in vwsnd_port (one lock each for read and * write). Each half holds the lock just long enough to see what * area it owns and update its pointers. See pcm_output() and * pcm_input() for most of the gory stuff. * * devc->mix_mutex serializes all mixer ioctls. This is also * redundant because of the kernel lock. * * The lowest level lock is lith->lithium_lock. It is a * spinlock which is held during the two-register tango of * reading/writing an AD1843 register. See * li_{read,write}_ad1843_reg(). */ /* * Sample Format Notes * * Lithium's DMA engine has two formats: 16-bit 2's complement * and 8-bit unsigned . 16-bit transfers the data unmodified, 2 * bytes per sample. 8-bit unsigned transfers 1 byte per sample * and XORs each byte with 0x80. Lithium can input or output * either mono or stereo in either format. * * The AD1843 has four formats: 16-bit 2's complement, 8-bit * unsigned, 8-bit mu-Law and 8-bit A-Law. * * This driver supports five formats: AFMT_S8, AFMT_U8, * AFMT_MU_LAW, AFMT_A_LAW, and AFMT_S16_LE. * * For AFMT_U8 output, we keep the AD1843 in 16-bit mode, and * rely on Lithium's XOR to translate between U8 and S8. * * For AFMT_S8, AFMT_MU_LAW and AFMT_A_LAW output, we have to XOR * the 0x80 bit in software to compensate for Lithium's XOR. * This happens in pcm_copy_{in,out}(). * * Changes: * 11-10-2000 Bartlomiej Zolnierkiewicz <bkz@linux-ide.org> * Added some __init/__exit */ #include <linux/module.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/wait.h> #include <linux/interrupt.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/delay.h> #include <asm/visws/cobalt.h> #include "sound_config.h" static DEFINE_MUTEX(vwsnd_mutex); /*****************************************************************************/ /* debug stuff */ #ifdef VWSND_DEBUG static int shut_up = 1; /* * dbgassert - called when an assertion fails. */ static void dbgassert(const char *fcn, int line, const char *expr) { if (in_interrupt()) panic("ASSERTION FAILED IN INTERRUPT, %s:%s:%d %s\n", __FILE__, fcn, line, expr); else { int x; printk(KERN_ERR "ASSERTION FAILED, %s:%s:%d %s\n", __FILE__, fcn, line, expr); x = * (volatile int *) 0; /* force proc to exit */ } } /* * Bunch of useful debug macros: * * ASSERT - print unless e nonzero (panic if in interrupt) * DBGDO - include arbitrary code if debugging * DBGX - debug print raw (w/o function name) * DBGP - debug print w/ function name * DBGE - debug print function entry * DBGC - debug print function call * DBGR - debug print function return * DBGXV - debug print raw when verbose * DBGPV - debug print when verbose * DBGEV - debug print function entry when verbose * DBGRV - debug print function return when verbose */ #define ASSERT(e) ((e) ? (void) 0 : dbgassert(__func__, __LINE__, #e)) #define DBGDO(x) x #define DBGX(fmt, args...) (in_interrupt() ? 0 : printk(KERN_ERR fmt, ##args)) #define DBGP(fmt, args...) (DBGX("%s: " fmt, __func__ , ##args)) #define DBGE(fmt, args...) (DBGX("%s" fmt, __func__ , ##args)) #define DBGC(rtn) (DBGP("calling %s\n", rtn)) #define DBGR() (DBGP("returning\n")) #define DBGXV(fmt, args...) (shut_up ? 0 : DBGX(fmt, ##args)) #define DBGPV(fmt, args...) (shut_up ? 0 : DBGP(fmt, ##args)) #define DBGEV(fmt, args...) (shut_up ? 0 : DBGE(fmt, ##args)) #define DBGCV(rtn) (shut_up ? 0 : DBGC(rtn)) #define DBGRV() (shut_up ? 0 : DBGR()) #else /* !VWSND_DEBUG */ #define ASSERT(e) ((void) 0) #define DBGDO(x) /* don't */ #define DBGX(fmt, args...) ((void) 0) #define DBGP(fmt, args...) ((void) 0) #define DBGE(fmt, args...) ((void) 0) #define DBGC(rtn) ((void) 0) #define DBGR() ((void) 0) #define DBGPV(fmt, args...) ((void) 0) #define DBGXV(fmt, args...) ((void) 0) #define DBGEV(fmt, args...) ((void) 0) #define DBGCV(rtn) ((void) 0) #define DBGRV() ((void) 0) #endif /* !VWSND_DEBUG */ /*****************************************************************************/ /* low level lithium access */ /* * We need to talk to Lithium registers on three pages. Here are * the pages' offsets from the base address (0xFF001000). */ enum { LI_PAGE0_OFFSET = 0x01000 - 0x1000, /* FF001000 */ LI_PAGE1_OFFSET = 0x0F000 - 0x1000, /* FF00F000 */ LI_PAGE2_OFFSET = 0x10000 - 0x1000, /* FF010000 */ }; /* low-level lithium data */ typedef struct lithium { void * page0; /* virtual addresses */ void * page1; void * page2; spinlock_t lock; /* protects codec and UST/MSC access */ } lithium_t; /* * li_destroy destroys the lithium_t structure and vm mappings. */ static void li_destroy(lithium_t *lith) { if (lith->page0) { iounmap(lith->page0); lith->page0 = NULL; } if (lith->page1) { iounmap(lith->page1); lith->page1 = NULL; } if (lith->page2) { iounmap(lith->page2); lith->page2 = NULL; } } /* * li_create initializes the lithium_t structure and sets up vm mappings * to access the registers. * Returns 0 on success, -errno on failure. */ static int __init li_create(lithium_t *lith, unsigned long baseaddr) { spin_lock_init(&lith->lock); lith->page0 = ioremap_nocache(baseaddr + LI_PAGE0_OFFSET, PAGE_SIZE); lith->page1 = ioremap_nocache(baseaddr + LI_PAGE1_OFFSET, PAGE_SIZE); lith->page2 = ioremap_nocache(baseaddr + LI_PAGE2_OFFSET, PAGE_SIZE); if (!lith->page0 || !lith->page1 || !lith->page2) { li_destroy(lith); return -ENOMEM; } return 0; } /* * basic register accessors - read/write long/byte */ static __inline__ unsigned long li_readl(lithium_t *lith, int off) { return * (volatile unsigned long *) (lith->page0 + off); } static __inline__ unsigned char li_readb(lithium_t *lith, int off) { return * (volatile unsigned char *) (lith->page0 + off); } static __inline__ void li_writel(lithium_t *lith, int off, unsigned long val) { * (volatile unsigned long *) (lith->page0 + off) = val; } static __inline__ void li_writeb(lithium_t *lith, int off, unsigned char val) { * (volatile unsigned char *) (lith->page0 + off) = val; } /*****************************************************************************/ /* High Level Lithium Access */ /* * Lithium DMA Notes * * Lithium has two dedicated DMA channels for audio. They are known * as comm1 and comm2 (communication areas 1 and 2). Comm1 is for * input, and comm2 is for output. Each is controlled by three * registers: BASE (base address), CFG (config) and CCTL * (config/control). * * Each DMA channel points to a physically contiguous ring buffer in * main memory of up to 8 Kbytes. (This driver always uses 8 Kb.) * There are three pointers into the ring buffer: read, write, and * trigger. The pointers are 8 bits each. Each pointer points to * 32-byte "chunks" of data. The DMA engine moves 32 bytes at a time, * so there is no finer-granularity control. * * In comm1, the hardware updates the write ptr, and software updates * the read ptr. In comm2, it's the opposite: hardware updates the * read ptr, and software updates the write ptr. I designate the * hardware-updated ptr as the hwptr, and the software-updated ptr as * the swptr. * * The trigger ptr and trigger mask are used to trigger interrupts. * From the Lithium spec, section 5.6.8, revision of 12/15/1998: * * Trigger Mask Value * * A three bit wide field that represents a power of two mask * that is used whenever the trigger pointer is compared to its * respective read or write pointer. A value of zero here * implies a mask of 0xFF and a value of seven implies a mask * 0x01. This value can be used to sub-divide the ring buffer * into pie sections so that interrupts monitor the progress of * hardware from section to section. * * My interpretation of that is, whenever the hw ptr is updated, it is * compared with the trigger ptr, and the result is masked by the * trigger mask. (Actually, by the complement of the trigger mask.) * If the result is zero, an interrupt is triggered. I.e., interrupt * if ((hwptr & ~mask) == (trptr & ~mask)). The mask is formed from * the trigger register value as mask = (1 << (8 - tmreg)) - 1. * * In yet different words, setting tmreg to 0 causes an interrupt after * every 256 DMA chunks (8192 bytes) or once per traversal of the * ring buffer. Setting it to 7 caues an interrupt every 2 DMA chunks * (64 bytes) or 128 times per traversal of the ring buffer. */ /* Lithium register offsets and bit definitions */ #define LI_HOST_CONTROLLER 0x000 # define LI_HC_RESET 0x00008000 # define LI_HC_LINK_ENABLE 0x00004000 # define LI_HC_LINK_FAILURE 0x00000004 # define LI_HC_LINK_CODEC 0x00000002 # define LI_HC_LINK_READY 0x00000001 #define LI_INTR_STATUS 0x010 #define LI_INTR_MASK 0x014 # define LI_INTR_LINK_ERR 0x00008000 # define LI_INTR_COMM2_TRIG 0x00000008 # define LI_INTR_COMM2_UNDERFLOW 0x00000004 # define LI_INTR_COMM1_TRIG 0x00000002 # define LI_INTR_COMM1_OVERFLOW 0x00000001 #define LI_CODEC_COMMAND 0x018 # define LI_CC_BUSY 0x00008000 # define LI_CC_DIR 0x00000080 # define LI_CC_DIR_RD LI_CC_DIR # define LI_CC_DIR_WR (!LI_CC_DIR) # define LI_CC_ADDR_MASK 0x0000007F #define LI_CODEC_DATA 0x01C #define LI_COMM1_BASE 0x100 #define LI_COMM1_CTL 0x104 # define LI_CCTL_RESET 0x80000000 # define LI_CCTL_SIZE 0x70000000 # define LI_CCTL_DMA_ENABLE 0x08000000 # define LI_CCTL_TMASK 0x07000000 /* trigger mask */ # define LI_CCTL_TPTR 0x00FF0000 /* trigger pointer */ # define LI_CCTL_RPTR 0x0000FF00 # define LI_CCTL_WPTR 0x000000FF #define LI_COMM1_CFG 0x108 # define LI_CCFG_LOCK 0x00008000 # define LI_CCFG_SLOT 0x00000070 # define LI_CCFG_DIRECTION 0x00000008 # define LI_CCFG_DIR_IN (!LI_CCFG_DIRECTION) # define LI_CCFG_DIR_OUT LI_CCFG_DIRECTION # define LI_CCFG_MODE 0x00000004 # define LI_CCFG_MODE_MONO (!LI_CCFG_MODE) # define LI_CCFG_MODE_STEREO LI_CCFG_MODE # define LI_CCFG_FORMAT 0x00000003 # define LI_CCFG_FMT_8BIT 0x00000000 # define LI_CCFG_FMT_16BIT 0x00000001 #define LI_COMM2_BASE 0x10C #define LI_COMM2_CTL 0x110 /* bit definitions are the same as LI_COMM1_CTL */ #define LI_COMM2_CFG 0x114 /* bit definitions are the same as LI_COMM1_CFG */ #define LI_UST_LOW 0x200 /* 64-bit Unadjusted System Time is */ #define LI_UST_HIGH 0x204 /* microseconds since boot */ #define LI_AUDIO1_UST 0x300 /* UST-MSC pairs */ #define LI_AUDIO1_MSC 0x304 /* MSC (Media Stream Counter) */ #define LI_AUDIO2_UST 0x308 /* counts samples actually */ #define LI_AUDIO2_MSC 0x30C /* processed as of time UST */ /* * Lithium's DMA engine operates on chunks of 32 bytes. We call that * a DMACHUNK. */ #define DMACHUNK_SHIFT 5 #define DMACHUNK_SIZE (1 << DMACHUNK_SHIFT) #define BYTES_TO_CHUNKS(bytes) ((bytes) >> DMACHUNK_SHIFT) #define CHUNKS_TO_BYTES(chunks) ((chunks) << DMACHUNK_SHIFT) /* * Two convenient macros to shift bitfields into/out of position. * * Observe that (mask & -mask) is (1 << low_set_bit_of(mask)). * As long as mask is constant, we trust the compiler will change the * multiply and divide into shifts. */ #define SHIFT_FIELD(val, mask) (((val) * ((mask) & -(mask))) & (mask)) #define UNSHIFT_FIELD(val, mask) (((val) & (mask)) / ((mask) & -(mask))) /* * dma_chan_desc is invariant information about a Lithium * DMA channel. There are two instances, li_comm1 and li_comm2. * * Note that the CCTL register fields are write ptr and read ptr, but what * we care about are which pointer is updated by software and which by * hardware. */ typedef struct dma_chan_desc { int basereg; int cfgreg; int ctlreg; int hwptrreg; int swptrreg; int ustreg; int mscreg; unsigned long swptrmask; int ad1843_slot; int direction; /* LI_CCTL_DIR_IN/OUT */ } dma_chan_desc_t; static const dma_chan_desc_t li_comm1 = { LI_COMM1_BASE, /* base register offset */ LI_COMM1_CFG, /* config register offset */ LI_COMM1_CTL, /* control register offset */ LI_COMM1_CTL + 0, /* hw ptr reg offset (write ptr) */ LI_COMM1_CTL + 1, /* sw ptr reg offset (read ptr) */ LI_AUDIO1_UST, /* ust reg offset */ LI_AUDIO1_MSC, /* msc reg offset */ LI_CCTL_RPTR, /* sw ptr bitmask in ctlval */ 2, /* ad1843 serial slot */ LI_CCFG_DIR_IN /* direction */ }; static const dma_chan_desc_t li_comm2 = { LI_COMM2_BASE, /* base register offset */ LI_COMM2_CFG, /* config register offset */ LI_COMM2_CTL, /* control register offset */ LI_COMM2_CTL + 1, /* hw ptr reg offset (read ptr) */ LI_COMM2_CTL + 0, /* sw ptr reg offset (writr ptr) */ LI_AUDIO2_UST, /* ust reg offset */ LI_AUDIO2_MSC, /* msc reg offset */ LI_CCTL_WPTR, /* sw ptr bitmask in ctlval */ 2, /* ad1843 serial slot */ LI_CCFG_DIR_OUT /* direction */ }; /* * dma_chan is variable information about a Lithium DMA channel. * * The desc field points to invariant information. * The lith field points to a lithium_t which is passed * to li_read* and li_write* to access the registers. * The *val fields shadow the lithium registers' contents. */ typedef struct dma_chan { const dma_chan_desc_t *desc; lithium_t *lith; unsigned long baseval; unsigned long cfgval; unsigned long ctlval; } dma_chan_t; /* * ustmsc is a UST/MSC pair (Unadjusted System Time/Media Stream Counter). * UST is time in microseconds since the system booted, and MSC is a * counter that increments with every audio sample. */ typedef struct ustmsc { unsigned long long ust; unsigned long msc; } ustmsc_t; /* * li_ad1843_wait waits until lithium says the AD1843 register * exchange is not busy. Returns 0 on success, -EBUSY on timeout. * * Locking: must be called with lithium_lock held. */ static int li_ad1843_wait(lithium_t *lith) { unsigned long later = jiffies + 2; while (li_readl(lith, LI_CODEC_COMMAND) & LI_CC_BUSY) if (time_after_eq(jiffies, later)) return -EBUSY; return 0; } /* * li_read_ad1843_reg returns the current contents of a 16 bit AD1843 register. * * Returns unsigned register value on success, -errno on failure. */ static int li_read_ad1843_reg(lithium_t *lith, int reg) { int val; ASSERT(!in_interrupt()); spin_lock(&lith->lock); { val = li_ad1843_wait(lith); if (val == 0) { li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_RD | reg); val = li_ad1843_wait(lith); } if (val == 0) val = li_readl(lith, LI_CODEC_DATA); } spin_unlock(&lith->lock); DBGXV("li_read_ad1843_reg(lith=0x%p, reg=%d) returns 0x%04x\n", lith, reg, val); return val; } /* * li_write_ad1843_reg writes the specified value to a 16 bit AD1843 register. */ static void li_write_ad1843_reg(lithium_t *lith, int reg, int newval) { spin_lock(&lith->lock); { if (li_ad1843_wait(lith) == 0) { li_writel(lith, LI_CODEC_DATA, newval); li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_WR | reg); } } spin_unlock(&lith->lock); } /* * li_setup_dma calculates all the register settings for DMA in a particular * mode. It takes too many arguments. */ static void li_setup_dma(dma_chan_t *chan, const dma_chan_desc_t *desc, lithium_t *lith, unsigned long buffer_paddr, int bufshift, int fragshift, int channels, int sampsize) { unsigned long mode, format; unsigned long size, tmask; DBGEV("(chan=0x%p, desc=0x%p, lith=0x%p, buffer_paddr=0x%lx, " "bufshift=%d, fragshift=%d, channels=%d, sampsize=%d)\n", chan, desc, lith, buffer_paddr, bufshift, fragshift, channels, sampsize); /* Reset the channel first. */ li_writel(lith, desc->ctlreg, LI_CCTL_RESET); ASSERT(channels == 1 || channels == 2); if (channels == 2) mode = LI_CCFG_MODE_STEREO; else mode = LI_CCFG_MODE_MONO; ASSERT(sampsize == 1 || sampsize == 2); if (sampsize == 2) format = LI_CCFG_FMT_16BIT; else format = LI_CCFG_FMT_8BIT; chan->desc = desc; chan->lith = lith; /* * Lithium DMA address register takes a 40-bit physical * address, right-shifted by 8 so it fits in 32 bits. Bit 37 * must be set -- it enables cache coherence. */ ASSERT(!(buffer_paddr & 0xFF)); chan->baseval = (buffer_paddr >> 8) | 1 << (37 - 8); chan->cfgval = ((chan->cfgval & ~LI_CCFG_LOCK) | SHIFT_FIELD(desc->ad1843_slot, LI_CCFG_SLOT) | desc->direction | mode | format); size = bufshift - 6; tmask = 13 - fragshift; /* See Lithium DMA Notes above. */ ASSERT(size >= 2 && size <= 7); ASSERT(tmask >= 1 && tmask <= 7); chan->ctlval = ((chan->ctlval & ~LI_CCTL_RESET) | SHIFT_FIELD(size, LI_CCTL_SIZE) | (chan->ctlval & ~LI_CCTL_DMA_ENABLE) | SHIFT_FIELD(tmask, LI_CCTL_TMASK) | SHIFT_FIELD(0, LI_CCTL_TPTR)); DBGPV("basereg 0x%x = 0x%lx\n", desc->basereg, chan->baseval); DBGPV("cfgreg 0x%x = 0x%lx\n", desc->cfgreg, chan->cfgval); DBGPV("ctlreg 0x%x = 0x%lx\n", desc->ctlreg, chan->ctlval); li_writel(lith, desc->basereg, chan->baseval); li_writel(lith, desc->cfgreg, chan->cfgval); li_writel(lith, desc->ctlreg, chan->ctlval); DBGRV(); } static void li_shutdown_dma(dma_chan_t *chan) { lithium_t *lith = chan->lith; void * lith1 = lith->page1; DBGEV("(chan=0x%p)\n", chan); chan->ctlval &= ~LI_CCTL_DMA_ENABLE; DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval); li_writel(lith, chan->desc->ctlreg, chan->ctlval); /* * Offset 0x500 on Lithium page 1 is an undocumented, * unsupported register that holds the zero sample value. * Lithium is supposed to output zero samples when DMA is * inactive, and repeat the last sample when DMA underflows. * But it has a bug, where, after underflow occurs, the zero * sample is not reset. * * I expect this to break in a future rev of Lithium. */ if (lith1 && chan->desc->direction == LI_CCFG_DIR_OUT) * (volatile unsigned long *) (lith1 + 0x500) = 0; } /* * li_activate_dma always starts dma at the beginning of the buffer. * * N.B., these may be called from interrupt. */ static __inline__ void li_activate_dma(dma_chan_t *chan) { chan->ctlval |= LI_CCTL_DMA_ENABLE; DBGPV("ctlval = 0x%lx\n", chan->ctlval); li_writel(chan->lith, chan->desc->ctlreg, chan->ctlval); } static void li_deactivate_dma(dma_chan_t *chan) { lithium_t *lith = chan->lith; void * lith2 = lith->page2; chan->ctlval &= ~(LI_CCTL_DMA_ENABLE | LI_CCTL_RPTR | LI_CCTL_WPTR); DBGPV("ctlval = 0x%lx\n", chan->ctlval); DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval); li_writel(lith, chan->desc->ctlreg, chan->ctlval); /* * Offsets 0x98 and 0x9C on Lithium page 2 are undocumented, * unsupported registers that are internal copies of the DMA * read and write pointers. Because of a Lithium bug, these * registers aren't zeroed correctly when DMA is shut off. So * we whack them directly. * * I expect this to break in a future rev of Lithium. */ if (lith2 && chan->desc->direction == LI_CCFG_DIR_OUT) { * (volatile unsigned long *) (lith2 + 0x98) = 0; * (volatile unsigned long *) (lith2 + 0x9C) = 0; } } /* * read/write the ring buffer pointers. These routines' arguments and results * are byte offsets from the beginning of the ring buffer. */ static __inline__ int li_read_swptr(dma_chan_t *chan) { const unsigned long mask = chan->desc->swptrmask; return CHUNKS_TO_BYTES(UNSHIFT_FIELD(chan->ctlval, mask)); } static __inline__ int li_read_hwptr(dma_chan_t *chan) { return CHUNKS_TO_BYTES(li_readb(chan->lith, chan->desc->hwptrreg)); } static __inline__ void li_write_swptr(dma_chan_t *chan, int val) { const unsigned long mask = chan->desc->swptrmask; ASSERT(!(val & ~CHUNKS_TO_BYTES(0xFF))); val = BYTES_TO_CHUNKS(val); chan->ctlval = (chan->ctlval & ~mask) | SHIFT_FIELD(val, mask); li_writeb(chan->lith, chan->desc->swptrreg, val); } /* li_read_USTMSC() returns a UST/MSC pair for the given channel. */ static void li_read_USTMSC(dma_chan_t *chan, ustmsc_t *ustmsc) { lithium_t *lith = chan->lith; const dma_chan_desc_t *desc = chan->desc; unsigned long now_low, now_high0, now_high1, chan_ust; spin_lock(&lith->lock); { /* * retry until we do all five reads without the * high word changing. (High word increments * every 2^32 microseconds, i.e., not often) */ do { now_high0 = li_readl(lith, LI_UST_HIGH); now_low = li_readl(lith, LI_UST_LOW); /* * Lithium guarantees these two reads will be * atomic -- ust will not increment after msc * is read. */ ustmsc->msc = li_readl(lith, desc->mscreg); chan_ust = li_readl(lith, desc->ustreg); now_high1 = li_readl(lith, LI_UST_HIGH); } while (now_high0 != now_high1); } spin_unlock(&lith->lock); ustmsc->ust = ((unsigned long long) now_high0 << 32 | chan_ust); } static void li_enable_interrupts(lithium_t *lith, unsigned int mask) { DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask); /* clear any already-pending interrupts. */ li_writel(lith, LI_INTR_STATUS, mask); /* enable the interrupts. */ mask |= li_readl(lith, LI_INTR_MASK); li_writel(lith, LI_INTR_MASK, mask); } static void li_disable_interrupts(lithium_t *lith, unsigned int mask) { unsigned int keepmask; DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask); /* disable the interrupts */ keepmask = li_readl(lith, LI_INTR_MASK) & ~mask; li_writel(lith, LI_INTR_MASK, keepmask); /* clear any pending interrupts. */ li_writel(lith, LI_INTR_STATUS, mask); } /* Get the interrupt status and clear all pending interrupts. */ static unsigned int li_get_clear_intr_status(lithium_t *lith) { unsigned int status; status = li_readl(lith, LI_INTR_STATUS); li_writel(lith, LI_INTR_STATUS, ~0); return status & li_readl(lith, LI_INTR_MASK); } static int li_init(lithium_t *lith) { /* 1. System power supplies stabilize. */ /* 2. Assert the ~RESET signal. */ li_writel(lith, LI_HOST_CONTROLLER, LI_HC_RESET); udelay(1); /* 3. Deassert the ~RESET signal and enter a wait period to allow the AD1843 internal clocks and the external crystal oscillator to stabilize. */ li_writel(lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE); udelay(1); return 0; } /*****************************************************************************/ /* AD1843 access */ /* * AD1843 bitfield definitions. All are named as in the AD1843 data * sheet, with ad1843_ prepended and individual bit numbers removed. * * E.g., bits LSS0 through LSS2 become ad1843_LSS. * * Only the bitfields we need are defined. */ typedef struct ad1843_bitfield { char reg; char lo_bit; char nbits; } ad1843_bitfield_t; static const ad1843_bitfield_t ad1843_PDNO = { 0, 14, 1 }, /* Converter Power-Down Flag */ ad1843_INIT = { 0, 15, 1 }, /* Clock Initialization Flag */ ad1843_RIG = { 2, 0, 4 }, /* Right ADC Input Gain */ ad1843_RMGE = { 2, 4, 1 }, /* Right ADC Mic Gain Enable */ ad1843_RSS = { 2, 5, 3 }, /* Right ADC Source Select */ ad1843_LIG = { 2, 8, 4 }, /* Left ADC Input Gain */ ad1843_LMGE = { 2, 12, 1 }, /* Left ADC Mic Gain Enable */ ad1843_LSS = { 2, 13, 3 }, /* Left ADC Source Select */ ad1843_RX1M = { 4, 0, 5 }, /* Right Aux 1 Mix Gain/Atten */ ad1843_RX1MM = { 4, 7, 1 }, /* Right Aux 1 Mix Mute */ ad1843_LX1M = { 4, 8, 5 }, /* Left Aux 1 Mix Gain/Atten */ ad1843_LX1MM = { 4, 15, 1 }, /* Left Aux 1 Mix Mute */ ad1843_RX2M = { 5, 0, 5 }, /* Right Aux 2 Mix Gain/Atten */ ad1843_RX2MM = { 5, 7, 1 }, /* Right Aux 2 Mix Mute */ ad1843_LX2M = { 5, 8, 5 }, /* Left Aux 2 Mix Gain/Atten */ ad1843_LX2MM = { 5, 15, 1 }, /* Left Aux 2 Mix Mute */ ad1843_RMCM = { 7, 0, 5 }, /* Right Mic Mix Gain/Atten */ ad1843_RMCMM = { 7, 7, 1 }, /* Right Mic Mix Mute */ ad1843_LMCM = { 7, 8, 5 }, /* Left Mic Mix Gain/Atten */ ad1843_LMCMM = { 7, 15, 1 }, /* Left Mic Mix Mute */ ad1843_HPOS = { 8, 4, 1 }, /* Headphone Output Voltage Swing */ ad1843_HPOM = { 8, 5, 1 }, /* Headphone Output Mute */ ad1843_RDA1G = { 9, 0, 6 }, /* Right DAC1 Analog/Digital Gain */ ad1843_RDA1GM = { 9, 7, 1 }, /* Right DAC1 Analog Mute */ ad1843_LDA1G = { 9, 8, 6 }, /* Left DAC1 Analog/Digital Gain */ ad1843_LDA1GM = { 9, 15, 1 }, /* Left DAC1 Analog Mute */ ad1843_RDA1AM = { 11, 7, 1 }, /* Right DAC1 Digital Mute */ ad1843_LDA1AM = { 11, 15, 1 }, /* Left DAC1 Digital Mute */ ad1843_ADLC = { 15, 0, 2 }, /* ADC Left Sample Rate Source */ ad1843_ADRC = { 15, 2, 2 }, /* ADC Right Sample Rate Source */ ad1843_DA1C = { 15, 8, 2 }, /* DAC1 Sample Rate Source */ ad1843_C1C = { 17, 0, 16 }, /* Clock 1 Sample Rate Select */ ad1843_C2C = { 20, 0, 16 }, /* Clock 1 Sample Rate Select */ ad1843_DAADL = { 25, 4, 2 }, /* Digital ADC Left Source Select */ ad1843_DAADR = { 25, 6, 2 }, /* Digital ADC Right Source Select */ ad1843_DRSFLT = { 25, 15, 1 }, /* Digital Reampler Filter Mode */ ad1843_ADLF = { 26, 0, 2 }, /* ADC Left Channel Data Format */ ad1843_ADRF = { 26, 2, 2 }, /* ADC Right Channel Data Format */ ad1843_ADTLK = { 26, 4, 1 }, /* ADC Transmit Lock Mode Select */ ad1843_SCF = { 26, 7, 1 }, /* SCLK Frequency Select */ ad1843_DA1F = { 26, 8, 2 }, /* DAC1 Data Format Select */ ad1843_DA1SM = { 26, 14, 1 }, /* DAC1 Stereo/Mono Mode Select */ ad1843_ADLEN = { 27, 0, 1 }, /* ADC Left Channel Enable */ ad1843_ADREN = { 27, 1, 1 }, /* ADC Right Channel Enable */ ad1843_AAMEN = { 27, 4, 1 }, /* Analog to Analog Mix Enable */ ad1843_ANAEN = { 27, 7, 1 }, /* Analog Channel Enable */ ad1843_DA1EN = { 27, 8, 1 }, /* DAC1 Enable */ ad1843_DA2EN = { 27, 9, 1 }, /* DAC2 Enable */ ad1843_C1EN = { 28, 11, 1 }, /* Clock Generator 1 Enable */ ad1843_C2EN = { 28, 12, 1 }, /* Clock Generator 2 Enable */ ad1843_PDNI = { 28, 15, 1 }; /* Converter Power Down */ /* * The various registers of the AD1843 use three different formats for * specifying gain. The ad1843_gain structure parameterizes the * formats. */ typedef struct ad1843_gain { int negative; /* nonzero if gain is negative. */ const ad1843_bitfield_t *lfield; const ad1843_bitfield_t *rfield; } ad1843_gain_t; static const ad1843_gain_t ad1843_gain_RECLEV = { 0, &ad1843_LIG, &ad1843_RIG }; static const ad1843_gain_t ad1843_gain_LINE = { 1, &ad1843_LX1M, &ad1843_RX1M }; static const ad1843_gain_t ad1843_gain_CD = { 1, &ad1843_LX2M, &ad1843_RX2M }; static const ad1843_gain_t ad1843_gain_MIC = { 1, &ad1843_LMCM, &ad1843_RMCM }; static const ad1843_gain_t ad1843_gain_PCM = { 1, &ad1843_LDA1G, &ad1843_RDA1G }; /* read the current value of an AD1843 bitfield. */ static int ad1843_read_bits(lithium_t *lith, const ad1843_bitfield_t *field) { int w = li_read_ad1843_reg(lith, field->reg); int val = w >> field->lo_bit & ((1 << field->nbits) - 1); DBGXV("ad1843_read_bits(lith=0x%p, field->{%d %d %d}) returns 0x%x\n", lith, field->reg, field->lo_bit, field->nbits, val); return val; } /* * write a new value to an AD1843 bitfield and return the old value. */ static int ad1843_write_bits(lithium_t *lith, const ad1843_bitfield_t *field, int newval) { int w = li_read_ad1843_reg(lith, field->reg); int mask = ((1 << field->nbits) - 1) << field->lo_bit; int oldval = (w & mask) >> field->lo_bit; int newbits = (newval << field->lo_bit) & mask; w = (w & ~mask) | newbits; (void) li_write_ad1843_reg(lith, field->reg, w); DBGXV("ad1843_write_bits(lith=0x%p, field->{%d %d %d}, val=0x%x) " "returns 0x%x\n", lith, field->reg, field->lo_bit, field->nbits, newval, oldval); return oldval; } /* * ad1843_read_multi reads multiple bitfields from the same AD1843 * register. It uses a single read cycle to do it. (Reading the * ad1843 requires 256 bit times at 12.288 MHz, or nearly 20 * microseconds.) * * Called ike this. * * ad1843_read_multi(lith, nfields, * &ad1843_FIELD1, &val1, * &ad1843_FIELD2, &val2, ...); */ static void ad1843_read_multi(lithium_t *lith, int argcount, ...) { va_list ap; const ad1843_bitfield_t *fp; int w = 0, mask, *value, reg = -1; va_start(ap, argcount); while (--argcount >= 0) { fp = va_arg(ap, const ad1843_bitfield_t *); value = va_arg(ap, int *); if (reg == -1) { reg = fp->reg; w = li_read_ad1843_reg(lith, reg); } ASSERT(reg == fp->reg); mask = (1 << fp->nbits) - 1; *value = w >> fp->lo_bit & mask; } va_end(ap); } /* * ad1843_write_multi stores multiple bitfields into the same AD1843 * register. It uses one read and one write cycle to do it. * * Called like this. * * ad1843_write_multi(lith, nfields, * &ad1843_FIELD1, val1, * &ad1843_FIELF2, val2, ...); */ static void ad1843_write_multi(lithium_t *lith, int argcount, ...) { va_list ap; int reg; const ad1843_bitfield_t *fp; int value; int w, m, mask, bits; mask = 0; bits = 0; reg = -1; va_start(ap, argcount); while (--argcount >= 0) { fp = va_arg(ap, const ad1843_bitfield_t *); value = va_arg(ap, int); if (reg == -1) reg = fp->reg; ASSERT(fp->reg == reg); m = ((1 << fp->nbits) - 1) << fp->lo_bit; mask |= m; bits |= (value << fp->lo_bit) & m; } va_end(ap); ASSERT(!(bits & ~mask)); if (~mask & 0xFFFF) w = li_read_ad1843_reg(lith, reg); else w = 0; w = (w & ~mask) | bits; (void) li_write_ad1843_reg(lith, reg, w); } /* * ad1843_get_gain reads the specified register and extracts the gain value * using the supplied gain type. It returns the gain in OSS format. */ static int ad1843_get_gain(lithium_t *lith, const ad1843_gain_t *gp) { int lg, rg; unsigned short mask = (1 << gp->lfield->nbits) - 1; ad1843_read_multi(lith, 2, gp->lfield, &lg, gp->rfield, &rg); if (gp->negative) { lg = mask - lg; rg = mask - rg; } lg = (lg * 100 + (mask >> 1)) / mask; rg = (rg * 100 + (mask >> 1)) / mask; return lg << 0 | rg << 8; } /* * Set an audio channel's gain. Converts from OSS format to AD1843's * format. * * Returns the new gain, which may be lower than the old gain. */ static int ad1843_set_gain(lithium_t *lith, const ad1843_gain_t *gp, int newval) { unsigned short mask = (1 << gp->lfield->nbits) - 1; int lg = newval >> 0 & 0xFF; int rg = newval >> 8; if (lg < 0 || lg > 100 || rg < 0 || rg > 100) return -EINVAL; lg = (lg * mask + (mask >> 1)) / 100; rg = (rg * mask + (mask >> 1)) / 100; if (gp->negative) { lg = mask - lg; rg = mask - rg; } ad1843_write_multi(lith, 2, gp->lfield, lg, gp->rfield, rg); return ad1843_get_gain(lith, gp); } /* Returns the current recording source, in OSS format. */ static int ad1843_get_recsrc(lithium_t *lith) { int ls = ad1843_read_bits(lith, &ad1843_LSS); switch (ls) { case 1: return SOUND_MASK_MIC; case 2: return SOUND_MASK_LINE; case 3: return SOUND_MASK_CD; case 6: return SOUND_MASK_PCM; default: ASSERT(0); return -1; } } /* * Enable/disable digital resample mode in the AD1843. * * The AD1843 requires that ADL, ADR, DA1 and DA2 be powered down * while switching modes. So we save DA1's state (DA2's state is not * interesting), power them down, switch into/out of resample mode, * power them up, and restore state. * * This will cause audible glitches if D/A or A/D is going on, so the * driver disallows that (in mixer_write_ioctl()). * * The open question is, is this worth doing? I'm leaving it in, * because it's written, but... */ static void ad1843_set_resample_mode(lithium_t *lith, int onoff) { /* Save DA1 mute and gain (addr 9 is DA1 analog gain/attenuation) */ int save_da1 = li_read_ad1843_reg(lith, 9); /* Power down A/D and D/A. */ ad1843_write_multi(lith, 4, &ad1843_DA1EN, 0, &ad1843_DA2EN, 0, &ad1843_ADLEN, 0, &ad1843_ADREN, 0); /* Switch mode */ ASSERT(onoff == 0 || onoff == 1); ad1843_write_bits(lith, &ad1843_DRSFLT, onoff); /* Power up A/D and D/A. */ ad1843_write_multi(lith, 3, &ad1843_DA1EN, 1, &ad1843_ADLEN, 1, &ad1843_ADREN, 1); /* Restore DA1 mute and gain. */ li_write_ad1843_reg(lith, 9, save_da1); } /* * Set recording source. Arg newsrc specifies an OSS channel mask. * * The complication is that when we switch into/out of loopback mode * (i.e., src = SOUND_MASK_PCM), we change the AD1843 into/out of * digital resampling mode. * * Returns newsrc on success, -errno on failure. */ static int ad1843_set_recsrc(lithium_t *lith, int newsrc) { int bits; int oldbits; switch (newsrc) { case SOUND_MASK_PCM: bits = 6; break; case SOUND_MASK_MIC: bits = 1; break; case SOUND_MASK_LINE: bits = 2; break; case SOUND_MASK_CD: bits = 3; break; default: return -EINVAL; } oldbits = ad1843_read_bits(lith, &ad1843_LSS); if (newsrc == SOUND_MASK_PCM && oldbits != 6) { DBGP("enabling digital resample mode\n"); ad1843_set_resample_mode(lith, 1); ad1843_write_multi(lith, 2, &ad1843_DAADL, 2, &ad1843_DAADR, 2); } else if (newsrc != SOUND_MASK_PCM && oldbits == 6) { DBGP("disabling digital resample mode\n"); ad1843_set_resample_mode(lith, 0); ad1843_write_multi(lith, 2, &ad1843_DAADL, 0, &ad1843_DAADR, 0); } ad1843_write_multi(lith, 2, &ad1843_LSS, bits, &ad1843_RSS, bits); return newsrc; } /* * Return current output sources, in OSS format. */ static int ad1843_get_outsrc(lithium_t *lith) { int pcm, line, mic, cd; pcm = ad1843_read_bits(lith, &ad1843_LDA1GM) ? 0 : SOUND_MASK_PCM; line = ad1843_read_bits(lith, &ad1843_LX1MM) ? 0 : SOUND_MASK_LINE; cd = ad1843_read_bits(lith, &ad1843_LX2MM) ? 0 : SOUND_MASK_CD; mic = ad1843_read_bits(lith, &ad1843_LMCMM) ? 0 : SOUND_MASK_MIC; return pcm | line | cd | mic; } /* * Set output sources. Arg is a mask of active sources in OSS format. * * Returns source mask on success, -errno on failure. */ static int ad1843_set_outsrc(lithium_t *lith, int mask) { int pcm, line, mic, cd; if (mask & ~(SOUND_MASK_PCM | SOUND_MASK_LINE | SOUND_MASK_CD | SOUND_MASK_MIC)) return -EINVAL; pcm = (mask & SOUND_MASK_PCM) ? 0 : 1; line = (mask & SOUND_MASK_LINE) ? 0 : 1; mic = (mask & SOUND_MASK_MIC) ? 0 : 1; cd = (mask & SOUND_MASK_CD) ? 0 : 1; ad1843_write_multi(lith, 2, &ad1843_LDA1GM, pcm, &ad1843_RDA1GM, pcm); ad1843_write_multi(lith, 2, &ad1843_LX1MM, line, &ad1843_RX1MM, line); ad1843_write_multi(lith, 2, &ad1843_LX2MM, cd, &ad1843_RX2MM, cd); ad1843_write_multi(lith, 2, &ad1843_LMCMM, mic, &ad1843_RMCMM, mic); return mask; } /* Setup ad1843 for D/A conversion. */ static void ad1843_setup_dac(lithium_t *lith, int framerate, int fmt, int channels) { int ad_fmt = 0, ad_mode = 0; DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n", lith, framerate, fmt, channels); switch (fmt) { case AFMT_S8: ad_fmt = 1; break; case AFMT_U8: ad_fmt = 1; break; case AFMT_S16_LE: ad_fmt = 1; break; case AFMT_MU_LAW: ad_fmt = 2; break; case AFMT_A_LAW: ad_fmt = 3; break; default: ASSERT(0); } switch (channels) { case 2: ad_mode = 0; break; case 1: ad_mode = 1; break; default: ASSERT(0); } DBGPV("ad_mode = %d, ad_fmt = %d\n", ad_mode, ad_fmt); ASSERT(framerate >= 4000 && framerate <= 49000); ad1843_write_bits(lith, &ad1843_C1C, framerate); ad1843_write_multi(lith, 2, &ad1843_DA1SM, ad_mode, &ad1843_DA1F, ad_fmt); } static void ad1843_shutdown_dac(lithium_t *lith) { ad1843_write_bits(lith, &ad1843_DA1F, 1); } static void ad1843_setup_adc(lithium_t *lith, int framerate, int fmt, int channels) { int da_fmt = 0; DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n", lith, framerate, fmt, channels); switch (fmt) { case AFMT_S8: da_fmt = 1; break; case AFMT_U8: da_fmt = 1; break; case AFMT_S16_LE: da_fmt = 1; break; case AFMT_MU_LAW: da_fmt = 2; break; case AFMT_A_LAW: da_fmt = 3; break; default: ASSERT(0); } DBGPV("da_fmt = %d\n", da_fmt); ASSERT(framerate >= 4000 && framerate <= 49000); ad1843_write_bits(lith, &ad1843_C2C, framerate); ad1843_write_multi(lith, 2, &ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt); } static void ad1843_shutdown_adc(lithium_t *lith) { /* nothing to do */ } /* * Fully initialize the ad1843. As described in the AD1843 data * sheet, section "START-UP SEQUENCE". The numbered comments are * subsection headings from the data sheet. See the data sheet, pages * 52-54, for more info. * * return 0 on success, -errno on failure. */ static int __init ad1843_init(lithium_t *lith) { unsigned long later; int err; err = li_init(lith); if (err) return err; if (ad1843_read_bits(lith, &ad1843_INIT) != 0) { printk(KERN_ERR "vwsnd sound: AD1843 won't initialize\n"); return -EIO; } ad1843_write_bits(lith, &ad1843_SCF, 1); /* 4. Put the conversion resources into standby. */ ad1843_write_bits(lith, &ad1843_PDNI, 0); later = jiffies + HZ / 2; /* roughly half a second */ DBGDO(shut_up++); while (ad1843_read_bits(lith, &ad1843_PDNO)) { if (time_after(jiffies, later)) { printk(KERN_ERR "vwsnd audio: AD1843 won't power up\n"); return -EIO; } schedule(); } DBGDO(shut_up--); /* 5. Power up the clock generators and enable clock output pins. */ ad1843_write_multi(lith, 2, &ad1843_C1EN, 1, &ad1843_C2EN, 1); /* 6. Configure conversion resources while they are in standby. */ /* DAC1 uses clock 1 as source, ADC uses clock 2. Always. */ ad1843_write_multi(lith, 3, &ad1843_DA1C, 1, &ad1843_ADLC, 2, &ad1843_ADRC, 2); /* 7. Enable conversion resources. */ ad1843_write_bits(lith, &ad1843_ADTLK, 1); ad1843_write_multi(lith, 5, &ad1843_ANAEN, 1, &ad1843_AAMEN, 1, &ad1843_DA1EN, 1, &ad1843_ADLEN, 1, &ad1843_ADREN, 1); /* 8. Configure conversion resources while they are enabled. */ ad1843_write_bits(lith, &ad1843_DA1C, 1); /* Unmute all channels. */ ad1843_set_outsrc(lith, (SOUND_MASK_PCM | SOUND_MASK_LINE | SOUND_MASK_MIC | SOUND_MASK_CD)); ad1843_write_multi(lith, 2, &ad1843_LDA1AM, 0, &ad1843_RDA1AM, 0); /* Set default recording source to Line In and set * mic gain to +20 dB. */ ad1843_set_recsrc(lith, SOUND_MASK_LINE); ad1843_write_multi(lith, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1); /* Set Speaker Out level to +/- 4V and unmute it. */ ad1843_write_multi(lith, 2, &ad1843_HPOS, 1, &ad1843_HPOM, 0); return 0; } /*****************************************************************************/ /* PCM I/O */ #define READ_INTR_MASK (LI_INTR_COMM1_TRIG | LI_INTR_COMM1_OVERFLOW) #define WRITE_INTR_MASK (LI_INTR_COMM2_TRIG | LI_INTR_COMM2_UNDERFLOW) typedef enum vwsnd_port_swstate { /* software state */ SW_OFF, SW_INITIAL, SW_RUN, SW_DRAIN, } vwsnd_port_swstate_t; typedef enum vwsnd_port_hwstate { /* hardware state */ HW_STOPPED, HW_RUNNING, } vwsnd_port_hwstate_t; /* * These flags are read by ISR, but only written at baseline. */ typedef enum vwsnd_port_flags { DISABLED = 1 << 0, ERFLOWN = 1 << 1, /* overflown or underflown */ HW_BUSY = 1 << 2, } vwsnd_port_flags_t; /* * vwsnd_port is the per-port data structure. Each device has two * ports, one for input and one for output. * * Locking: * * port->lock protects: hwstate, flags, swb_[iu]_avail. * * devc->io_mutex protects: swstate, sw_*, swb_[iu]_idx. * * everything else is only written by open/release or * pcm_{setup,shutdown}(), which are serialized by a * combination of devc->open_mutex and devc->io_mutex. */ typedef struct vwsnd_port { spinlock_t lock; wait_queue_head_t queue; vwsnd_port_swstate_t swstate; vwsnd_port_hwstate_t hwstate; vwsnd_port_flags_t flags; int sw_channels; int sw_samplefmt; int sw_framerate; int sample_size; int frame_size; unsigned int zero_word; /* zero for the sample format */ int sw_fragshift; int sw_fragcount; int sw_subdivshift; unsigned int hw_fragshift; unsigned int hw_fragsize; unsigned int hw_fragcount; int hwbuf_size; unsigned long hwbuf_paddr; unsigned long hwbuf_vaddr; void * hwbuf; /* hwbuf == hwbuf_vaddr */ int hwbuf_max; /* max bytes to preload */ void * swbuf; unsigned int swbuf_size; /* size in bytes */ unsigned int swb_u_idx; /* index of next user byte */ unsigned int swb_i_idx; /* index of next intr byte */ unsigned int swb_u_avail; /* # bytes avail to user */ unsigned int swb_i_avail; /* # bytes avail to intr */ dma_chan_t chan; /* Accounting */ int byte_count; int frag_count; int MSC_offset; } vwsnd_port_t; /* vwsnd_dev is the per-device data structure. */ typedef struct vwsnd_dev { struct vwsnd_dev *next_dev; int audio_minor; /* minor number of audio device */ int mixer_minor; /* minor number of mixer device */ struct mutex open_mutex; struct mutex io_mutex; struct mutex mix_mutex; fmode_t open_mode; wait_queue_head_t open_wait; lithium_t lith; vwsnd_port_t rport; vwsnd_port_t wport; } vwsnd_dev_t; static vwsnd_dev_t *vwsnd_dev_list; /* linked list of all devices */ static atomic_t vwsnd_use_count = ATOMIC_INIT(0); # define INC_USE_COUNT (atomic_inc(&vwsnd_use_count)) # define DEC_USE_COUNT (atomic_dec(&vwsnd_use_count)) # define IN_USE (atomic_read(&vwsnd_use_count) != 0) /* * Lithium can only DMA multiples of 32 bytes. Its DMA buffer may * be up to 8 Kb. This driver always uses 8 Kb. * * Memory bug workaround -- I'm not sure what's going on here, but * somehow pcm_copy_out() was triggering segv's going on to the next * page of the hw buffer. So, I make the hw buffer one size bigger * than we actually use. That way, the following page is allocated * and mapped, and no error. I suspect that something is broken * in Cobalt, but haven't really investigated. HBO is the actual * size of the buffer, and HWBUF_ORDER is what we allocate. */ #define HWBUF_SHIFT 13 #define HWBUF_SIZE (1 << HWBUF_SHIFT) # define HBO (HWBUF_SHIFT > PAGE_SHIFT ? HWBUF_SHIFT - PAGE_SHIFT : 0) # define HWBUF_ORDER (HBO + 1) /* next size bigger */ #define MIN_SPEED 4000 #define MAX_SPEED 49000 #define MIN_FRAGSHIFT (DMACHUNK_SHIFT + 1) #define MAX_FRAGSHIFT (PAGE_SHIFT) #define MIN_FRAGSIZE (1 << MIN_FRAGSHIFT) #define MAX_FRAGSIZE (1 << MAX_FRAGSHIFT) #define MIN_FRAGCOUNT(fragsize) 3 #define MAX_FRAGCOUNT(fragsize) (32 * PAGE_SIZE / (fragsize)) #define DEFAULT_FRAGSHIFT 12 #define DEFAULT_FRAGCOUNT 16 #define DEFAULT_SUBDIVSHIFT 0 /* * The software buffer (swbuf) is a ring buffer shared between user * level and interrupt level. Each level owns some of the bytes in * the buffer, and may give bytes away by calling swb_inc_{u,i}(). * User level calls _u for user, and interrupt level calls _i for * interrupt. * * port->swb_{u,i}_avail is the number of bytes available to that level. * * port->swb_{u,i}_idx is the index of the first available byte in the * buffer. * * Each level calls swb_inc_{u,i}() to atomically increment its index, * recalculate the number of bytes available for both sides, and * return the number of bytes available. Since each side can only * give away bytes, the other side can only increase the number of * bytes available to this side. Each side updates its own index * variable, swb_{u,i}_idx, so no lock is needed to read it. * * To query the number of bytes available, call swb_inc_{u,i} with an * increment of zero. */ static __inline__ unsigned int __swb_inc_u(vwsnd_port_t *port, int inc) { if (inc) { port->swb_u_idx += inc; port->swb_u_idx %= port->swbuf_size; port->swb_u_avail -= inc; port->swb_i_avail += inc; } return port->swb_u_avail; } static __inline__ unsigned int swb_inc_u(vwsnd_port_t *port, int inc) { unsigned long flags; unsigned int ret; spin_lock_irqsave(&port->lock, flags); { ret = __swb_inc_u(port, inc); } spin_unlock_irqrestore(&port->lock, flags); return ret; } static __inline__ unsigned int __swb_inc_i(vwsnd_port_t *port, int inc) { if (inc) { port->swb_i_idx += inc; port->swb_i_idx %= port->swbuf_size; port->swb_i_avail -= inc; port->swb_u_avail += inc; } return port->swb_i_avail; } static __inline__ unsigned int swb_inc_i(vwsnd_port_t *port, int inc) { unsigned long flags; unsigned int ret; spin_lock_irqsave(&port->lock, flags); { ret = __swb_inc_i(port, inc); } spin_unlock_irqrestore(&port->lock, flags); return ret; } /* * pcm_setup - this routine initializes all port state after * mode-setting ioctls have been done, but before the first I/O is * done. * * Locking: called with devc->io_mutex held. * * Returns 0 on success, -errno on failure. */ static int pcm_setup(vwsnd_dev_t *devc, vwsnd_port_t *rport, vwsnd_port_t *wport) { vwsnd_port_t *aport = rport ? rport : wport; int sample_size; unsigned int zero_word; DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport); ASSERT(aport != NULL); if (aport->swbuf != NULL) return 0; switch (aport->sw_samplefmt) { case AFMT_MU_LAW: sample_size = 1; zero_word = 0xFFFFFFFF ^ 0x80808080; break; case AFMT_A_LAW: sample_size = 1; zero_word = 0xD5D5D5D5 ^ 0x80808080; break; case AFMT_U8: sample_size = 1; zero_word = 0x80808080; break; case AFMT_S8: sample_size = 1; zero_word = 0x00000000; break; case AFMT_S16_LE: sample_size = 2; zero_word = 0x00000000; break; default: sample_size = 0; /* prevent compiler warning */ zero_word = 0; ASSERT(0); } aport->sample_size = sample_size; aport->zero_word = zero_word; aport->frame_size = aport->sw_channels * aport->sample_size; aport->hw_fragshift = aport->sw_fragshift - aport->sw_subdivshift; aport->hw_fragsize = 1 << aport->hw_fragshift; aport->hw_fragcount = aport->sw_fragcount << aport->sw_subdivshift; ASSERT(aport->hw_fragsize >= MIN_FRAGSIZE); ASSERT(aport->hw_fragsize <= MAX_FRAGSIZE); ASSERT(aport->hw_fragcount >= MIN_FRAGCOUNT(aport->hw_fragsize)); ASSERT(aport->hw_fragcount <= MAX_FRAGCOUNT(aport->hw_fragsize)); if (rport) { int hwfrags, swfrags; rport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE; hwfrags = rport->hwbuf_max >> aport->hw_fragshift; swfrags = aport->hw_fragcount - hwfrags; if (swfrags < 2) swfrags = 2; rport->swbuf_size = swfrags * aport->hw_fragsize; DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags); DBGPV("read hwbuf_max = %d, swbuf_size = %d\n", rport->hwbuf_max, rport->swbuf_size); } if (wport) { int hwfrags, swfrags; int total_bytes = aport->hw_fragcount * aport->hw_fragsize; wport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE; if (wport->hwbuf_max > total_bytes) wport->hwbuf_max = total_bytes; hwfrags = wport->hwbuf_max >> aport->hw_fragshift; DBGPV("hwfrags = %d\n", hwfrags); swfrags = aport->hw_fragcount - hwfrags; if (swfrags < 2) swfrags = 2; wport->swbuf_size = swfrags * aport->hw_fragsize; DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags); DBGPV("write hwbuf_max = %d, swbuf_size = %d\n", wport->hwbuf_max, wport->swbuf_size); } aport->swb_u_idx = 0; aport->swb_i_idx = 0; aport->byte_count = 0; /* * Is this a Cobalt bug? We need to make this buffer extend * one page further than we actually use -- somehow memcpy * causes an exceptoin otherwise. I suspect there's a bug in * Cobalt (or somewhere) where it's generating a fault on a * speculative load or something. Obviously, I haven't taken * the time to track it down. */ aport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE); if (!aport->swbuf) return -ENOMEM; if (rport && wport) { ASSERT(aport == rport); ASSERT(wport->swbuf == NULL); /* One extra page - see comment above. */ wport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE); if (!wport->swbuf) { vfree(aport->swbuf); aport->swbuf = NULL; return -ENOMEM; } wport->sample_size = rport->sample_size; wport->zero_word = rport->zero_word; wport->frame_size = rport->frame_size; wport->hw_fragshift = rport->hw_fragshift; wport->hw_fragsize = rport->hw_fragsize; wport->hw_fragcount = rport->hw_fragcount; wport->swbuf_size = rport->swbuf_size; wport->hwbuf_max = rport->hwbuf_max; wport->swb_u_idx = rport->swb_u_idx; wport->swb_i_idx = rport->swb_i_idx; wport->byte_count = rport->byte_count; } if (rport) { rport->swb_u_avail = 0; rport->swb_i_avail = rport->swbuf_size; rport->swstate = SW_RUN; li_setup_dma(&rport->chan, &li_comm1, &devc->lith, rport->hwbuf_paddr, HWBUF_SHIFT, rport->hw_fragshift, rport->sw_channels, rport->sample_size); ad1843_setup_adc(&devc->lith, rport->sw_framerate, rport->sw_samplefmt, rport->sw_channels); li_enable_interrupts(&devc->lith, READ_INTR_MASK); if (!(rport->flags & DISABLED)) { ustmsc_t ustmsc; rport->hwstate = HW_RUNNING; li_activate_dma(&rport->chan); li_read_USTMSC(&rport->chan, &ustmsc); rport->MSC_offset = ustmsc.msc; } } if (wport) { if (wport->hwbuf_max > wport->swbuf_size) wport->hwbuf_max = wport->swbuf_size; wport->flags &= ~ERFLOWN; wport->swb_u_avail = wport->swbuf_size; wport->swb_i_avail = 0; wport->swstate = SW_RUN; li_setup_dma(&wport->chan, &li_comm2, &devc->lith, wport->hwbuf_paddr, HWBUF_SHIFT, wport->hw_fragshift, wport->sw_channels, wport->sample_size); ad1843_setup_dac(&devc->lith, wport->sw_framerate, wport->sw_samplefmt, wport->sw_channels); li_enable_interrupts(&devc->lith, WRITE_INTR_MASK); } DBGRV(); return 0; } /* * pcm_shutdown_port - shut down one port (direction) for PCM I/O. * Only called from pcm_shutdown. */ static void pcm_shutdown_port(vwsnd_dev_t *devc, vwsnd_port_t *aport, unsigned int mask) { unsigned long flags; vwsnd_port_hwstate_t hwstate; DECLARE_WAITQUEUE(wait, current); aport->swstate = SW_INITIAL; add_wait_queue(&aport->queue, &wait); while (1) { set_current_state(TASK_UNINTERRUPTIBLE); spin_lock_irqsave(&aport->lock, flags); { hwstate = aport->hwstate; } spin_unlock_irqrestore(&aport->lock, flags); if (hwstate == HW_STOPPED) break; schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&aport->queue, &wait); li_disable_interrupts(&devc->lith, mask); if (aport == &devc->rport) ad1843_shutdown_adc(&devc->lith); else /* aport == &devc->wport) */ ad1843_shutdown_dac(&devc->lith); li_shutdown_dma(&aport->chan); vfree(aport->swbuf); aport->swbuf = NULL; aport->byte_count = 0; } /* * pcm_shutdown undoes what pcm_setup did. * Also sets the ports' swstate to newstate. */ static void pcm_shutdown(vwsnd_dev_t *devc, vwsnd_port_t *rport, vwsnd_port_t *wport) { DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport); if (rport && rport->swbuf) { DBGPV("shutting down rport\n"); pcm_shutdown_port(devc, rport, READ_INTR_MASK); } if (wport && wport->swbuf) { DBGPV("shutting down wport\n"); pcm_shutdown_port(devc, wport, WRITE_INTR_MASK); } DBGRV(); } static void pcm_copy_in(vwsnd_port_t *rport, int swidx, int hwidx, int nb) { char *src = rport->hwbuf + hwidx; char *dst = rport->swbuf + swidx; int fmt = rport->sw_samplefmt; DBGPV("swidx = %d, hwidx = %d\n", swidx, hwidx); ASSERT(rport->hwbuf != NULL); ASSERT(rport->swbuf != NULL); ASSERT(nb > 0 && (nb % 32) == 0); ASSERT(swidx % 32 == 0 && hwidx % 32 == 0); ASSERT(swidx >= 0 && swidx + nb <= rport->swbuf_size); ASSERT(hwidx >= 0 && hwidx + nb <= rport->hwbuf_size); if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) { /* See Sample Format Notes above. */ char *end = src + nb; while (src < end) *dst++ = *src++ ^ 0x80; } else memcpy(dst, src, nb); } static void pcm_copy_out(vwsnd_port_t *wport, int swidx, int hwidx, int nb) { char *src = wport->swbuf + swidx; char *dst = wport->hwbuf + hwidx; int fmt = wport->sw_samplefmt; ASSERT(nb > 0 && (nb % 32) == 0); ASSERT(wport->hwbuf != NULL); ASSERT(wport->swbuf != NULL); ASSERT(swidx % 32 == 0 && hwidx % 32 == 0); ASSERT(swidx >= 0 && swidx + nb <= wport->swbuf_size); ASSERT(hwidx >= 0 && hwidx + nb <= wport->hwbuf_size); if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) { /* See Sample Format Notes above. */ char *end = src + nb; while (src < end) *dst++ = *src++ ^ 0x80; } else memcpy(dst, src, nb); } /* * pcm_output() is called both from baselevel and from interrupt level. * This is where audio frames are copied into the hardware-accessible * ring buffer. * * Locking note: The part of this routine that figures out what to do * holds wport->lock. The longer part releases wport->lock, but sets * wport->flags & HW_BUSY. Afterward, it reacquires wport->lock, and * checks for more work to do. * * If another thread calls pcm_output() while HW_BUSY is set, it * returns immediately, knowing that the thread that set HW_BUSY will * look for more work to do before returning. * * This has the advantage that port->lock is held for several short * periods instead of one long period. Also, when pcm_output is * called from base level, it reenables interrupts. */ static void pcm_output(vwsnd_dev_t *devc, int erflown, int nb) { vwsnd_port_t *wport = &devc->wport; const int hwmax = wport->hwbuf_max; const int hwsize = wport->hwbuf_size; const int swsize = wport->swbuf_size; const int fragsize = wport->hw_fragsize; unsigned long iflags; DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb); spin_lock_irqsave(&wport->lock, iflags); if (erflown) wport->flags |= ERFLOWN; (void) __swb_inc_u(wport, nb); if (wport->flags & HW_BUSY) { spin_unlock_irqrestore(&wport->lock, iflags); DBGPV("returning: HW BUSY\n"); return; } if (wport->flags & DISABLED) { spin_unlock_irqrestore(&wport->lock, iflags); DBGPV("returning: DISABLED\n"); return; } wport->flags |= HW_BUSY; while (1) { int swptr, hwptr, hw_avail, sw_avail, swidx; vwsnd_port_hwstate_t hwstate = wport->hwstate; vwsnd_port_swstate_t swstate = wport->swstate; int hw_unavail; ustmsc_t ustmsc; hwptr = li_read_hwptr(&wport->chan); swptr = li_read_swptr(&wport->chan); hw_unavail = (swptr - hwptr + hwsize) % hwsize; hw_avail = (hwmax - hw_unavail) & -fragsize; sw_avail = wport->swb_i_avail & -fragsize; if (sw_avail && swstate == SW_RUN) { if (wport->flags & ERFLOWN) { wport->flags &= ~ERFLOWN; } } else if (swstate == SW_INITIAL || swstate == SW_OFF || (swstate == SW_DRAIN && !sw_avail && (wport->flags & ERFLOWN))) { DBGP("stopping. hwstate = %d\n", hwstate); if (hwstate != HW_STOPPED) { li_deactivate_dma(&wport->chan); wport->hwstate = HW_STOPPED; } wake_up(&wport->queue); break; } if (!sw_avail || !hw_avail) break; spin_unlock_irqrestore(&wport->lock, iflags); /* * We gave up the port lock, but we have the HW_BUSY flag. * Proceed without accessing any nonlocal state. * Do not exit the loop -- must check for more work. */ swidx = wport->swb_i_idx; nb = hw_avail; if (nb > sw_avail) nb = sw_avail; if (nb > hwsize - swptr) nb = hwsize - swptr; /* don't overflow hwbuf */ if (nb > swsize - swidx) nb = swsize - swidx; /* don't overflow swbuf */ ASSERT(nb > 0); if (nb % fragsize) { DBGP("nb = %d, fragsize = %d\n", nb, fragsize); DBGP("hw_avail = %d\n", hw_avail); DBGP("sw_avail = %d\n", sw_avail); DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr); DBGP("swsize = %d, swidx = %d\n", swsize, swidx); } ASSERT(!(nb % fragsize)); DBGPV("copying swb[%d..%d] to hwb[%d..%d]\n", swidx, swidx + nb, swptr, swptr + nb); pcm_copy_out(wport, swidx, swptr, nb); li_write_swptr(&wport->chan, (swptr + nb) % hwsize); spin_lock_irqsave(&wport->lock, iflags); if (hwstate == HW_STOPPED) { DBGPV("starting\n"); li_activate_dma(&wport->chan); wport->hwstate = HW_RUNNING; li_read_USTMSC(&wport->chan, &ustmsc); ASSERT(wport->byte_count % wport->frame_size == 0); wport->MSC_offset = ustmsc.msc - wport->byte_count / wport->frame_size; } __swb_inc_i(wport, nb); wport->byte_count += nb; wport->frag_count += nb / fragsize; ASSERT(nb % fragsize == 0); wake_up(&wport->queue); } wport->flags &= ~HW_BUSY; spin_unlock_irqrestore(&wport->lock, iflags); DBGRV(); } /* * pcm_input() is called both from baselevel and from interrupt level. * This is where audio frames are copied out of the hardware-accessible * ring buffer. * * Locking note: The part of this routine that figures out what to do * holds rport->lock. The longer part releases rport->lock, but sets * rport->flags & HW_BUSY. Afterward, it reacquires rport->lock, and * checks for more work to do. * * If another thread calls pcm_input() while HW_BUSY is set, it * returns immediately, knowing that the thread that set HW_BUSY will * look for more work to do before returning. * * This has the advantage that port->lock is held for several short * periods instead of one long period. Also, when pcm_input is * called from base level, it reenables interrupts. */ static void pcm_input(vwsnd_dev_t *devc, int erflown, int nb) { vwsnd_port_t *rport = &devc->rport; const int hwmax = rport->hwbuf_max; const int hwsize = rport->hwbuf_size; const int swsize = rport->swbuf_size; const int fragsize = rport->hw_fragsize; unsigned long iflags; DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb); spin_lock_irqsave(&rport->lock, iflags); if (erflown) rport->flags |= ERFLOWN; (void) __swb_inc_u(rport, nb); if (rport->flags & HW_BUSY || !rport->swbuf) { spin_unlock_irqrestore(&rport->lock, iflags); DBGPV("returning: HW BUSY or !swbuf\n"); return; } if (rport->flags & DISABLED) { spin_unlock_irqrestore(&rport->lock, iflags); DBGPV("returning: DISABLED\n"); return; } rport->flags |= HW_BUSY; while (1) { int swptr, hwptr, hw_avail, sw_avail, swidx; vwsnd_port_hwstate_t hwstate = rport->hwstate; vwsnd_port_swstate_t swstate = rport->swstate; hwptr = li_read_hwptr(&rport->chan); swptr = li_read_swptr(&rport->chan); hw_avail = (hwptr - swptr + hwsize) % hwsize & -fragsize; if (hw_avail > hwmax) hw_avail = hwmax; sw_avail = rport->swb_i_avail & -fragsize; if (swstate != SW_RUN) { DBGP("stopping. hwstate = %d\n", hwstate); if (hwstate != HW_STOPPED) { li_deactivate_dma(&rport->chan); rport->hwstate = HW_STOPPED; } wake_up(&rport->queue); break; } if (!sw_avail || !hw_avail) break; spin_unlock_irqrestore(&rport->lock, iflags); /* * We gave up the port lock, but we have the HW_BUSY flag. * Proceed without accessing any nonlocal state. * Do not exit the loop -- must check for more work. */ swidx = rport->swb_i_idx; nb = hw_avail; if (nb > sw_avail) nb = sw_avail; if (nb > hwsize - swptr) nb = hwsize - swptr; /* don't overflow hwbuf */ if (nb > swsize - swidx) nb = swsize - swidx; /* don't overflow swbuf */ ASSERT(nb > 0); if (nb % fragsize) { DBGP("nb = %d, fragsize = %d\n", nb, fragsize); DBGP("hw_avail = %d\n", hw_avail); DBGP("sw_avail = %d\n", sw_avail); DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr); DBGP("swsize = %d, swidx = %d\n", swsize, swidx); } ASSERT(!(nb % fragsize)); DBGPV("copying hwb[%d..%d] to swb[%d..%d]\n", swptr, swptr + nb, swidx, swidx + nb); pcm_copy_in(rport, swidx, swptr, nb); li_write_swptr(&rport->chan, (swptr + nb) % hwsize); spin_lock_irqsave(&rport->lock, iflags); __swb_inc_i(rport, nb); rport->byte_count += nb; rport->frag_count += nb / fragsize; ASSERT(nb % fragsize == 0); wake_up(&rport->queue); } rport->flags &= ~HW_BUSY; spin_unlock_irqrestore(&rport->lock, iflags); DBGRV(); } /* * pcm_flush_frag() writes zero samples to fill the current fragment, * then flushes it to the hardware. * * It is only meaningful to flush output, not input. */ static void pcm_flush_frag(vwsnd_dev_t *devc) { vwsnd_port_t *wport = &devc->wport; DBGPV("swstate = %d\n", wport->swstate); if (wport->swstate == SW_RUN) { int idx = wport->swb_u_idx; int end = (idx + wport->hw_fragsize - 1) >> wport->hw_fragshift << wport->hw_fragshift; int nb = end - idx; DBGPV("clearing %d bytes\n", nb); if (nb) memset(wport->swbuf + idx, (char) wport->zero_word, nb); wport->swstate = SW_DRAIN; pcm_output(devc, 0, nb); } DBGRV(); } /* * Wait for output to drain. This sleeps uninterruptibly because * there is nothing intelligent we can do if interrupted. This * means the process will be delayed in responding to the signal. */ static void pcm_write_sync(vwsnd_dev_t *devc) { vwsnd_port_t *wport = &devc->wport; DECLARE_WAITQUEUE(wait, current); unsigned long flags; vwsnd_port_hwstate_t hwstate; DBGEV("(devc=0x%p)\n", devc); add_wait_queue(&wport->queue, &wait); while (1) { set_current_state(TASK_UNINTERRUPTIBLE); spin_lock_irqsave(&wport->lock, flags); { hwstate = wport->hwstate; } spin_unlock_irqrestore(&wport->lock, flags); if (hwstate == HW_STOPPED) break; schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&wport->queue, &wait); DBGPV("swstate = %d, hwstate = %d\n", wport->swstate, wport->hwstate); DBGRV(); } /*****************************************************************************/ /* audio driver */ /* * seek on an audio device always fails. */ static void vwsnd_audio_read_intr(vwsnd_dev_t *devc, unsigned int status) { int overflown = status & LI_INTR_COMM1_OVERFLOW; if (status & READ_INTR_MASK) pcm_input(devc, overflown, 0); } static void vwsnd_audio_write_intr(vwsnd_dev_t *devc, unsigned int status) { int underflown = status & LI_INTR_COMM2_UNDERFLOW; if (status & WRITE_INTR_MASK) pcm_output(devc, underflown, 0); } static irqreturn_t vwsnd_audio_intr(int irq, void *dev_id) { vwsnd_dev_t *devc = dev_id; unsigned int status; DBGEV("(irq=%d, dev_id=0x%p)\n", irq, dev_id); status = li_get_clear_intr_status(&devc->lith); vwsnd_audio_read_intr(devc, status); vwsnd_audio_write_intr(devc, status); return IRQ_HANDLED; } static ssize_t vwsnd_audio_do_read(struct file *file, char *buffer, size_t count, loff_t *ppos) { vwsnd_dev_t *devc = file->private_data; vwsnd_port_t *rport = ((file->f_mode & FMODE_READ) ? &devc->rport : NULL); int ret, nb; DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n", file, buffer, count, ppos); if (!rport) return -EINVAL; if (rport->swbuf == NULL) { vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? &devc->wport : NULL; ret = pcm_setup(devc, rport, wport); if (ret < 0) return ret; } if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; ret = 0; while (count) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(&rport->queue, &wait); while ((nb = swb_inc_u(rport, 0)) == 0) { DBGPV("blocking\n"); set_current_state(TASK_INTERRUPTIBLE); if (rport->flags & DISABLED || file->f_flags & O_NONBLOCK) { current->state = TASK_RUNNING; remove_wait_queue(&rport->queue, &wait); return ret ? ret : -EAGAIN; } schedule(); if (signal_pending(current)) { current->state = TASK_RUNNING; remove_wait_queue(&rport->queue, &wait); return ret ? ret : -ERESTARTSYS; } } current->state = TASK_RUNNING; remove_wait_queue(&rport->queue, &wait); pcm_input(devc, 0, 0); /* nb bytes are available in userbuf. */ if (nb > count) nb = count; DBGPV("nb = %d\n", nb); if (copy_to_user(buffer, rport->swbuf + rport->swb_u_idx, nb)) return -EFAULT; (void) swb_inc_u(rport, nb); buffer += nb; count -= nb; ret += nb; } DBGPV("returning %d\n", ret); return ret; } static ssize_t vwsnd_audio_read(struct file *file, char *buffer, size_t count, loff_t *ppos) { vwsnd_dev_t *devc = file->private_data; ssize_t ret; mutex_lock(&devc->io_mutex); ret = vwsnd_audio_do_read(file, buffer, count, ppos); mutex_unlock(&devc->io_mutex); return ret; } static ssize_t vwsnd_audio_do_write(struct file *file, const char *buffer, size_t count, loff_t *ppos) { vwsnd_dev_t *devc = file->private_data; vwsnd_port_t *wport = ((file->f_mode & FMODE_WRITE) ? &devc->wport : NULL); int ret, nb; DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n", file, buffer, count, ppos); if (!wport) return -EINVAL; if (wport->swbuf == NULL) { vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? &devc->rport : NULL; ret = pcm_setup(devc, rport, wport); if (ret < 0) return ret; } if (!access_ok(VERIFY_WRITE, buffer, count)) return -EFAULT; ret = 0; while (count) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(&wport->queue, &wait); while ((nb = swb_inc_u(wport, 0)) == 0) { set_current_state(TASK_INTERRUPTIBLE); if (wport->flags & DISABLED || file->f_flags & O_NONBLOCK) { current->state = TASK_RUNNING; remove_wait_queue(&wport->queue, &wait); return ret ? ret : -EAGAIN; } schedule(); if (signal_pending(current)) { current->state = TASK_RUNNING; remove_wait_queue(&wport->queue, &wait); return ret ? ret : -ERESTARTSYS; } } current->state = TASK_RUNNING; remove_wait_queue(&wport->queue, &wait); /* nb bytes are available in userbuf. */ if (nb > count) nb = count; DBGPV("nb = %d\n", nb); if (copy_from_user(wport->swbuf + wport->swb_u_idx, buffer, nb)) return -EFAULT; pcm_output(devc, 0, nb); buffer += nb; count -= nb; ret += nb; } DBGPV("returning %d\n", ret); return ret; } static ssize_t vwsnd_audio_write(struct file *file, const char *buffer, size_t count, loff_t *ppos) { vwsnd_dev_t *devc = file->private_data; ssize_t ret; mutex_lock(&devc->io_mutex); ret = vwsnd_audio_do_write(file, buffer, count, ppos); mutex_unlock(&devc->io_mutex); return ret; } /* No kernel lock - fine */ static unsigned int vwsnd_audio_poll(struct file *file, struct poll_table_struct *wait) { vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? &devc->rport : NULL; vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? &devc->wport : NULL; unsigned int mask = 0; DBGEV("(file=0x%p, wait=0x%p)\n", file, wait); ASSERT(rport || wport); if (rport) { poll_wait(file, &rport->queue, wait); if (swb_inc_u(rport, 0)) mask |= (POLLIN | POLLRDNORM); } if (wport) { poll_wait(file, &wport->queue, wait); if (wport->swbuf == NULL || swb_inc_u(wport, 0)) mask |= (POLLOUT | POLLWRNORM); } DBGPV("returning 0x%x\n", mask); return mask; } static int vwsnd_audio_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? &devc->rport : NULL; vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? &devc->wport : NULL; vwsnd_port_t *aport = rport ? rport : wport; struct audio_buf_info buf_info; struct count_info info; unsigned long flags; int ival; DBGEV("(file=0x%p, cmd=0x%x, arg=0x%lx)\n", file, cmd, arg); switch (cmd) { case OSS_GETVERSION: /* _SIOR ('M', 118, int) */ DBGX("OSS_GETVERSION\n"); ival = SOUND_VERSION; return put_user(ival, (int *) arg); case SNDCTL_DSP_GETCAPS: /* _SIOR ('P',15, int) */ DBGX("SNDCTL_DSP_GETCAPS\n"); ival = DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER; return put_user(ival, (int *) arg); case SNDCTL_DSP_GETFMTS: /* _SIOR ('P',11, int) */ DBGX("SNDCTL_DSP_GETFMTS\n"); ival = (AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW | AFMT_U8 | AFMT_S8); return put_user(ival, (int *) arg); break; case SOUND_PCM_READ_RATE: /* _SIOR ('P', 2, int) */ DBGX("SOUND_PCM_READ_RATE\n"); ival = aport->sw_framerate; return put_user(ival, (int *) arg); case SOUND_PCM_READ_CHANNELS: /* _SIOR ('P', 6, int) */ DBGX("SOUND_PCM_READ_CHANNELS\n"); ival = aport->sw_channels; return put_user(ival, (int *) arg); case SNDCTL_DSP_SPEED: /* _SIOWR('P', 2, int) */ if (get_user(ival, (int *) arg)) return -EFAULT; DBGX("SNDCTL_DSP_SPEED %d\n", ival); if (ival) { if (aport->swstate != SW_INITIAL) { DBGX("SNDCTL_DSP_SPEED failed: swstate = %d\n", aport->swstate); return -EINVAL; } if (ival < MIN_SPEED) ival = MIN_SPEED; if (ival > MAX_SPEED) ival = MAX_SPEED; if (rport) rport->sw_framerate = ival; if (wport) wport->sw_framerate = ival; } else ival = aport->sw_framerate; return put_user(ival, (int *) arg); case SNDCTL_DSP_STEREO: /* _SIOWR('P', 3, int) */ if (get_user(ival, (int *) arg)) return -EFAULT; DBGX("SNDCTL_DSP_STEREO %d\n", ival); if (ival != 0 && ival != 1) return -EINVAL; if (aport->swstate != SW_INITIAL) return -EINVAL; if (rport) rport->sw_channels = ival + 1; if (wport) wport->sw_channels = ival + 1; return put_user(ival, (int *) arg); case SNDCTL_DSP_CHANNELS: /* _SIOWR('P', 6, int) */ if (get_user(ival, (int *) arg)) return -EFAULT; DBGX("SNDCTL_DSP_CHANNELS %d\n", ival); if (ival != 1 && ival != 2) return -EINVAL; if (aport->swstate != SW_INITIAL) return -EINVAL; if (rport) rport->sw_channels = ival; if (wport) wport->sw_channels = ival; return put_user(ival, (int *) arg); case SNDCTL_DSP_GETBLKSIZE: /* _SIOWR('P', 4, int) */ ival = pcm_setup(devc, rport, wport); if (ival < 0) { DBGX("SNDCTL_DSP_GETBLKSIZE failed, errno %d\n", ival); return ival; } ival = 1 << aport->sw_fragshift; DBGX("SNDCTL_DSP_GETBLKSIZE returning %d\n", ival); return put_user(ival, (int *) arg); case SNDCTL_DSP_SETFRAGMENT: /* _SIOWR('P',10, int) */ if (get_user(ival, (int *) arg)) return -EFAULT; DBGX("SNDCTL_DSP_SETFRAGMENT %d:%d\n", ival >> 16, ival & 0xFFFF); if (aport->swstate != SW_INITIAL) return -EINVAL; { int sw_fragshift = ival & 0xFFFF; int sw_subdivshift = aport->sw_subdivshift; int hw_fragshift = sw_fragshift - sw_subdivshift; int sw_fragcount = (ival >> 16) & 0xFFFF; int hw_fragsize; if (hw_fragshift < MIN_FRAGSHIFT) hw_fragshift = MIN_FRAGSHIFT; if (hw_fragshift > MAX_FRAGSHIFT) hw_fragshift = MAX_FRAGSHIFT; sw_fragshift = hw_fragshift + aport->sw_subdivshift; hw_fragsize = 1 << hw_fragshift; if (sw_fragcount < MIN_FRAGCOUNT(hw_fragsize)) sw_fragcount = MIN_FRAGCOUNT(hw_fragsize); if (sw_fragcount > MAX_FRAGCOUNT(hw_fragsize)) sw_fragcount = MAX_FRAGCOUNT(hw_fragsize); DBGPV("sw_fragshift = %d\n", sw_fragshift); DBGPV("rport = 0x%p, wport = 0x%p\n", rport, wport); if (rport) { rport->sw_fragshift = sw_fragshift; rport->sw_fragcount = sw_fragcount; } if (wport) { wport->sw_fragshift = sw_fragshift; wport->sw_fragcount = sw_fragcount; } ival = sw_fragcount << 16 | sw_fragshift; } DBGX("SNDCTL_DSP_SETFRAGMENT returns %d:%d\n", ival >> 16, ival & 0xFFFF); return put_user(ival, (int *) arg); case SNDCTL_DSP_SUBDIVIDE: /* _SIOWR('P', 9, int) */ if (get_user(ival, (int *) arg)) return -EFAULT; DBGX("SNDCTL_DSP_SUBDIVIDE %d\n", ival); if (aport->swstate != SW_INITIAL) return -EINVAL; { int subdivshift; int hw_fragshift, hw_fragsize, hw_fragcount; switch (ival) { case 1: subdivshift = 0; break; case 2: subdivshift = 1; break; case 4: subdivshift = 2; break; default: return -EINVAL; } hw_fragshift = aport->sw_fragshift - subdivshift; if (hw_fragshift < MIN_FRAGSHIFT || hw_fragshift > MAX_FRAGSHIFT) return -EINVAL; hw_fragsize = 1 << hw_fragshift; hw_fragcount = aport->sw_fragcount >> subdivshift; if (hw_fragcount < MIN_FRAGCOUNT(hw_fragsize) || hw_fragcount > MAX_FRAGCOUNT(hw_fragsize)) return -EINVAL; if (rport) rport->sw_subdivshift = subdivshift; if (wport) wport->sw_subdivshift = subdivshift; } return 0; case SNDCTL_DSP_SETFMT: /* _SIOWR('P',5, int) */ if (get_user(ival, (int *) arg)) return -EFAULT; DBGX("SNDCTL_DSP_SETFMT %d\n", ival); if (ival != AFMT_QUERY) { if (aport->swstate != SW_INITIAL) { DBGP("SETFMT failed, swstate = %d\n", aport->swstate); return -EINVAL; } switch (ival) { case AFMT_MU_LAW: case AFMT_A_LAW: case AFMT_U8: case AFMT_S8: case AFMT_S16_LE: if (rport) rport->sw_samplefmt = ival; if (wport) wport->sw_samplefmt = ival; break; default: return -EINVAL; } } ival = aport->sw_samplefmt; return put_user(ival, (int *) arg); case SNDCTL_DSP_GETOSPACE: /* _SIOR ('P',12, audio_buf_info) */ DBGXV("SNDCTL_DSP_GETOSPACE\n"); if (!wport) return -EINVAL; ival = pcm_setup(devc, rport, wport); if (ival < 0) return ival; ival = swb_inc_u(wport, 0); buf_info.fragments = ival >> wport->sw_fragshift; buf_info.fragstotal = wport->sw_fragcount; buf_info.fragsize = 1 << wport->sw_fragshift; buf_info.bytes = ival; DBGXV("SNDCTL_DSP_GETOSPACE returns { %d %d %d %d }\n", buf_info.fragments, buf_info.fragstotal, buf_info.fragsize, buf_info.bytes); if (copy_to_user((void *) arg, &buf_info, sizeof buf_info)) return -EFAULT; return 0; case SNDCTL_DSP_GETISPACE: /* _SIOR ('P',13, audio_buf_info) */ DBGX("SNDCTL_DSP_GETISPACE\n"); if (!rport) return -EINVAL; ival = pcm_setup(devc, rport, wport); if (ival < 0) return ival; ival = swb_inc_u(rport, 0); buf_info.fragments = ival >> rport->sw_fragshift; buf_info.fragstotal = rport->sw_fragcount; buf_info.fragsize = 1 << rport->sw_fragshift; buf_info.bytes = ival; DBGX("SNDCTL_DSP_GETISPACE returns { %d %d %d %d }\n", buf_info.fragments, buf_info.fragstotal, buf_info.fragsize, buf_info.bytes); if (copy_to_user((void *) arg, &buf_info, sizeof buf_info)) return -EFAULT; return 0; case SNDCTL_DSP_NONBLOCK: /* _SIO ('P',14) */ DBGX("SNDCTL_DSP_NONBLOCK\n"); spin_lock(&file->f_lock); file->f_flags |= O_NONBLOCK; spin_unlock(&file->f_lock); return 0; case SNDCTL_DSP_RESET: /* _SIO ('P', 0) */ DBGX("SNDCTL_DSP_RESET\n"); /* * Nothing special needs to be done for input. Input * samples sit in swbuf, but it will be reinitialized * to empty when pcm_setup() is called. */ if (wport && wport->swbuf) { wport->swstate = SW_INITIAL; pcm_output(devc, 0, 0); pcm_write_sync(devc); } pcm_shutdown(devc, rport, wport); return 0; case SNDCTL_DSP_SYNC: /* _SIO ('P', 1) */ DBGX("SNDCTL_DSP_SYNC\n"); if (wport) { pcm_flush_frag(devc); pcm_write_sync(devc); } pcm_shutdown(devc, rport, wport); return 0; case SNDCTL_DSP_POST: /* _SIO ('P', 8) */ DBGX("SNDCTL_DSP_POST\n"); if (!wport) return -EINVAL; pcm_flush_frag(devc); return 0; case SNDCTL_DSP_GETIPTR: /* _SIOR ('P', 17, count_info) */ DBGX("SNDCTL_DSP_GETIPTR\n"); if (!rport) return -EINVAL; spin_lock_irqsave(&rport->lock, flags); { ustmsc_t ustmsc; if (rport->hwstate == HW_RUNNING) { ASSERT(rport->swstate == SW_RUN); li_read_USTMSC(&rport->chan, &ustmsc); info.bytes = ustmsc.msc - rport->MSC_offset; info.bytes *= rport->frame_size; } else { info.bytes = rport->byte_count; } info.blocks = rport->frag_count; info.ptr = 0; /* not implemented */ rport->frag_count = 0; } spin_unlock_irqrestore(&rport->lock, flags); if (copy_to_user((void *) arg, &info, sizeof info)) return -EFAULT; return 0; case SNDCTL_DSP_GETOPTR: /* _SIOR ('P',18, count_info) */ DBGX("SNDCTL_DSP_GETOPTR\n"); if (!wport) return -EINVAL; spin_lock_irqsave(&wport->lock, flags); { ustmsc_t ustmsc; if (wport->hwstate == HW_RUNNING) { ASSERT(wport->swstate == SW_RUN); li_read_USTMSC(&wport->chan, &ustmsc); info.bytes = ustmsc.msc - wport->MSC_offset; info.bytes *= wport->frame_size; } else { info.bytes = wport->byte_count; } info.blocks = wport->frag_count; info.ptr = 0; /* not implemented */ wport->frag_count = 0; } spin_unlock_irqrestore(&wport->lock, flags); if (copy_to_user((void *) arg, &info, sizeof info)) return -EFAULT; return 0; case SNDCTL_DSP_GETODELAY: /* _SIOR ('P', 23, int) */ DBGX("SNDCTL_DSP_GETODELAY\n"); if (!wport) return -EINVAL; spin_lock_irqsave(&wport->lock, flags); { int fsize = wport->frame_size; ival = wport->swb_i_avail / fsize; if (wport->hwstate == HW_RUNNING) { int swptr, hwptr, hwframes, hwbytes, hwsize; int totalhwbytes; ustmsc_t ustmsc; hwsize = wport->hwbuf_size; swptr = li_read_swptr(&wport->chan); li_read_USTMSC(&wport->chan, &ustmsc); hwframes = ustmsc.msc - wport->MSC_offset; totalhwbytes = hwframes * fsize; hwptr = totalhwbytes % hwsize; hwbytes = (swptr - hwptr + hwsize) % hwsize; ival += hwbytes / fsize; } } spin_unlock_irqrestore(&wport->lock, flags); return put_user(ival, (int *) arg); case SNDCTL_DSP_PROFILE: /* _SIOW ('P', 23, int) */ DBGX("SNDCTL_DSP_PROFILE\n"); /* * Thomas Sailer explains SNDCTL_DSP_PROFILE * (private email, March 24, 1999): * * This gives the sound driver a hint on what it * should do with partial fragments * (i.e. fragments partially filled with write). * This can direct the driver to zero them or * leave them alone. But don't ask me what this * is good for, my driver just zeroes the last * fragment before the receiver stops, no idea * what good for any other behaviour could * be. Implementing it as NOP seems safe. */ break; case SNDCTL_DSP_GETTRIGGER: /* _SIOR ('P',16, int) */ DBGX("SNDCTL_DSP_GETTRIGGER\n"); ival = 0; if (rport) { spin_lock_irqsave(&rport->lock, flags); { if (!(rport->flags & DISABLED)) ival |= PCM_ENABLE_INPUT; } spin_unlock_irqrestore(&rport->lock, flags); } if (wport) { spin_lock_irqsave(&wport->lock, flags); { if (!(wport->flags & DISABLED)) ival |= PCM_ENABLE_OUTPUT; } spin_unlock_irqrestore(&wport->lock, flags); } return put_user(ival, (int *) arg); case SNDCTL_DSP_SETTRIGGER: /* _SIOW ('P',16, int) */ if (get_user(ival, (int *) arg)) return -EFAULT; DBGX("SNDCTL_DSP_SETTRIGGER %d\n", ival); /* * If user is disabling I/O and port is not in initial * state, fail with EINVAL. */ if (((rport && !(ival & PCM_ENABLE_INPUT)) || (wport && !(ival & PCM_ENABLE_OUTPUT))) && aport->swstate != SW_INITIAL) return -EINVAL; if (rport) { vwsnd_port_hwstate_t hwstate; spin_lock_irqsave(&rport->lock, flags); { hwstate = rport->hwstate; if (ival & PCM_ENABLE_INPUT) rport->flags &= ~DISABLED; else rport->flags |= DISABLED; } spin_unlock_irqrestore(&rport->lock, flags); if (hwstate != HW_RUNNING && ival & PCM_ENABLE_INPUT) { if (rport->swstate == SW_INITIAL) pcm_setup(devc, rport, wport); else li_activate_dma(&rport->chan); } } if (wport) { vwsnd_port_flags_t pflags; spin_lock_irqsave(&wport->lock, flags); { pflags = wport->flags; if (ival & PCM_ENABLE_OUTPUT) wport->flags &= ~DISABLED; else wport->flags |= DISABLED; } spin_unlock_irqrestore(&wport->lock, flags); if (pflags & DISABLED && ival & PCM_ENABLE_OUTPUT) { if (wport->swstate == SW_RUN) pcm_output(devc, 0, 0); } } return 0; default: DBGP("unknown ioctl 0x%x\n", cmd); return -EINVAL; } DBGP("unimplemented ioctl 0x%x\n", cmd); return -EINVAL; } static long vwsnd_audio_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; int ret; mutex_lock(&vwsnd_mutex); mutex_lock(&devc->io_mutex); ret = vwsnd_audio_do_ioctl(file, cmd, arg); mutex_unlock(&devc->io_mutex); mutex_unlock(&vwsnd_mutex); return ret; } /* No mmap. */ static int vwsnd_audio_mmap(struct file *file, struct vm_area_struct *vma) { DBGE("(file=0x%p, vma=0x%p)\n", file, vma); return -ENODEV; } /* * Open the audio device for read and/or write. * * Returns 0 on success, -errno on failure. */ static int vwsnd_audio_open(struct inode *inode, struct file *file) { vwsnd_dev_t *devc; int minor = iminor(inode); int sw_samplefmt; DEFINE_WAIT(wait); DBGE("(inode=0x%p, file=0x%p)\n", inode, file); mutex_lock(&vwsnd_mutex); INC_USE_COUNT; for (devc = vwsnd_dev_list; devc; devc = devc->next_dev) if ((devc->audio_minor & ~0x0F) == (minor & ~0x0F)) break; if (devc == NULL) { DEC_USE_COUNT; mutex_unlock(&vwsnd_mutex); return -ENODEV; } mutex_lock(&devc->open_mutex); while (1) { prepare_to_wait(&devc->open_wait, &wait, TASK_INTERRUPTIBLE); if (!(devc->open_mode & file->f_mode)) break; mutex_unlock(&devc->open_mutex); mutex_unlock(&vwsnd_mutex); if (file->f_flags & O_NONBLOCK) { DEC_USE_COUNT; return -EBUSY; } schedule(); if (signal_pending(current)) { DEC_USE_COUNT; return -ERESTARTSYS; } mutex_lock(&vwsnd_mutex); mutex_lock(&devc->open_mutex); } finish_wait(&devc->open_wait, &wait); devc->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE); mutex_unlock(&devc->open_mutex); /* get default sample format from minor number. */ sw_samplefmt = 0; if ((minor & 0xF) == SND_DEV_DSP) sw_samplefmt = AFMT_U8; else if ((minor & 0xF) == SND_DEV_AUDIO) sw_samplefmt = AFMT_MU_LAW; else if ((minor & 0xF) == SND_DEV_DSP16) sw_samplefmt = AFMT_S16_LE; else ASSERT(0); /* Initialize vwsnd_ports. */ mutex_lock(&devc->io_mutex); { if (file->f_mode & FMODE_READ) { devc->rport.swstate = SW_INITIAL; devc->rport.flags = 0; devc->rport.sw_channels = 1; devc->rport.sw_samplefmt = sw_samplefmt; devc->rport.sw_framerate = 8000; devc->rport.sw_fragshift = DEFAULT_FRAGSHIFT; devc->rport.sw_fragcount = DEFAULT_FRAGCOUNT; devc->rport.sw_subdivshift = DEFAULT_SUBDIVSHIFT; devc->rport.byte_count = 0; devc->rport.frag_count = 0; } if (file->f_mode & FMODE_WRITE) { devc->wport.swstate = SW_INITIAL; devc->wport.flags = 0; devc->wport.sw_channels = 1; devc->wport.sw_samplefmt = sw_samplefmt; devc->wport.sw_framerate = 8000; devc->wport.sw_fragshift = DEFAULT_FRAGSHIFT; devc->wport.sw_fragcount = DEFAULT_FRAGCOUNT; devc->wport.sw_subdivshift = DEFAULT_SUBDIVSHIFT; devc->wport.byte_count = 0; devc->wport.frag_count = 0; } } mutex_unlock(&devc->io_mutex); file->private_data = devc; DBGRV(); mutex_unlock(&vwsnd_mutex); return 0; } /* * Release (close) the audio device. */ static int vwsnd_audio_release(struct inode *inode, struct file *file) { vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; vwsnd_port_t *wport = NULL, *rport = NULL; int err = 0; mutex_lock(&vwsnd_mutex); mutex_lock(&devc->io_mutex); { DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); if (file->f_mode & FMODE_READ) rport = &devc->rport; if (file->f_mode & FMODE_WRITE) { wport = &devc->wport; pcm_flush_frag(devc); pcm_write_sync(devc); } pcm_shutdown(devc, rport, wport); if (rport) rport->swstate = SW_OFF; if (wport) wport->swstate = SW_OFF; } mutex_unlock(&devc->io_mutex); mutex_lock(&devc->open_mutex); { devc->open_mode &= ~file->f_mode; } mutex_unlock(&devc->open_mutex); wake_up(&devc->open_wait); DEC_USE_COUNT; DBGR(); mutex_unlock(&vwsnd_mutex); return err; } static const struct file_operations vwsnd_audio_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = vwsnd_audio_read, .write = vwsnd_audio_write, .poll = vwsnd_audio_poll, .unlocked_ioctl = vwsnd_audio_ioctl, .mmap = vwsnd_audio_mmap, .open = vwsnd_audio_open, .release = vwsnd_audio_release, }; /*****************************************************************************/ /* mixer driver */ /* open the mixer device. */ static int vwsnd_mixer_open(struct inode *inode, struct file *file) { vwsnd_dev_t *devc; DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); INC_USE_COUNT; mutex_lock(&vwsnd_mutex); for (devc = vwsnd_dev_list; devc; devc = devc->next_dev) if (devc->mixer_minor == iminor(inode)) break; if (devc == NULL) { DEC_USE_COUNT; mutex_unlock(&vwsnd_mutex); return -ENODEV; } file->private_data = devc; mutex_unlock(&vwsnd_mutex); return 0; } /* release (close) the mixer device. */ static int vwsnd_mixer_release(struct inode *inode, struct file *file) { DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); DEC_USE_COUNT; return 0; } /* mixer_read_ioctl handles all read ioctls on the mixer device. */ static int mixer_read_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg) { int val = -1; DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg); switch (nr) { case SOUND_MIXER_CAPS: val = SOUND_CAP_EXCL_INPUT; break; case SOUND_MIXER_DEVMASK: val = (SOUND_MASK_PCM | SOUND_MASK_LINE | SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV); break; case SOUND_MIXER_STEREODEVS: val = (SOUND_MASK_PCM | SOUND_MASK_LINE | SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV); break; case SOUND_MIXER_OUTMASK: val = (SOUND_MASK_PCM | SOUND_MASK_LINE | SOUND_MASK_MIC | SOUND_MASK_CD); break; case SOUND_MIXER_RECMASK: val = (SOUND_MASK_PCM | SOUND_MASK_LINE | SOUND_MASK_MIC | SOUND_MASK_CD); break; case SOUND_MIXER_PCM: val = ad1843_get_gain(&devc->lith, &ad1843_gain_PCM); break; case SOUND_MIXER_LINE: val = ad1843_get_gain(&devc->lith, &ad1843_gain_LINE); break; case SOUND_MIXER_MIC: val = ad1843_get_gain(&devc->lith, &ad1843_gain_MIC); break; case SOUND_MIXER_CD: val = ad1843_get_gain(&devc->lith, &ad1843_gain_CD); break; case SOUND_MIXER_RECLEV: val = ad1843_get_gain(&devc->lith, &ad1843_gain_RECLEV); break; case SOUND_MIXER_RECSRC: val = ad1843_get_recsrc(&devc->lith); break; case SOUND_MIXER_OUTSRC: val = ad1843_get_outsrc(&devc->lith); break; default: return -EINVAL; } return put_user(val, (int __user *) arg); } /* mixer_write_ioctl handles all write ioctls on the mixer device. */ static int mixer_write_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg) { int val; int err; DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg); err = get_user(val, (int __user *) arg); if (err) return -EFAULT; switch (nr) { case SOUND_MIXER_PCM: val = ad1843_set_gain(&devc->lith, &ad1843_gain_PCM, val); break; case SOUND_MIXER_LINE: val = ad1843_set_gain(&devc->lith, &ad1843_gain_LINE, val); break; case SOUND_MIXER_MIC: val = ad1843_set_gain(&devc->lith, &ad1843_gain_MIC, val); break; case SOUND_MIXER_CD: val = ad1843_set_gain(&devc->lith, &ad1843_gain_CD, val); break; case SOUND_MIXER_RECLEV: val = ad1843_set_gain(&devc->lith, &ad1843_gain_RECLEV, val); break; case SOUND_MIXER_RECSRC: if (devc->rport.swbuf || devc->wport.swbuf) return -EBUSY; /* can't change recsrc while running */ val = ad1843_set_recsrc(&devc->lith, val); break; case SOUND_MIXER_OUTSRC: val = ad1843_set_outsrc(&devc->lith, val); break; default: return -EINVAL; } if (val < 0) return val; return put_user(val, (int __user *) arg); } /* This is the ioctl entry to the mixer driver. */ static long vwsnd_mixer_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; const unsigned int nrmask = _IOC_NRMASK << _IOC_NRSHIFT; const unsigned int nr = (cmd & nrmask) >> _IOC_NRSHIFT; int retval; DBGEV("(devc=0x%p, cmd=0x%x, arg=0x%lx)\n", devc, cmd, arg); mutex_lock(&vwsnd_mutex); mutex_lock(&devc->mix_mutex); { if ((cmd & ~nrmask) == MIXER_READ(0)) retval = mixer_read_ioctl(devc, nr, (void __user *) arg); else if ((cmd & ~nrmask) == MIXER_WRITE(0)) retval = mixer_write_ioctl(devc, nr, (void __user *) arg); else retval = -EINVAL; } mutex_unlock(&devc->mix_mutex); mutex_unlock(&vwsnd_mutex); return retval; } static const struct file_operations vwsnd_mixer_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .unlocked_ioctl = vwsnd_mixer_ioctl, .open = vwsnd_mixer_open, .release = vwsnd_mixer_release, }; /*****************************************************************************/ /* probe/attach/unload */ /* driver probe routine. Return nonzero if hardware is found. */ static int __init probe_vwsnd(struct address_info *hw_config) { lithium_t lith; int w; unsigned long later; DBGEV("(hw_config=0x%p)\n", hw_config); /* XXX verify lithium present (to prevent crash on non-vw) */ if (li_create(&lith, hw_config->io_base) != 0) { printk(KERN_WARNING "probe_vwsnd: can't map lithium\n"); return 0; } later = jiffies + 2; li_writel(&lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE); do { w = li_readl(&lith, LI_HOST_CONTROLLER); } while (w == LI_HC_LINK_ENABLE && time_before(jiffies, later)); li_destroy(&lith); DBGPV("HC = 0x%04x\n", w); if ((w == LI_HC_LINK_ENABLE) || (w & LI_HC_LINK_CODEC)) { /* This may indicate a beta machine with no audio, * or a future machine with different audio. * On beta-release 320 w/ no audio, HC == 0x4000 */ printk(KERN_WARNING "probe_vwsnd: audio codec not found\n"); return 0; } if (w & LI_HC_LINK_FAILURE) { printk(KERN_WARNING "probe_vwsnd: can't init audio codec\n"); return 0; } printk(KERN_INFO "vwsnd: lithium audio at mmio %#x irq %d\n", hw_config->io_base, hw_config->irq); return 1; } /* * driver attach routine. Initialize driver data structures and * initialize hardware. A new vwsnd_dev_t is allocated and put * onto the global list, vwsnd_dev_list. * * Return +minor_dev on success, -errno on failure. */ static int __init attach_vwsnd(struct address_info *hw_config) { vwsnd_dev_t *devc = NULL; int err = -ENOMEM; DBGEV("(hw_config=0x%p)\n", hw_config); devc = kmalloc(sizeof (vwsnd_dev_t), GFP_KERNEL); if (devc == NULL) goto fail0; err = li_create(&devc->lith, hw_config->io_base); if (err) goto fail1; init_waitqueue_head(&devc->open_wait); devc->rport.hwbuf_size = HWBUF_SIZE; devc->rport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER); if (!devc->rport.hwbuf_vaddr) goto fail2; devc->rport.hwbuf = (void *) devc->rport.hwbuf_vaddr; devc->rport.hwbuf_paddr = virt_to_phys(devc->rport.hwbuf); /* * Quote from the NT driver: * * // WARNING!!! HACK to setup output dma!!! * // This is required because even on output there is some data * // trickling into the input DMA channel. This is a bug in the * // Lithium microcode. * // --sde * * We set the input side's DMA base address here. It will remain * valid until the driver is unloaded. */ li_writel(&devc->lith, LI_COMM1_BASE, devc->rport.hwbuf_paddr >> 8 | 1 << (37 - 8)); devc->wport.hwbuf_size = HWBUF_SIZE; devc->wport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER); if (!devc->wport.hwbuf_vaddr) goto fail3; devc->wport.hwbuf = (void *) devc->wport.hwbuf_vaddr; devc->wport.hwbuf_paddr = virt_to_phys(devc->wport.hwbuf); DBGP("wport hwbuf = 0x%p\n", devc->wport.hwbuf); DBGDO(shut_up++); err = ad1843_init(&devc->lith); DBGDO(shut_up--); if (err) goto fail4; /* install interrupt handler */ err = request_irq(hw_config->irq, vwsnd_audio_intr, 0, "vwsnd", devc); if (err) goto fail5; /* register this device's drivers. */ devc->audio_minor = register_sound_dsp(&vwsnd_audio_fops, -1); if ((err = devc->audio_minor) < 0) { DBGDO(printk(KERN_WARNING "attach_vwsnd: register_sound_dsp error %d\n", err)); goto fail6; } devc->mixer_minor = register_sound_mixer(&vwsnd_mixer_fops, devc->audio_minor >> 4); if ((err = devc->mixer_minor) < 0) { DBGDO(printk(KERN_WARNING "attach_vwsnd: register_sound_mixer error %d\n", err)); goto fail7; } /* Squirrel away device indices for unload routine. */ hw_config->slots[0] = devc->audio_minor; /* Initialize as much of *devc as possible */ mutex_init(&devc->open_mutex); mutex_init(&devc->io_mutex); mutex_init(&devc->mix_mutex); devc->open_mode = 0; spin_lock_init(&devc->rport.lock); init_waitqueue_head(&devc->rport.queue); devc->rport.swstate = SW_OFF; devc->rport.hwstate = HW_STOPPED; devc->rport.flags = 0; devc->rport.swbuf = NULL; spin_lock_init(&devc->wport.lock); init_waitqueue_head(&devc->wport.queue); devc->wport.swstate = SW_OFF; devc->wport.hwstate = HW_STOPPED; devc->wport.flags = 0; devc->wport.swbuf = NULL; /* Success. Link us onto the local device list. */ devc->next_dev = vwsnd_dev_list; vwsnd_dev_list = devc; return devc->audio_minor; /* So many ways to fail. Undo what we did. */ fail7: unregister_sound_dsp(devc->audio_minor); fail6: free_irq(hw_config->irq, devc); fail5: fail4: free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER); fail3: free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER); fail2: li_destroy(&devc->lith); fail1: kfree(devc); fail0: return err; } static int __exit unload_vwsnd(struct address_info *hw_config) { vwsnd_dev_t *devc, **devcp; DBGE("()\n"); devcp = &vwsnd_dev_list; while ((devc = *devcp)) { if (devc->audio_minor == hw_config->slots[0]) { *devcp = devc->next_dev; break; } devcp = &devc->next_dev; } if (!devc) return -ENODEV; unregister_sound_mixer(devc->mixer_minor); unregister_sound_dsp(devc->audio_minor); free_irq(hw_config->irq, devc); free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER); free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER); li_destroy(&devc->lith); kfree(devc); return 0; } /*****************************************************************************/ /* initialization and loadable kernel module interface */ static struct address_info the_hw_config = { 0xFF001000, /* lithium phys addr */ CO_IRQ(CO_APIC_LI_AUDIO) /* irq */ }; MODULE_DESCRIPTION("SGI Visual Workstation sound module"); MODULE_AUTHOR("Bob Miller <kbob@sgi.com>"); MODULE_LICENSE("GPL"); static int __init init_vwsnd(void) { int err; DBGXV("\n"); DBGXV("sound::vwsnd::init_module()\n"); if (!probe_vwsnd(&the_hw_config)) return -ENODEV; err = attach_vwsnd(&the_hw_config); if (err < 0) return err; return 0; } static void __exit cleanup_vwsnd(void) { DBGX("sound::vwsnd::cleanup_module()\n"); unload_vwsnd(&the_hw_config); } module_init(init_vwsnd); module_exit(cleanup_vwsnd);