/* * VFIO: IOMMU DMA mapping support for Type1 IOMMU * * Copyright (C) 2012 Red Hat, Inc. All rights reserved. * Author: Alex Williamson <alex.williamson@redhat.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Derived from original vfio: * Copyright 2010 Cisco Systems, Inc. All rights reserved. * Author: Tom Lyon, pugs@cisco.com * * We arbitrarily define a Type1 IOMMU as one matching the below code. * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel * VT-d, but that makes it harder to re-use as theoretically anyone * implementing a similar IOMMU could make use of this. We expect the * IOMMU to support the IOMMU API and have few to no restrictions around * the IOVA range that can be mapped. The Type1 IOMMU is currently * optimized for relatively static mappings of a userspace process with * userpsace pages pinned into memory. We also assume devices and IOMMU * domains are PCI based as the IOMMU API is still centered around a * device/bus interface rather than a group interface. */ #include <linux/compat.h> #include <linux/device.h> #include <linux/fs.h> #include <linux/iommu.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/pci.h> /* pci_bus_type */ #include <linux/rbtree.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/vfio.h> #include <linux/workqueue.h> #define DRIVER_VERSION "0.2" #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>" #define DRIVER_DESC "Type1 IOMMU driver for VFIO" static bool allow_unsafe_interrupts; module_param_named(allow_unsafe_interrupts, allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(allow_unsafe_interrupts, "Enable VFIO IOMMU support for on platforms without interrupt remapping support."); static bool disable_hugepages; module_param_named(disable_hugepages, disable_hugepages, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(disable_hugepages, "Disable VFIO IOMMU support for IOMMU hugepages."); struct vfio_iommu { struct iommu_domain *domain; struct mutex lock; struct rb_root dma_list; struct list_head group_list; bool cache; }; struct vfio_dma { struct rb_node node; dma_addr_t iova; /* Device address */ unsigned long vaddr; /* Process virtual addr */ size_t size; /* Map size (bytes) */ int prot; /* IOMMU_READ/WRITE */ }; struct vfio_group { struct iommu_group *iommu_group; struct list_head next; }; /* * This code handles mapping and unmapping of user data buffers * into DMA'ble space using the IOMMU */ static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu, dma_addr_t start, size_t size) { struct rb_node *node = iommu->dma_list.rb_node; while (node) { struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node); if (start + size <= dma->iova) node = node->rb_left; else if (start >= dma->iova + dma->size) node = node->rb_right; else return dma; } return NULL; } static void vfio_insert_dma(struct vfio_iommu *iommu, struct vfio_dma *new) { struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL; struct vfio_dma *dma; while (*link) { parent = *link; dma = rb_entry(parent, struct vfio_dma, node); if (new->iova + new->size <= dma->iova) link = &(*link)->rb_left; else link = &(*link)->rb_right; } rb_link_node(&new->node, parent, link); rb_insert_color(&new->node, &iommu->dma_list); } static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *old) { rb_erase(&old->node, &iommu->dma_list); } struct vwork { struct mm_struct *mm; long npage; struct work_struct work; }; /* delayed decrement/increment for locked_vm */ static void vfio_lock_acct_bg(struct work_struct *work) { struct vwork *vwork = container_of(work, struct vwork, work); struct mm_struct *mm; mm = vwork->mm; down_write(&mm->mmap_sem); mm->locked_vm += vwork->npage; up_write(&mm->mmap_sem); mmput(mm); kfree(vwork); } static void vfio_lock_acct(long npage) { struct vwork *vwork; struct mm_struct *mm; if (!current->mm || !npage) return; /* process exited or nothing to do */ if (down_write_trylock(¤t->mm->mmap_sem)) { current->mm->locked_vm += npage; up_write(¤t->mm->mmap_sem); return; } /* * Couldn't get mmap_sem lock, so must setup to update * mm->locked_vm later. If locked_vm were atomic, we * wouldn't need this silliness */ vwork = kmalloc(sizeof(struct vwork), GFP_KERNEL); if (!vwork) return; mm = get_task_mm(current); if (!mm) { kfree(vwork); return; } INIT_WORK(&vwork->work, vfio_lock_acct_bg); vwork->mm = mm; vwork->npage = npage; schedule_work(&vwork->work); } /* * Some mappings aren't backed by a struct page, for example an mmap'd * MMIO range for our own or another device. These use a different * pfn conversion and shouldn't be tracked as locked pages. */ static bool is_invalid_reserved_pfn(unsigned long pfn) { if (pfn_valid(pfn)) { bool reserved; struct page *tail = pfn_to_page(pfn); struct page *head = compound_head(tail); reserved = !!(PageReserved(head)); if (head != tail) { /* * "head" is not a dangling pointer * (compound_head takes care of that) * but the hugepage may have been split * from under us (and we may not hold a * reference count on the head page so it can * be reused before we run PageReferenced), so * we've to check PageTail before returning * what we just read. */ smp_rmb(); if (PageTail(tail)) return reserved; } return PageReserved(tail); } return true; } static int put_pfn(unsigned long pfn, int prot) { if (!is_invalid_reserved_pfn(pfn)) { struct page *page = pfn_to_page(pfn); if (prot & IOMMU_WRITE) SetPageDirty(page); put_page(page); return 1; } return 0; } static int vaddr_get_pfn(unsigned long vaddr, int prot, unsigned long *pfn) { struct page *page[1]; struct vm_area_struct *vma; int ret = -EFAULT; if (get_user_pages_fast(vaddr, 1, !!(prot & IOMMU_WRITE), page) == 1) { *pfn = page_to_pfn(page[0]); return 0; } down_read(¤t->mm->mmap_sem); vma = find_vma_intersection(current->mm, vaddr, vaddr + 1); if (vma && vma->vm_flags & VM_PFNMAP) { *pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; if (is_invalid_reserved_pfn(*pfn)) ret = 0; } up_read(¤t->mm->mmap_sem); return ret; } /* * Attempt to pin pages. We really don't want to track all the pfns and * the iommu can only map chunks of consecutive pfns anyway, so get the * first page and all consecutive pages with the same locking. */ static long vfio_pin_pages(unsigned long vaddr, long npage, int prot, unsigned long *pfn_base) { unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; bool lock_cap = capable(CAP_IPC_LOCK); long ret, i; if (!current->mm) return -ENODEV; ret = vaddr_get_pfn(vaddr, prot, pfn_base); if (ret) return ret; if (is_invalid_reserved_pfn(*pfn_base)) return 1; if (!lock_cap && current->mm->locked_vm + 1 > limit) { put_pfn(*pfn_base, prot); pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__, limit << PAGE_SHIFT); return -ENOMEM; } if (unlikely(disable_hugepages)) { vfio_lock_acct(1); return 1; } /* Lock all the consecutive pages from pfn_base */ for (i = 1, vaddr += PAGE_SIZE; i < npage; i++, vaddr += PAGE_SIZE) { unsigned long pfn = 0; ret = vaddr_get_pfn(vaddr, prot, &pfn); if (ret) break; if (pfn != *pfn_base + i || is_invalid_reserved_pfn(pfn)) { put_pfn(pfn, prot); break; } if (!lock_cap && current->mm->locked_vm + i + 1 > limit) { put_pfn(pfn, prot); pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__, limit << PAGE_SHIFT); break; } } vfio_lock_acct(i); return i; } static long vfio_unpin_pages(unsigned long pfn, long npage, int prot, bool do_accounting) { unsigned long unlocked = 0; long i; for (i = 0; i < npage; i++) unlocked += put_pfn(pfn++, prot); if (do_accounting) vfio_lock_acct(-unlocked); return unlocked; } static int vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma, dma_addr_t iova, size_t *size) { dma_addr_t start = iova, end = iova + *size; long unlocked = 0; while (iova < end) { size_t unmapped; phys_addr_t phys; /* * We use the IOMMU to track the physical address. This * saves us from having a lot more entries in our mapping * tree. The downside is that we don't track the size * used to do the mapping. We request unmap of a single * page, but expect IOMMUs that support large pages to * unmap a larger chunk. */ phys = iommu_iova_to_phys(iommu->domain, iova); if (WARN_ON(!phys)) { iova += PAGE_SIZE; continue; } unmapped = iommu_unmap(iommu->domain, iova, PAGE_SIZE); if (!unmapped) break; unlocked += vfio_unpin_pages(phys >> PAGE_SHIFT, unmapped >> PAGE_SHIFT, dma->prot, false); iova += unmapped; } vfio_lock_acct(-unlocked); *size = iova - start; return 0; } static int vfio_remove_dma_overlap(struct vfio_iommu *iommu, dma_addr_t start, size_t *size, struct vfio_dma *dma) { size_t offset, overlap, tmp; struct vfio_dma *split; int ret; if (!*size) return 0; /* * Existing dma region is completely covered, unmap all. This is * the likely case since userspace tends to map and unmap buffers * in one shot rather than multiple mappings within a buffer. */ if (likely(start <= dma->iova && start + *size >= dma->iova + dma->size)) { *size = dma->size; ret = vfio_unmap_unpin(iommu, dma, dma->iova, size); if (ret) return ret; /* * Did we remove more than we have? Should never happen * since a vfio_dma is contiguous in iova and vaddr. */ WARN_ON(*size != dma->size); vfio_remove_dma(iommu, dma); kfree(dma); return 0; } /* Overlap low address of existing range */ if (start <= dma->iova) { overlap = start + *size - dma->iova; ret = vfio_unmap_unpin(iommu, dma, dma->iova, &overlap); if (ret) return ret; vfio_remove_dma(iommu, dma); /* * Check, we may have removed to whole vfio_dma. If not * fixup and re-insert. */ if (overlap < dma->size) { dma->iova += overlap; dma->vaddr += overlap; dma->size -= overlap; vfio_insert_dma(iommu, dma); } else kfree(dma); *size = overlap; return 0; } /* Overlap high address of existing range */ if (start + *size >= dma->iova + dma->size) { offset = start - dma->iova; overlap = dma->size - offset; ret = vfio_unmap_unpin(iommu, dma, start, &overlap); if (ret) return ret; dma->size -= overlap; *size = overlap; return 0; } /* Split existing */ /* * Allocate our tracking structure early even though it may not * be used. An Allocation failure later loses track of pages and * is more difficult to unwind. */ split = kzalloc(sizeof(*split), GFP_KERNEL); if (!split) return -ENOMEM; offset = start - dma->iova; ret = vfio_unmap_unpin(iommu, dma, start, size); if (ret || !*size) { kfree(split); return ret; } tmp = dma->size; /* Resize the lower vfio_dma in place, before the below insert */ dma->size = offset; /* Insert new for remainder, assuming it didn't all get unmapped */ if (likely(offset + *size < tmp)) { split->size = tmp - offset - *size; split->iova = dma->iova + offset + *size; split->vaddr = dma->vaddr + offset + *size; split->prot = dma->prot; vfio_insert_dma(iommu, split); } else kfree(split); return 0; } static int vfio_dma_do_unmap(struct vfio_iommu *iommu, struct vfio_iommu_type1_dma_unmap *unmap) { uint64_t mask; struct vfio_dma *dma; size_t unmapped = 0, size; int ret = 0; mask = ((uint64_t)1 << __ffs(iommu->domain->ops->pgsize_bitmap)) - 1; if (unmap->iova & mask) return -EINVAL; if (!unmap->size || unmap->size & mask) return -EINVAL; WARN_ON(mask & PAGE_MASK); mutex_lock(&iommu->lock); while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) { size = unmap->size; ret = vfio_remove_dma_overlap(iommu, unmap->iova, &size, dma); if (ret || !size) break; unmapped += size; } mutex_unlock(&iommu->lock); /* * We may unmap more than requested, update the unmap struct so * userspace can know. */ unmap->size = unmapped; return ret; } /* * Turns out AMD IOMMU has a page table bug where it won't map large pages * to a region that previously mapped smaller pages. This should be fixed * soon, so this is just a temporary workaround to break mappings down into * PAGE_SIZE. Better to map smaller pages than nothing. */ static int map_try_harder(struct vfio_iommu *iommu, dma_addr_t iova, unsigned long pfn, long npage, int prot) { long i; int ret; for (i = 0; i < npage; i++, pfn++, iova += PAGE_SIZE) { ret = iommu_map(iommu->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT, PAGE_SIZE, prot); if (ret) break; } for (; i < npage && i > 0; i--, iova -= PAGE_SIZE) iommu_unmap(iommu->domain, iova, PAGE_SIZE); return ret; } static int vfio_dma_do_map(struct vfio_iommu *iommu, struct vfio_iommu_type1_dma_map *map) { dma_addr_t end, iova; unsigned long vaddr = map->vaddr; size_t size = map->size; long npage; int ret = 0, prot = 0; uint64_t mask; struct vfio_dma *dma = NULL; unsigned long pfn; end = map->iova + map->size; mask = ((uint64_t)1 << __ffs(iommu->domain->ops->pgsize_bitmap)) - 1; /* READ/WRITE from device perspective */ if (map->flags & VFIO_DMA_MAP_FLAG_WRITE) prot |= IOMMU_WRITE; if (map->flags & VFIO_DMA_MAP_FLAG_READ) prot |= IOMMU_READ; if (!prot) return -EINVAL; /* No READ/WRITE? */ if (iommu->cache) prot |= IOMMU_CACHE; if (vaddr & mask) return -EINVAL; if (map->iova & mask) return -EINVAL; if (!map->size || map->size & mask) return -EINVAL; WARN_ON(mask & PAGE_MASK); /* Don't allow IOVA wrap */ if (end && end < map->iova) return -EINVAL; /* Don't allow virtual address wrap */ if (vaddr + map->size && vaddr + map->size < vaddr) return -EINVAL; mutex_lock(&iommu->lock); if (vfio_find_dma(iommu, map->iova, map->size)) { mutex_unlock(&iommu->lock); return -EEXIST; } for (iova = map->iova; iova < end; iova += size, vaddr += size) { long i; /* Pin a contiguous chunk of memory */ npage = vfio_pin_pages(vaddr, (end - iova) >> PAGE_SHIFT, prot, &pfn); if (npage <= 0) { WARN_ON(!npage); ret = (int)npage; goto out; } /* Verify pages are not already mapped */ for (i = 0; i < npage; i++) { if (iommu_iova_to_phys(iommu->domain, iova + (i << PAGE_SHIFT))) { ret = -EBUSY; goto out_unpin; } } ret = iommu_map(iommu->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT, npage << PAGE_SHIFT, prot); if (ret) { if (ret != -EBUSY || map_try_harder(iommu, iova, pfn, npage, prot)) { goto out_unpin; } } size = npage << PAGE_SHIFT; /* * Check if we abut a region below - nothing below 0. * This is the most likely case when mapping chunks of * physically contiguous regions within a virtual address * range. Update the abutting entry in place since iova * doesn't change. */ if (likely(iova)) { struct vfio_dma *tmp; tmp = vfio_find_dma(iommu, iova - 1, 1); if (tmp && tmp->prot == prot && tmp->vaddr + tmp->size == vaddr) { tmp->size += size; iova = tmp->iova; size = tmp->size; vaddr = tmp->vaddr; dma = tmp; } } /* * Check if we abut a region above - nothing above ~0 + 1. * If we abut above and below, remove and free. If only * abut above, remove, modify, reinsert. */ if (likely(iova + size)) { struct vfio_dma *tmp; tmp = vfio_find_dma(iommu, iova + size, 1); if (tmp && tmp->prot == prot && tmp->vaddr == vaddr + size) { vfio_remove_dma(iommu, tmp); if (dma) { dma->size += tmp->size; kfree(tmp); } else { size += tmp->size; tmp->size = size; tmp->iova = iova; tmp->vaddr = vaddr; vfio_insert_dma(iommu, tmp); dma = tmp; } } } if (!dma) { dma = kzalloc(sizeof(*dma), GFP_KERNEL); if (!dma) { iommu_unmap(iommu->domain, iova, size); ret = -ENOMEM; goto out_unpin; } dma->size = size; dma->iova = iova; dma->vaddr = vaddr; dma->prot = prot; vfio_insert_dma(iommu, dma); } } WARN_ON(ret); mutex_unlock(&iommu->lock); return ret; out_unpin: vfio_unpin_pages(pfn, npage, prot, true); out: iova = map->iova; size = map->size; while ((dma = vfio_find_dma(iommu, iova, size))) { int r = vfio_remove_dma_overlap(iommu, iova, &size, dma); if (WARN_ON(r || !size)) break; } mutex_unlock(&iommu->lock); return ret; } static int vfio_iommu_type1_attach_group(void *iommu_data, struct iommu_group *iommu_group) { struct vfio_iommu *iommu = iommu_data; struct vfio_group *group, *tmp; int ret; group = kzalloc(sizeof(*group), GFP_KERNEL); if (!group) return -ENOMEM; mutex_lock(&iommu->lock); list_for_each_entry(tmp, &iommu->group_list, next) { if (tmp->iommu_group == iommu_group) { mutex_unlock(&iommu->lock); kfree(group); return -EINVAL; } } /* * TODO: Domain have capabilities that might change as we add * groups (see iommu->cache, currently never set). Check for * them and potentially disallow groups to be attached when it * would change capabilities (ugh). */ ret = iommu_attach_group(iommu->domain, iommu_group); if (ret) { mutex_unlock(&iommu->lock); kfree(group); return ret; } group->iommu_group = iommu_group; list_add(&group->next, &iommu->group_list); mutex_unlock(&iommu->lock); return 0; } static void vfio_iommu_type1_detach_group(void *iommu_data, struct iommu_group *iommu_group) { struct vfio_iommu *iommu = iommu_data; struct vfio_group *group; mutex_lock(&iommu->lock); list_for_each_entry(group, &iommu->group_list, next) { if (group->iommu_group == iommu_group) { iommu_detach_group(iommu->domain, iommu_group); list_del(&group->next); kfree(group); break; } } mutex_unlock(&iommu->lock); } static void *vfio_iommu_type1_open(unsigned long arg) { struct vfio_iommu *iommu; if (arg != VFIO_TYPE1_IOMMU) return ERR_PTR(-EINVAL); iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); if (!iommu) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&iommu->group_list); iommu->dma_list = RB_ROOT; mutex_init(&iommu->lock); /* * Wish we didn't have to know about bus_type here. */ iommu->domain = iommu_domain_alloc(&pci_bus_type); if (!iommu->domain) { kfree(iommu); return ERR_PTR(-EIO); } /* * Wish we could specify required capabilities rather than create * a domain, see what comes out and hope it doesn't change along * the way. Fortunately we know interrupt remapping is global for * our iommus. */ if (!allow_unsafe_interrupts && !iommu_domain_has_cap(iommu->domain, IOMMU_CAP_INTR_REMAP)) { pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n", __func__); iommu_domain_free(iommu->domain); kfree(iommu); return ERR_PTR(-EPERM); } return iommu; } static void vfio_iommu_type1_release(void *iommu_data) { struct vfio_iommu *iommu = iommu_data; struct vfio_group *group, *group_tmp; struct rb_node *node; list_for_each_entry_safe(group, group_tmp, &iommu->group_list, next) { iommu_detach_group(iommu->domain, group->iommu_group); list_del(&group->next); kfree(group); } while ((node = rb_first(&iommu->dma_list))) { struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node); size_t size = dma->size; vfio_remove_dma_overlap(iommu, dma->iova, &size, dma); if (WARN_ON(!size)) break; } iommu_domain_free(iommu->domain); iommu->domain = NULL; kfree(iommu); } static long vfio_iommu_type1_ioctl(void *iommu_data, unsigned int cmd, unsigned long arg) { struct vfio_iommu *iommu = iommu_data; unsigned long minsz; if (cmd == VFIO_CHECK_EXTENSION) { switch (arg) { case VFIO_TYPE1_IOMMU: return 1; default: return 0; } } else if (cmd == VFIO_IOMMU_GET_INFO) { struct vfio_iommu_type1_info info; minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz) return -EINVAL; info.flags = 0; info.iova_pgsizes = iommu->domain->ops->pgsize_bitmap; return copy_to_user((void __user *)arg, &info, minsz); } else if (cmd == VFIO_IOMMU_MAP_DMA) { struct vfio_iommu_type1_dma_map map; uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE; minsz = offsetofend(struct vfio_iommu_type1_dma_map, size); if (copy_from_user(&map, (void __user *)arg, minsz)) return -EFAULT; if (map.argsz < minsz || map.flags & ~mask) return -EINVAL; return vfio_dma_do_map(iommu, &map); } else if (cmd == VFIO_IOMMU_UNMAP_DMA) { struct vfio_iommu_type1_dma_unmap unmap; long ret; minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size); if (copy_from_user(&unmap, (void __user *)arg, minsz)) return -EFAULT; if (unmap.argsz < minsz || unmap.flags) return -EINVAL; ret = vfio_dma_do_unmap(iommu, &unmap); if (ret) return ret; return copy_to_user((void __user *)arg, &unmap, minsz); } return -ENOTTY; } static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = { .name = "vfio-iommu-type1", .owner = THIS_MODULE, .open = vfio_iommu_type1_open, .release = vfio_iommu_type1_release, .ioctl = vfio_iommu_type1_ioctl, .attach_group = vfio_iommu_type1_attach_group, .detach_group = vfio_iommu_type1_detach_group, }; static int __init vfio_iommu_type1_init(void) { if (!iommu_present(&pci_bus_type)) return -ENODEV; return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1); } static void __exit vfio_iommu_type1_cleanup(void) { vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1); } module_init(vfio_iommu_type1_init); module_exit(vfio_iommu_type1_cleanup); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC);