/* memcontrol.h - Memory Controller * * Copyright IBM Corporation, 2007 * Author Balbir Singh <balbir@linux.vnet.ibm.com> * * Copyright 2007 OpenVZ SWsoft Inc * Author: Pavel Emelianov <xemul@openvz.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #ifndef _LINUX_MEMCONTROL_H #define _LINUX_MEMCONTROL_H #include <linux/cgroup.h> #include <linux/vm_event_item.h> #include <linux/hardirq.h> #include <linux/jump_label.h> struct mem_cgroup; struct page_cgroup; struct page; struct mm_struct; struct kmem_cache; /* * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c, * These two lists should keep in accord with each other. */ enum mem_cgroup_stat_index { /* * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. */ MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */ MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ MEM_CGROUP_STAT_NSTATS, }; struct mem_cgroup_reclaim_cookie { struct zone *zone; int priority; unsigned int generation; }; #ifdef CONFIG_MEMCG /* * All "charge" functions with gfp_mask should use GFP_KERNEL or * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't * alloc memory but reclaims memory from all available zones. So, "where I want * memory from" bits of gfp_mask has no meaning. So any bits of that field is * available but adding a rule is better. charge functions' gfp_mask should * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous * codes. * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.) */ extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); /* for swap handling */ extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, gfp_t mask, struct mem_cgroup **memcgp); extern void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg); extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg); extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); /* For coalescing uncharge for reducing memcg' overhead*/ extern void mem_cgroup_uncharge_start(void); extern void mem_cgroup_uncharge_end(void); extern void mem_cgroup_uncharge_page(struct page *page); extern void mem_cgroup_uncharge_cache_page(struct page *page); bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, struct mem_cgroup *memcg); bool task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg); extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page); extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm); extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg); extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css); static inline bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg) { struct mem_cgroup *task_memcg; bool match; rcu_read_lock(); task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); match = __mem_cgroup_same_or_subtree(memcg, task_memcg); rcu_read_unlock(); return match; } extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg); extern void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, struct mem_cgroup **memcgp); extern void mem_cgroup_end_migration(struct mem_cgroup *memcg, struct page *oldpage, struct page *newpage, bool migration_ok); struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, struct mem_cgroup *, struct mem_cgroup_reclaim_cookie *); void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); /* * For memory reclaim. */ int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec); int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list); void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int); extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p); extern void mem_cgroup_replace_page_cache(struct page *oldpage, struct page *newpage); static inline void mem_cgroup_oom_enable(void) { WARN_ON(current->memcg_oom.may_oom); current->memcg_oom.may_oom = 1; } static inline void mem_cgroup_oom_disable(void) { WARN_ON(!current->memcg_oom.may_oom); current->memcg_oom.may_oom = 0; } static inline bool task_in_memcg_oom(struct task_struct *p) { return p->memcg_oom.memcg; } bool mem_cgroup_oom_synchronize(bool wait); #ifdef CONFIG_MEMCG_SWAP extern int do_swap_account; #endif static inline bool mem_cgroup_disabled(void) { if (mem_cgroup_subsys.disabled) return true; return false; } void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked, unsigned long *flags); extern atomic_t memcg_moving; static inline void mem_cgroup_begin_update_page_stat(struct page *page, bool *locked, unsigned long *flags) { if (mem_cgroup_disabled()) return; rcu_read_lock(); *locked = false; if (atomic_read(&memcg_moving)) __mem_cgroup_begin_update_page_stat(page, locked, flags); } void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags); static inline void mem_cgroup_end_update_page_stat(struct page *page, bool *locked, unsigned long *flags) { if (mem_cgroup_disabled()) return; if (*locked) __mem_cgroup_end_update_page_stat(page, flags); rcu_read_unlock(); } void mem_cgroup_update_page_stat(struct page *page, enum mem_cgroup_stat_index idx, int val); static inline void mem_cgroup_inc_page_stat(struct page *page, enum mem_cgroup_stat_index idx) { mem_cgroup_update_page_stat(page, idx, 1); } static inline void mem_cgroup_dec_page_stat(struct page *page, enum mem_cgroup_stat_index idx) { mem_cgroup_update_page_stat(page, idx, -1); } unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, gfp_t gfp_mask, unsigned long *total_scanned); void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx); static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) { if (mem_cgroup_disabled()) return; __mem_cgroup_count_vm_event(mm, idx); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE void mem_cgroup_split_huge_fixup(struct page *head); #endif #ifdef CONFIG_DEBUG_VM bool mem_cgroup_bad_page_check(struct page *page); void mem_cgroup_print_bad_page(struct page *page); #endif #else /* CONFIG_MEMCG */ struct mem_cgroup; static inline int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { return 0; } static inline int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { return 0; } static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp) { return 0; } static inline void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg) { } static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) { } static inline void mem_cgroup_uncharge_start(void) { } static inline void mem_cgroup_uncharge_end(void) { } static inline void mem_cgroup_uncharge_page(struct page *page) { } static inline void mem_cgroup_uncharge_cache_page(struct page *page) { } static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, struct mem_cgroup *memcg) { return &zone->lruvec; } static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) { return &zone->lruvec; } static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) { return NULL; } static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) { return NULL; } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { return true; } static inline bool task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) { return true; } static inline struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) { return NULL; } static inline void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, struct mem_cgroup **memcgp) { } static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg, struct page *oldpage, struct page *newpage, bool migration_ok) { } static inline struct mem_cgroup * mem_cgroup_iter(struct mem_cgroup *root, struct mem_cgroup *prev, struct mem_cgroup_reclaim_cookie *reclaim) { return NULL; } static inline void mem_cgroup_iter_break(struct mem_cgroup *root, struct mem_cgroup *prev) { } static inline bool mem_cgroup_disabled(void) { return true; } static inline int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) { return 1; } static inline unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) { return 0; } static inline void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, int increment) { } static inline void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) { } static inline void mem_cgroup_begin_update_page_stat(struct page *page, bool *locked, unsigned long *flags) { } static inline void mem_cgroup_end_update_page_stat(struct page *page, bool *locked, unsigned long *flags) { } static inline void mem_cgroup_oom_enable(void) { } static inline void mem_cgroup_oom_disable(void) { } static inline bool task_in_memcg_oom(struct task_struct *p) { return false; } static inline bool mem_cgroup_oom_synchronize(bool wait) { return false; } static inline void mem_cgroup_inc_page_stat(struct page *page, enum mem_cgroup_stat_index idx) { } static inline void mem_cgroup_dec_page_stat(struct page *page, enum mem_cgroup_stat_index idx) { } static inline unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, gfp_t gfp_mask, unsigned long *total_scanned) { return 0; } static inline void mem_cgroup_split_huge_fixup(struct page *head) { } static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) { } static inline void mem_cgroup_replace_page_cache(struct page *oldpage, struct page *newpage) { } #endif /* CONFIG_MEMCG */ #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM) static inline bool mem_cgroup_bad_page_check(struct page *page) { return false; } static inline void mem_cgroup_print_bad_page(struct page *page) { } #endif enum { UNDER_LIMIT, SOFT_LIMIT, OVER_LIMIT, }; struct sock; #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) void sock_update_memcg(struct sock *sk); void sock_release_memcg(struct sock *sk); #else static inline void sock_update_memcg(struct sock *sk) { } static inline void sock_release_memcg(struct sock *sk) { } #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */ #ifdef CONFIG_MEMCG_KMEM extern struct static_key memcg_kmem_enabled_key; extern int memcg_limited_groups_array_size; /* * Helper macro to loop through all memcg-specific caches. Callers must still * check if the cache is valid (it is either valid or NULL). * the slab_mutex must be held when looping through those caches */ #define for_each_memcg_cache_index(_idx) \ for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++) static inline bool memcg_kmem_enabled(void) { return static_key_false(&memcg_kmem_enabled_key); } /* * In general, we'll do everything in our power to not incur in any overhead * for non-memcg users for the kmem functions. Not even a function call, if we * can avoid it. * * Therefore, we'll inline all those functions so that in the best case, we'll * see that kmemcg is off for everybody and proceed quickly. If it is on, * we'll still do most of the flag checking inline. We check a lot of * conditions, but because they are pretty simple, they are expected to be * fast. */ bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order); void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order); void __memcg_kmem_uncharge_pages(struct page *page, int order); int memcg_cache_id(struct mem_cgroup *memcg); int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s, struct kmem_cache *root_cache); void memcg_free_cache_params(struct kmem_cache *s); void memcg_register_cache(struct kmem_cache *s); void memcg_unregister_cache(struct kmem_cache *s); int memcg_update_cache_size(struct kmem_cache *s, int num_groups); void memcg_update_array_size(int num_groups); struct kmem_cache * __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp); void mem_cgroup_destroy_cache(struct kmem_cache *cachep); void kmem_cache_destroy_memcg_children(struct kmem_cache *s); /** * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed. * @gfp: the gfp allocation flags. * @memcg: a pointer to the memcg this was charged against. * @order: allocation order. * * returns true if the memcg where the current task belongs can hold this * allocation. * * We return true automatically if this allocation is not to be accounted to * any memcg. */ static inline bool memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) { if (!memcg_kmem_enabled()) return true; /* * __GFP_NOFAIL allocations will move on even if charging is not * possible. Therefore we don't even try, and have this allocation * unaccounted. We could in theory charge it with * res_counter_charge_nofail, but we hope those allocations are rare, * and won't be worth the trouble. */ if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL)) return true; if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) return true; /* If the test is dying, just let it go. */ if (unlikely(fatal_signal_pending(current))) return true; return __memcg_kmem_newpage_charge(gfp, memcg, order); } /** * memcg_kmem_uncharge_pages: uncharge pages from memcg * @page: pointer to struct page being freed * @order: allocation order. * * there is no need to specify memcg here, since it is embedded in page_cgroup */ static inline void memcg_kmem_uncharge_pages(struct page *page, int order) { if (memcg_kmem_enabled()) __memcg_kmem_uncharge_pages(page, order); } /** * memcg_kmem_commit_charge: embeds correct memcg in a page * @page: pointer to struct page recently allocated * @memcg: the memcg structure we charged against * @order: allocation order. * * Needs to be called after memcg_kmem_newpage_charge, regardless of success or * failure of the allocation. if @page is NULL, this function will revert the * charges. Otherwise, it will commit the memcg given by @memcg to the * corresponding page_cgroup. */ static inline void memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) { if (memcg_kmem_enabled() && memcg) __memcg_kmem_commit_charge(page, memcg, order); } /** * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation * @cachep: the original global kmem cache * @gfp: allocation flags. * * This function assumes that the task allocating, which determines the memcg * in the page allocator, belongs to the same cgroup throughout the whole * process. Misacounting can happen if the task calls memcg_kmem_get_cache() * while belonging to a cgroup, and later on changes. This is considered * acceptable, and should only happen upon task migration. * * Before the cache is created by the memcg core, there is also a possible * imbalance: the task belongs to a memcg, but the cache being allocated from * is the global cache, since the child cache is not yet guaranteed to be * ready. This case is also fine, since in this case the GFP_KMEMCG will not be * passed and the page allocator will not attempt any cgroup accounting. */ static __always_inline struct kmem_cache * memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) { if (!memcg_kmem_enabled()) return cachep; if (gfp & __GFP_NOFAIL) return cachep; if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) return cachep; if (unlikely(fatal_signal_pending(current))) return cachep; return __memcg_kmem_get_cache(cachep, gfp); } #else #define for_each_memcg_cache_index(_idx) \ for (; NULL; ) static inline bool memcg_kmem_enabled(void) { return false; } static inline bool memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) { return true; } static inline void memcg_kmem_uncharge_pages(struct page *page, int order) { } static inline void memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) { } static inline int memcg_cache_id(struct mem_cgroup *memcg) { return -1; } static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s, struct kmem_cache *root_cache) { return 0; } static inline void memcg_free_cache_params(struct kmem_cache *s) { } static inline void memcg_register_cache(struct kmem_cache *s) { } static inline void memcg_unregister_cache(struct kmem_cache *s) { } static inline struct kmem_cache * memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) { return cachep; } static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s) { } #endif /* CONFIG_MEMCG_KMEM */ #endif /* _LINUX_MEMCONTROL_H */