/* * Copyright (c) by Jaroslav Kysela <perex@perex.cz> * Routines for control of 16-bit SoundBlaster cards and clones * Note: This is very ugly hardware which uses one 8-bit DMA channel and * second 16-bit DMA channel. Unfortunately 8-bit DMA channel can't * transfer 16-bit samples and 16-bit DMA channels can't transfer * 8-bit samples. This make full duplex more complicated than * can be... People, don't buy these soundcards for full 16-bit * duplex!!! * Note: 16-bit wide is assigned to first direction which made request. * With full duplex - playback is preferred with abstract layer. * * Note: Some chip revisions have hardware bug. Changing capture * channel from full-duplex 8bit DMA to 16bit DMA will block * 16bit DMA transfers from DSP chip (capture) until 8bit transfer * to DSP chip (playback) starts. This bug can be avoided with * "16bit DMA Allocation" setting set to Playback or Capture. * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <asm/io.h> #include <asm/dma.h> #include <linux/init.h> #include <linux/time.h> #include <linux/module.h> #include <sound/core.h> #include <sound/sb.h> #include <sound/sb16_csp.h> #include <sound/mpu401.h> #include <sound/control.h> #include <sound/info.h> MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>"); MODULE_DESCRIPTION("Routines for control of 16-bit SoundBlaster cards and clones"); MODULE_LICENSE("GPL"); #ifdef CONFIG_SND_SB16_CSP static void snd_sb16_csp_playback_prepare(struct snd_sb *chip, struct snd_pcm_runtime *runtime) { if (chip->hardware == SB_HW_16CSP) { struct snd_sb_csp *csp = chip->csp; if (csp->running & SNDRV_SB_CSP_ST_LOADED) { /* manually loaded codec */ if ((csp->mode & SNDRV_SB_CSP_MODE_DSP_WRITE) && ((1U << runtime->format) == csp->acc_format)) { /* Supported runtime PCM format for playback */ if (csp->ops.csp_use(csp) == 0) { /* If CSP was successfully acquired */ goto __start_CSP; } } else if ((csp->mode & SNDRV_SB_CSP_MODE_QSOUND) && (csp->q_enabled)) { /* QSound decoder is loaded and enabled */ if ((1 << runtime->format) & (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE)) { /* Only for simple PCM formats */ if (csp->ops.csp_use(csp) == 0) { /* If CSP was successfully acquired */ goto __start_CSP; } } } } else if (csp->ops.csp_use(csp) == 0) { /* Acquire CSP and try to autoload hardware codec */ if (csp->ops.csp_autoload(csp, runtime->format, SNDRV_SB_CSP_MODE_DSP_WRITE)) { /* Unsupported format, release CSP */ csp->ops.csp_unuse(csp); } else { __start_CSP: /* Try to start CSP */ if (csp->ops.csp_start(csp, (chip->mode & SB_MODE_PLAYBACK_16) ? SNDRV_SB_CSP_SAMPLE_16BIT : SNDRV_SB_CSP_SAMPLE_8BIT, (runtime->channels > 1) ? SNDRV_SB_CSP_STEREO : SNDRV_SB_CSP_MONO)) { /* Failed, release CSP */ csp->ops.csp_unuse(csp); } else { /* Success, CSP acquired and running */ chip->open = SNDRV_SB_CSP_MODE_DSP_WRITE; } } } } } static void snd_sb16_csp_capture_prepare(struct snd_sb *chip, struct snd_pcm_runtime *runtime) { if (chip->hardware == SB_HW_16CSP) { struct snd_sb_csp *csp = chip->csp; if (csp->running & SNDRV_SB_CSP_ST_LOADED) { /* manually loaded codec */ if ((csp->mode & SNDRV_SB_CSP_MODE_DSP_READ) && ((1U << runtime->format) == csp->acc_format)) { /* Supported runtime PCM format for capture */ if (csp->ops.csp_use(csp) == 0) { /* If CSP was successfully acquired */ goto __start_CSP; } } } else if (csp->ops.csp_use(csp) == 0) { /* Acquire CSP and try to autoload hardware codec */ if (csp->ops.csp_autoload(csp, runtime->format, SNDRV_SB_CSP_MODE_DSP_READ)) { /* Unsupported format, release CSP */ csp->ops.csp_unuse(csp); } else { __start_CSP: /* Try to start CSP */ if (csp->ops.csp_start(csp, (chip->mode & SB_MODE_CAPTURE_16) ? SNDRV_SB_CSP_SAMPLE_16BIT : SNDRV_SB_CSP_SAMPLE_8BIT, (runtime->channels > 1) ? SNDRV_SB_CSP_STEREO : SNDRV_SB_CSP_MONO)) { /* Failed, release CSP */ csp->ops.csp_unuse(csp); } else { /* Success, CSP acquired and running */ chip->open = SNDRV_SB_CSP_MODE_DSP_READ; } } } } } static void snd_sb16_csp_update(struct snd_sb *chip) { if (chip->hardware == SB_HW_16CSP) { struct snd_sb_csp *csp = chip->csp; if (csp->qpos_changed) { spin_lock(&chip->reg_lock); csp->ops.csp_qsound_transfer (csp); spin_unlock(&chip->reg_lock); } } } static void snd_sb16_csp_playback_open(struct snd_sb *chip, struct snd_pcm_runtime *runtime) { /* CSP decoders (QSound excluded) support only 16bit transfers */ if (chip->hardware == SB_HW_16CSP) { struct snd_sb_csp *csp = chip->csp; if (csp->running & SNDRV_SB_CSP_ST_LOADED) { /* manually loaded codec */ if (csp->mode & SNDRV_SB_CSP_MODE_DSP_WRITE) { runtime->hw.formats |= csp->acc_format; } } else { /* autoloaded codecs */ runtime->hw.formats |= SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW | SNDRV_PCM_FMTBIT_IMA_ADPCM; } } } static void snd_sb16_csp_playback_close(struct snd_sb *chip) { if ((chip->hardware == SB_HW_16CSP) && (chip->open == SNDRV_SB_CSP_MODE_DSP_WRITE)) { struct snd_sb_csp *csp = chip->csp; if (csp->ops.csp_stop(csp) == 0) { csp->ops.csp_unuse(csp); chip->open = 0; } } } static void snd_sb16_csp_capture_open(struct snd_sb *chip, struct snd_pcm_runtime *runtime) { /* CSP coders support only 16bit transfers */ if (chip->hardware == SB_HW_16CSP) { struct snd_sb_csp *csp = chip->csp; if (csp->running & SNDRV_SB_CSP_ST_LOADED) { /* manually loaded codec */ if (csp->mode & SNDRV_SB_CSP_MODE_DSP_READ) { runtime->hw.formats |= csp->acc_format; } } else { /* autoloaded codecs */ runtime->hw.formats |= SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW | SNDRV_PCM_FMTBIT_IMA_ADPCM; } } } static void snd_sb16_csp_capture_close(struct snd_sb *chip) { if ((chip->hardware == SB_HW_16CSP) && (chip->open == SNDRV_SB_CSP_MODE_DSP_READ)) { struct snd_sb_csp *csp = chip->csp; if (csp->ops.csp_stop(csp) == 0) { csp->ops.csp_unuse(csp); chip->open = 0; } } } #else #define snd_sb16_csp_playback_prepare(chip, runtime) /*nop*/ #define snd_sb16_csp_capture_prepare(chip, runtime) /*nop*/ #define snd_sb16_csp_update(chip) /*nop*/ #define snd_sb16_csp_playback_open(chip, runtime) /*nop*/ #define snd_sb16_csp_playback_close(chip) /*nop*/ #define snd_sb16_csp_capture_open(chip, runtime) /*nop*/ #define snd_sb16_csp_capture_close(chip) /*nop*/ #endif static void snd_sb16_setup_rate(struct snd_sb *chip, unsigned short rate, int channel) { unsigned long flags; spin_lock_irqsave(&chip->reg_lock, flags); if (chip->mode & (channel == SNDRV_PCM_STREAM_PLAYBACK ? SB_MODE_PLAYBACK_16 : SB_MODE_CAPTURE_16)) snd_sb_ack_16bit(chip); else snd_sb_ack_8bit(chip); if (!(chip->mode & SB_RATE_LOCK)) { chip->locked_rate = rate; snd_sbdsp_command(chip, SB_DSP_SAMPLE_RATE_IN); snd_sbdsp_command(chip, rate >> 8); snd_sbdsp_command(chip, rate & 0xff); snd_sbdsp_command(chip, SB_DSP_SAMPLE_RATE_OUT); snd_sbdsp_command(chip, rate >> 8); snd_sbdsp_command(chip, rate & 0xff); } spin_unlock_irqrestore(&chip->reg_lock, flags); } static int snd_sb16_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int snd_sb16_hw_free(struct snd_pcm_substream *substream) { snd_pcm_lib_free_pages(substream); return 0; } static int snd_sb16_playback_prepare(struct snd_pcm_substream *substream) { unsigned long flags; struct snd_sb *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; unsigned char format; unsigned int size, count, dma; snd_sb16_csp_playback_prepare(chip, runtime); if (snd_pcm_format_unsigned(runtime->format) > 0) { format = runtime->channels > 1 ? SB_DSP4_MODE_UNS_STEREO : SB_DSP4_MODE_UNS_MONO; } else { format = runtime->channels > 1 ? SB_DSP4_MODE_SIGN_STEREO : SB_DSP4_MODE_SIGN_MONO; } snd_sb16_setup_rate(chip, runtime->rate, SNDRV_PCM_STREAM_PLAYBACK); size = chip->p_dma_size = snd_pcm_lib_buffer_bytes(substream); dma = (chip->mode & SB_MODE_PLAYBACK_8) ? chip->dma8 : chip->dma16; snd_dma_program(dma, runtime->dma_addr, size, DMA_MODE_WRITE | DMA_AUTOINIT); count = snd_pcm_lib_period_bytes(substream); spin_lock_irqsave(&chip->reg_lock, flags); if (chip->mode & SB_MODE_PLAYBACK_16) { count >>= 1; count--; snd_sbdsp_command(chip, SB_DSP4_OUT16_AI); snd_sbdsp_command(chip, format); snd_sbdsp_command(chip, count & 0xff); snd_sbdsp_command(chip, count >> 8); snd_sbdsp_command(chip, SB_DSP_DMA16_OFF); } else { count--; snd_sbdsp_command(chip, SB_DSP4_OUT8_AI); snd_sbdsp_command(chip, format); snd_sbdsp_command(chip, count & 0xff); snd_sbdsp_command(chip, count >> 8); snd_sbdsp_command(chip, SB_DSP_DMA8_OFF); } spin_unlock_irqrestore(&chip->reg_lock, flags); return 0; } static int snd_sb16_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_sb *chip = snd_pcm_substream_chip(substream); int result = 0; spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: chip->mode |= SB_RATE_LOCK_PLAYBACK; snd_sbdsp_command(chip, chip->mode & SB_MODE_PLAYBACK_16 ? SB_DSP_DMA16_ON : SB_DSP_DMA8_ON); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: snd_sbdsp_command(chip, chip->mode & SB_MODE_PLAYBACK_16 ? SB_DSP_DMA16_OFF : SB_DSP_DMA8_OFF); /* next two lines are needed for some types of DSP4 (SB AWE 32 - 4.13) */ if (chip->mode & SB_RATE_LOCK_CAPTURE) snd_sbdsp_command(chip, chip->mode & SB_MODE_CAPTURE_16 ? SB_DSP_DMA16_ON : SB_DSP_DMA8_ON); chip->mode &= ~SB_RATE_LOCK_PLAYBACK; break; default: result = -EINVAL; } spin_unlock(&chip->reg_lock); return result; } static int snd_sb16_capture_prepare(struct snd_pcm_substream *substream) { unsigned long flags; struct snd_sb *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; unsigned char format; unsigned int size, count, dma; snd_sb16_csp_capture_prepare(chip, runtime); if (snd_pcm_format_unsigned(runtime->format) > 0) { format = runtime->channels > 1 ? SB_DSP4_MODE_UNS_STEREO : SB_DSP4_MODE_UNS_MONO; } else { format = runtime->channels > 1 ? SB_DSP4_MODE_SIGN_STEREO : SB_DSP4_MODE_SIGN_MONO; } snd_sb16_setup_rate(chip, runtime->rate, SNDRV_PCM_STREAM_CAPTURE); size = chip->c_dma_size = snd_pcm_lib_buffer_bytes(substream); dma = (chip->mode & SB_MODE_CAPTURE_8) ? chip->dma8 : chip->dma16; snd_dma_program(dma, runtime->dma_addr, size, DMA_MODE_READ | DMA_AUTOINIT); count = snd_pcm_lib_period_bytes(substream); spin_lock_irqsave(&chip->reg_lock, flags); if (chip->mode & SB_MODE_CAPTURE_16) { count >>= 1; count--; snd_sbdsp_command(chip, SB_DSP4_IN16_AI); snd_sbdsp_command(chip, format); snd_sbdsp_command(chip, count & 0xff); snd_sbdsp_command(chip, count >> 8); snd_sbdsp_command(chip, SB_DSP_DMA16_OFF); } else { count--; snd_sbdsp_command(chip, SB_DSP4_IN8_AI); snd_sbdsp_command(chip, format); snd_sbdsp_command(chip, count & 0xff); snd_sbdsp_command(chip, count >> 8); snd_sbdsp_command(chip, SB_DSP_DMA8_OFF); } spin_unlock_irqrestore(&chip->reg_lock, flags); return 0; } static int snd_sb16_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_sb *chip = snd_pcm_substream_chip(substream); int result = 0; spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: chip->mode |= SB_RATE_LOCK_CAPTURE; snd_sbdsp_command(chip, chip->mode & SB_MODE_CAPTURE_16 ? SB_DSP_DMA16_ON : SB_DSP_DMA8_ON); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: snd_sbdsp_command(chip, chip->mode & SB_MODE_CAPTURE_16 ? SB_DSP_DMA16_OFF : SB_DSP_DMA8_OFF); /* next two lines are needed for some types of DSP4 (SB AWE 32 - 4.13) */ if (chip->mode & SB_RATE_LOCK_PLAYBACK) snd_sbdsp_command(chip, chip->mode & SB_MODE_PLAYBACK_16 ? SB_DSP_DMA16_ON : SB_DSP_DMA8_ON); chip->mode &= ~SB_RATE_LOCK_CAPTURE; break; default: result = -EINVAL; } spin_unlock(&chip->reg_lock); return result; } irqreturn_t snd_sb16dsp_interrupt(int irq, void *dev_id) { struct snd_sb *chip = dev_id; unsigned char status; int ok; spin_lock(&chip->mixer_lock); status = snd_sbmixer_read(chip, SB_DSP4_IRQSTATUS); spin_unlock(&chip->mixer_lock); if ((status & SB_IRQTYPE_MPUIN) && chip->rmidi_callback) chip->rmidi_callback(irq, chip->rmidi->private_data); if (status & SB_IRQTYPE_8BIT) { ok = 0; if (chip->mode & SB_MODE_PLAYBACK_8) { snd_pcm_period_elapsed(chip->playback_substream); snd_sb16_csp_update(chip); ok++; } if (chip->mode & SB_MODE_CAPTURE_8) { snd_pcm_period_elapsed(chip->capture_substream); ok++; } spin_lock(&chip->reg_lock); if (!ok) snd_sbdsp_command(chip, SB_DSP_DMA8_OFF); snd_sb_ack_8bit(chip); spin_unlock(&chip->reg_lock); } if (status & SB_IRQTYPE_16BIT) { ok = 0; if (chip->mode & SB_MODE_PLAYBACK_16) { snd_pcm_period_elapsed(chip->playback_substream); snd_sb16_csp_update(chip); ok++; } if (chip->mode & SB_MODE_CAPTURE_16) { snd_pcm_period_elapsed(chip->capture_substream); ok++; } spin_lock(&chip->reg_lock); if (!ok) snd_sbdsp_command(chip, SB_DSP_DMA16_OFF); snd_sb_ack_16bit(chip); spin_unlock(&chip->reg_lock); } return IRQ_HANDLED; } /* */ static snd_pcm_uframes_t snd_sb16_playback_pointer(struct snd_pcm_substream *substream) { struct snd_sb *chip = snd_pcm_substream_chip(substream); unsigned int dma; size_t ptr; dma = (chip->mode & SB_MODE_PLAYBACK_8) ? chip->dma8 : chip->dma16; ptr = snd_dma_pointer(dma, chip->p_dma_size); return bytes_to_frames(substream->runtime, ptr); } static snd_pcm_uframes_t snd_sb16_capture_pointer(struct snd_pcm_substream *substream) { struct snd_sb *chip = snd_pcm_substream_chip(substream); unsigned int dma; size_t ptr; dma = (chip->mode & SB_MODE_CAPTURE_8) ? chip->dma8 : chip->dma16; ptr = snd_dma_pointer(dma, chip->c_dma_size); return bytes_to_frames(substream->runtime, ptr); } /* */ static struct snd_pcm_hardware snd_sb16_playback = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP_VALID), .formats = 0, .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_44100, .rate_min = 4000, .rate_max = 44100, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; static struct snd_pcm_hardware snd_sb16_capture = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP_VALID), .formats = 0, .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_44100, .rate_min = 4000, .rate_max = 44100, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; /* * open/close */ static int snd_sb16_playback_open(struct snd_pcm_substream *substream) { unsigned long flags; struct snd_sb *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; spin_lock_irqsave(&chip->open_lock, flags); if (chip->mode & SB_MODE_PLAYBACK) { spin_unlock_irqrestore(&chip->open_lock, flags); return -EAGAIN; } runtime->hw = snd_sb16_playback; /* skip if 16 bit DMA was reserved for capture */ if (chip->force_mode16 & SB_MODE_CAPTURE_16) goto __skip_16bit; if (chip->dma16 >= 0 && !(chip->mode & SB_MODE_CAPTURE_16)) { chip->mode |= SB_MODE_PLAYBACK_16; runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE; /* Vibra16X hack */ if (chip->dma16 <= 3) { runtime->hw.buffer_bytes_max = runtime->hw.period_bytes_max = 64 * 1024; } else { snd_sb16_csp_playback_open(chip, runtime); } goto __open_ok; } __skip_16bit: if (chip->dma8 >= 0 && !(chip->mode & SB_MODE_CAPTURE_8)) { chip->mode |= SB_MODE_PLAYBACK_8; /* DSP v 4.xx can transfer 16bit data through 8bit DMA channel, SBHWPG 2-7 */ if (chip->dma16 < 0) { runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE; chip->mode |= SB_MODE_PLAYBACK_16; } else { runtime->hw.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S8; } runtime->hw.buffer_bytes_max = runtime->hw.period_bytes_max = 64 * 1024; goto __open_ok; } spin_unlock_irqrestore(&chip->open_lock, flags); return -EAGAIN; __open_ok: if (chip->hardware == SB_HW_ALS100) runtime->hw.rate_max = 48000; if (chip->hardware == SB_HW_CS5530) { runtime->hw.buffer_bytes_max = 32 * 1024; runtime->hw.periods_min = 2; runtime->hw.rate_min = 44100; } if (chip->mode & SB_RATE_LOCK) runtime->hw.rate_min = runtime->hw.rate_max = chip->locked_rate; chip->playback_substream = substream; spin_unlock_irqrestore(&chip->open_lock, flags); return 0; } static int snd_sb16_playback_close(struct snd_pcm_substream *substream) { unsigned long flags; struct snd_sb *chip = snd_pcm_substream_chip(substream); snd_sb16_csp_playback_close(chip); spin_lock_irqsave(&chip->open_lock, flags); chip->playback_substream = NULL; chip->mode &= ~SB_MODE_PLAYBACK; spin_unlock_irqrestore(&chip->open_lock, flags); return 0; } static int snd_sb16_capture_open(struct snd_pcm_substream *substream) { unsigned long flags; struct snd_sb *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; spin_lock_irqsave(&chip->open_lock, flags); if (chip->mode & SB_MODE_CAPTURE) { spin_unlock_irqrestore(&chip->open_lock, flags); return -EAGAIN; } runtime->hw = snd_sb16_capture; /* skip if 16 bit DMA was reserved for playback */ if (chip->force_mode16 & SB_MODE_PLAYBACK_16) goto __skip_16bit; if (chip->dma16 >= 0 && !(chip->mode & SB_MODE_PLAYBACK_16)) { chip->mode |= SB_MODE_CAPTURE_16; runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE; /* Vibra16X hack */ if (chip->dma16 <= 3) { runtime->hw.buffer_bytes_max = runtime->hw.period_bytes_max = 64 * 1024; } else { snd_sb16_csp_capture_open(chip, runtime); } goto __open_ok; } __skip_16bit: if (chip->dma8 >= 0 && !(chip->mode & SB_MODE_PLAYBACK_8)) { chip->mode |= SB_MODE_CAPTURE_8; /* DSP v 4.xx can transfer 16bit data through 8bit DMA channel, SBHWPG 2-7 */ if (chip->dma16 < 0) { runtime->hw.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE; chip->mode |= SB_MODE_CAPTURE_16; } else { runtime->hw.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S8; } runtime->hw.buffer_bytes_max = runtime->hw.period_bytes_max = 64 * 1024; goto __open_ok; } spin_unlock_irqrestore(&chip->open_lock, flags); return -EAGAIN; __open_ok: if (chip->hardware == SB_HW_ALS100) runtime->hw.rate_max = 48000; if (chip->hardware == SB_HW_CS5530) { runtime->hw.buffer_bytes_max = 32 * 1024; runtime->hw.periods_min = 2; runtime->hw.rate_min = 44100; } if (chip->mode & SB_RATE_LOCK) runtime->hw.rate_min = runtime->hw.rate_max = chip->locked_rate; chip->capture_substream = substream; spin_unlock_irqrestore(&chip->open_lock, flags); return 0; } static int snd_sb16_capture_close(struct snd_pcm_substream *substream) { unsigned long flags; struct snd_sb *chip = snd_pcm_substream_chip(substream); snd_sb16_csp_capture_close(chip); spin_lock_irqsave(&chip->open_lock, flags); chip->capture_substream = NULL; chip->mode &= ~SB_MODE_CAPTURE; spin_unlock_irqrestore(&chip->open_lock, flags); return 0; } /* * DMA control interface */ static int snd_sb16_set_dma_mode(struct snd_sb *chip, int what) { if (chip->dma8 < 0 || chip->dma16 < 0) { if (snd_BUG_ON(what)) return -EINVAL; return 0; } if (what == 0) { chip->force_mode16 = 0; } else if (what == 1) { chip->force_mode16 = SB_MODE_PLAYBACK_16; } else if (what == 2) { chip->force_mode16 = SB_MODE_CAPTURE_16; } else { return -EINVAL; } return 0; } static int snd_sb16_get_dma_mode(struct snd_sb *chip) { if (chip->dma8 < 0 || chip->dma16 < 0) return 0; switch (chip->force_mode16) { case SB_MODE_PLAYBACK_16: return 1; case SB_MODE_CAPTURE_16: return 2; default: return 0; } } static int snd_sb16_dma_control_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static char *texts[3] = { "Auto", "Playback", "Capture" }; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = 3; if (uinfo->value.enumerated.item > 2) uinfo->value.enumerated.item = 2; strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); return 0; } static int snd_sb16_dma_control_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_sb *chip = snd_kcontrol_chip(kcontrol); unsigned long flags; spin_lock_irqsave(&chip->reg_lock, flags); ucontrol->value.enumerated.item[0] = snd_sb16_get_dma_mode(chip); spin_unlock_irqrestore(&chip->reg_lock, flags); return 0; } static int snd_sb16_dma_control_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_sb *chip = snd_kcontrol_chip(kcontrol); unsigned long flags; unsigned char nval, oval; int change; if ((nval = ucontrol->value.enumerated.item[0]) > 2) return -EINVAL; spin_lock_irqsave(&chip->reg_lock, flags); oval = snd_sb16_get_dma_mode(chip); change = nval != oval; snd_sb16_set_dma_mode(chip, nval); spin_unlock_irqrestore(&chip->reg_lock, flags); return change; } static struct snd_kcontrol_new snd_sb16_dma_control = { .iface = SNDRV_CTL_ELEM_IFACE_CARD, .name = "16-bit DMA Allocation", .info = snd_sb16_dma_control_info, .get = snd_sb16_dma_control_get, .put = snd_sb16_dma_control_put }; /* * Initialization part */ int snd_sb16dsp_configure(struct snd_sb * chip) { unsigned long flags; unsigned char irqreg = 0, dmareg = 0, mpureg; unsigned char realirq, realdma, realmpureg; /* note: mpu register should be present only on SB16 Vibra soundcards */ // printk(KERN_DEBUG "codec->irq=%i, codec->dma8=%i, codec->dma16=%i\n", chip->irq, chip->dma8, chip->dma16); spin_lock_irqsave(&chip->mixer_lock, flags); mpureg = snd_sbmixer_read(chip, SB_DSP4_MPUSETUP) & ~0x06; spin_unlock_irqrestore(&chip->mixer_lock, flags); switch (chip->irq) { case 2: case 9: irqreg |= SB_IRQSETUP_IRQ9; break; case 5: irqreg |= SB_IRQSETUP_IRQ5; break; case 7: irqreg |= SB_IRQSETUP_IRQ7; break; case 10: irqreg |= SB_IRQSETUP_IRQ10; break; default: return -EINVAL; } if (chip->dma8 >= 0) { switch (chip->dma8) { case 0: dmareg |= SB_DMASETUP_DMA0; break; case 1: dmareg |= SB_DMASETUP_DMA1; break; case 3: dmareg |= SB_DMASETUP_DMA3; break; default: return -EINVAL; } } if (chip->dma16 >= 0 && chip->dma16 != chip->dma8) { switch (chip->dma16) { case 5: dmareg |= SB_DMASETUP_DMA5; break; case 6: dmareg |= SB_DMASETUP_DMA6; break; case 7: dmareg |= SB_DMASETUP_DMA7; break; default: return -EINVAL; } } switch (chip->mpu_port) { case 0x300: mpureg |= 0x04; break; case 0x330: mpureg |= 0x00; break; default: mpureg |= 0x02; /* disable MPU */ } spin_lock_irqsave(&chip->mixer_lock, flags); snd_sbmixer_write(chip, SB_DSP4_IRQSETUP, irqreg); realirq = snd_sbmixer_read(chip, SB_DSP4_IRQSETUP); snd_sbmixer_write(chip, SB_DSP4_DMASETUP, dmareg); realdma = snd_sbmixer_read(chip, SB_DSP4_DMASETUP); snd_sbmixer_write(chip, SB_DSP4_MPUSETUP, mpureg); realmpureg = snd_sbmixer_read(chip, SB_DSP4_MPUSETUP); spin_unlock_irqrestore(&chip->mixer_lock, flags); if ((~realirq) & irqreg || (~realdma) & dmareg) { snd_printk(KERN_ERR "SB16 [0x%lx]: unable to set DMA & IRQ (PnP device?)\n", chip->port); snd_printk(KERN_ERR "SB16 [0x%lx]: wanted: irqreg=0x%x, dmareg=0x%x, mpureg = 0x%x\n", chip->port, realirq, realdma, realmpureg); snd_printk(KERN_ERR "SB16 [0x%lx]: got: irqreg=0x%x, dmareg=0x%x, mpureg = 0x%x\n", chip->port, irqreg, dmareg, mpureg); return -ENODEV; } return 0; } static struct snd_pcm_ops snd_sb16_playback_ops = { .open = snd_sb16_playback_open, .close = snd_sb16_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_sb16_hw_params, .hw_free = snd_sb16_hw_free, .prepare = snd_sb16_playback_prepare, .trigger = snd_sb16_playback_trigger, .pointer = snd_sb16_playback_pointer, }; static struct snd_pcm_ops snd_sb16_capture_ops = { .open = snd_sb16_capture_open, .close = snd_sb16_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_sb16_hw_params, .hw_free = snd_sb16_hw_free, .prepare = snd_sb16_capture_prepare, .trigger = snd_sb16_capture_trigger, .pointer = snd_sb16_capture_pointer, }; int snd_sb16dsp_pcm(struct snd_sb * chip, int device, struct snd_pcm ** rpcm) { struct snd_card *card = chip->card; struct snd_pcm *pcm; int err; if (rpcm) *rpcm = NULL; if ((err = snd_pcm_new(card, "SB16 DSP", device, 1, 1, &pcm)) < 0) return err; sprintf(pcm->name, "DSP v%i.%i", chip->version >> 8, chip->version & 0xff); pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; pcm->private_data = chip; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_sb16_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_sb16_capture_ops); if (chip->dma16 >= 0 && chip->dma8 != chip->dma16) snd_ctl_add(card, snd_ctl_new1(&snd_sb16_dma_control, chip)); else pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_isa_data(), 64*1024, 128*1024); if (rpcm) *rpcm = pcm; return 0; } const struct snd_pcm_ops *snd_sb16dsp_get_pcm_ops(int direction) { return direction == SNDRV_PCM_STREAM_PLAYBACK ? &snd_sb16_playback_ops : &snd_sb16_capture_ops; } EXPORT_SYMBOL(snd_sb16dsp_pcm); EXPORT_SYMBOL(snd_sb16dsp_get_pcm_ops); EXPORT_SYMBOL(snd_sb16dsp_configure); EXPORT_SYMBOL(snd_sb16dsp_interrupt); /* * INIT part */ static int __init alsa_sb16_init(void) { return 0; } static void __exit alsa_sb16_exit(void) { } module_init(alsa_sb16_init) module_exit(alsa_sb16_exit)