#ifndef __LINUX_FOTG210_H #define __LINUX_FOTG210_H /* definitions used for the EHCI driver */ /* * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to * __leXX (normally) or __beXX (given FOTG210_BIG_ENDIAN_DESC), depending on * the host controller implementation. * * To facilitate the strongest possible byte-order checking from "sparse" * and so on, we use __leXX unless that's not practical. */ #define __hc32 __le32 #define __hc16 __le16 /* statistics can be kept for tuning/monitoring */ struct fotg210_stats { /* irq usage */ unsigned long normal; unsigned long error; unsigned long iaa; unsigned long lost_iaa; /* termination of urbs from core */ unsigned long complete; unsigned long unlink; }; /* fotg210_hcd->lock guards shared data against other CPUs: * fotg210_hcd: async, unlink, periodic (and shadow), ... * usb_host_endpoint: hcpriv * fotg210_qh: qh_next, qtd_list * fotg210_qtd: qtd_list * * Also, hold this lock when talking to HC registers or * when updating hw_* fields in shared qh/qtd/... structures. */ #define FOTG210_MAX_ROOT_PORTS 1 /* see HCS_N_PORTS */ /* * fotg210_rh_state values of FOTG210_RH_RUNNING or above mean that the * controller may be doing DMA. Lower values mean there's no DMA. */ enum fotg210_rh_state { FOTG210_RH_HALTED, FOTG210_RH_SUSPENDED, FOTG210_RH_RUNNING, FOTG210_RH_STOPPING }; /* * Timer events, ordered by increasing delay length. * Always update event_delays_ns[] and event_handlers[] (defined in * ehci-timer.c) in parallel with this list. */ enum fotg210_hrtimer_event { FOTG210_HRTIMER_POLL_ASS, /* Poll for async schedule off */ FOTG210_HRTIMER_POLL_PSS, /* Poll for periodic schedule off */ FOTG210_HRTIMER_POLL_DEAD, /* Wait for dead controller to stop */ FOTG210_HRTIMER_UNLINK_INTR, /* Wait for interrupt QH unlink */ FOTG210_HRTIMER_FREE_ITDS, /* Wait for unused iTDs and siTDs */ FOTG210_HRTIMER_ASYNC_UNLINKS, /* Unlink empty async QHs */ FOTG210_HRTIMER_IAA_WATCHDOG, /* Handle lost IAA interrupts */ FOTG210_HRTIMER_DISABLE_PERIODIC, /* Wait to disable periodic sched */ FOTG210_HRTIMER_DISABLE_ASYNC, /* Wait to disable async sched */ FOTG210_HRTIMER_IO_WATCHDOG, /* Check for missing IRQs */ FOTG210_HRTIMER_NUM_EVENTS /* Must come last */ }; #define FOTG210_HRTIMER_NO_EVENT 99 struct fotg210_hcd { /* one per controller */ /* timing support */ enum fotg210_hrtimer_event next_hrtimer_event; unsigned enabled_hrtimer_events; ktime_t hr_timeouts[FOTG210_HRTIMER_NUM_EVENTS]; struct hrtimer hrtimer; int PSS_poll_count; int ASS_poll_count; int died_poll_count; /* glue to PCI and HCD framework */ struct fotg210_caps __iomem *caps; struct fotg210_regs __iomem *regs; struct fotg210_dbg_port __iomem *debug; __u32 hcs_params; /* cached register copy */ spinlock_t lock; enum fotg210_rh_state rh_state; /* general schedule support */ bool scanning:1; bool need_rescan:1; bool intr_unlinking:1; bool async_unlinking:1; bool shutdown:1; struct fotg210_qh *qh_scan_next; /* async schedule support */ struct fotg210_qh *async; struct fotg210_qh *dummy; /* For AMD quirk use */ struct fotg210_qh *async_unlink; struct fotg210_qh *async_unlink_last; struct fotg210_qh *async_iaa; unsigned async_unlink_cycle; unsigned async_count; /* async activity count */ /* periodic schedule support */ #define DEFAULT_I_TDPS 1024 /* some HCs can do less */ unsigned periodic_size; __hc32 *periodic; /* hw periodic table */ dma_addr_t periodic_dma; struct list_head intr_qh_list; unsigned i_thresh; /* uframes HC might cache */ union fotg210_shadow *pshadow; /* mirror hw periodic table */ struct fotg210_qh *intr_unlink; struct fotg210_qh *intr_unlink_last; unsigned intr_unlink_cycle; unsigned now_frame; /* frame from HC hardware */ unsigned next_frame; /* scan periodic, start here */ unsigned intr_count; /* intr activity count */ unsigned isoc_count; /* isoc activity count */ unsigned periodic_count; /* periodic activity count */ /* max periodic time per uframe */ unsigned uframe_periodic_max; /* list of itds completed while now_frame was still active */ struct list_head cached_itd_list; struct fotg210_itd *last_itd_to_free; /* per root hub port */ unsigned long reset_done[FOTG210_MAX_ROOT_PORTS]; /* bit vectors (one bit per port) */ unsigned long bus_suspended; /* which ports were already suspended at the start of a bus suspend */ unsigned long companion_ports; /* which ports are dedicated to the companion controller */ unsigned long owned_ports; /* which ports are owned by the companion during a bus suspend */ unsigned long port_c_suspend; /* which ports have the change-suspend feature turned on */ unsigned long suspended_ports; /* which ports are suspended */ unsigned long resuming_ports; /* which ports have started to resume */ /* per-HC memory pools (could be per-bus, but ...) */ struct dma_pool *qh_pool; /* qh per active urb */ struct dma_pool *qtd_pool; /* one or more per qh */ struct dma_pool *itd_pool; /* itd per iso urb */ unsigned random_frame; unsigned long next_statechange; ktime_t last_periodic_enable; u32 command; /* SILICON QUIRKS */ unsigned need_io_watchdog:1; unsigned fs_i_thresh:1; /* Intel iso scheduling */ u8 sbrn; /* packed release number */ /* irq statistics */ #ifdef FOTG210_STATS struct fotg210_stats stats; # define COUNT(x) ((x)++) #else # define COUNT(x) #endif /* debug files */ struct dentry *debug_dir; }; /* convert between an HCD pointer and the corresponding FOTG210_HCD */ static inline struct fotg210_hcd *hcd_to_fotg210(struct usb_hcd *hcd) { return (struct fotg210_hcd *)(hcd->hcd_priv); } static inline struct usb_hcd *fotg210_to_hcd(struct fotg210_hcd *fotg210) { return container_of((void *) fotg210, struct usb_hcd, hcd_priv); } /*-------------------------------------------------------------------------*/ /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */ /* Section 2.2 Host Controller Capability Registers */ struct fotg210_caps { /* these fields are specified as 8 and 16 bit registers, * but some hosts can't perform 8 or 16 bit PCI accesses. * some hosts treat caplength and hciversion as parts of a 32-bit * register, others treat them as two separate registers, this * affects the memory map for big endian controllers. */ u32 hc_capbase; #define HC_LENGTH(fotg210, p) (0x00ff&((p) >> /* bits 7:0 / offset 00h */ \ (fotg210_big_endian_capbase(fotg210) ? 24 : 0))) #define HC_VERSION(fotg210, p) (0xffff&((p) >> /* bits 31:16 / offset 02h */ \ (fotg210_big_endian_capbase(fotg210) ? 0 : 16))) u32 hcs_params; /* HCSPARAMS - offset 0x4 */ #define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */ u32 hcc_params; /* HCCPARAMS - offset 0x8 */ #define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */ #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/ u8 portroute[8]; /* nibbles for routing - offset 0xC */ }; /* Section 2.3 Host Controller Operational Registers */ struct fotg210_regs { /* USBCMD: offset 0x00 */ u32 command; /* EHCI 1.1 addendum */ /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */ #define CMD_PARK (1<<11) /* enable "park" on async qh */ #define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */ #define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */ #define CMD_ASE (1<<5) /* async schedule enable */ #define CMD_PSE (1<<4) /* periodic schedule enable */ /* 3:2 is periodic frame list size */ #define CMD_RESET (1<<1) /* reset HC not bus */ #define CMD_RUN (1<<0) /* start/stop HC */ /* USBSTS: offset 0x04 */ u32 status; #define STS_ASS (1<<15) /* Async Schedule Status */ #define STS_PSS (1<<14) /* Periodic Schedule Status */ #define STS_RECL (1<<13) /* Reclamation */ #define STS_HALT (1<<12) /* Not running (any reason) */ /* some bits reserved */ /* these STS_* flags are also intr_enable bits (USBINTR) */ #define STS_IAA (1<<5) /* Interrupted on async advance */ #define STS_FATAL (1<<4) /* such as some PCI access errors */ #define STS_FLR (1<<3) /* frame list rolled over */ #define STS_PCD (1<<2) /* port change detect */ #define STS_ERR (1<<1) /* "error" completion (overflow, ...) */ #define STS_INT (1<<0) /* "normal" completion (short, ...) */ /* USBINTR: offset 0x08 */ u32 intr_enable; /* FRINDEX: offset 0x0C */ u32 frame_index; /* current microframe number */ /* CTRLDSSEGMENT: offset 0x10 */ u32 segment; /* address bits 63:32 if needed */ /* PERIODICLISTBASE: offset 0x14 */ u32 frame_list; /* points to periodic list */ /* ASYNCLISTADDR: offset 0x18 */ u32 async_next; /* address of next async queue head */ u32 reserved1; /* PORTSC: offset 0x20 */ u32 port_status; /* 31:23 reserved */ #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */ #define PORT_RESET (1<<8) /* reset port */ #define PORT_SUSPEND (1<<7) /* suspend port */ #define PORT_RESUME (1<<6) /* resume it */ #define PORT_PEC (1<<3) /* port enable change */ #define PORT_PE (1<<2) /* port enable */ #define PORT_CSC (1<<1) /* connect status change */ #define PORT_CONNECT (1<<0) /* device connected */ #define PORT_RWC_BITS (PORT_CSC | PORT_PEC) u32 reserved2[19]; /* OTGCSR: offet 0x70 */ u32 otgcsr; #define OTGCSR_HOST_SPD_TYP (3 << 22) #define OTGCSR_A_BUS_DROP (1 << 5) #define OTGCSR_A_BUS_REQ (1 << 4) /* OTGISR: offset 0x74 */ u32 otgisr; #define OTGISR_OVC (1 << 10) u32 reserved3[15]; /* GMIR: offset 0xB4 */ u32 gmir; #define GMIR_INT_POLARITY (1 << 3) /*Active High*/ #define GMIR_MHC_INT (1 << 2) #define GMIR_MOTG_INT (1 << 1) #define GMIR_MDEV_INT (1 << 0) }; /* Appendix C, Debug port ... intended for use with special "debug devices" * that can help if there's no serial console. (nonstandard enumeration.) */ struct fotg210_dbg_port { u32 control; #define DBGP_OWNER (1<<30) #define DBGP_ENABLED (1<<28) #define DBGP_DONE (1<<16) #define DBGP_INUSE (1<<10) #define DBGP_ERRCODE(x) (((x)>>7)&0x07) # define DBGP_ERR_BAD 1 # define DBGP_ERR_SIGNAL 2 #define DBGP_ERROR (1<<6) #define DBGP_GO (1<<5) #define DBGP_OUT (1<<4) #define DBGP_LEN(x) (((x)>>0)&0x0f) u32 pids; #define DBGP_PID_GET(x) (((x)>>16)&0xff) #define DBGP_PID_SET(data, tok) (((data)<<8)|(tok)) u32 data03; u32 data47; u32 address; #define DBGP_EPADDR(dev, ep) (((dev)<<8)|(ep)) }; #ifdef CONFIG_EARLY_PRINTK_DBGP #include <linux/init.h> extern int __init early_dbgp_init(char *s); extern struct console early_dbgp_console; #endif /* CONFIG_EARLY_PRINTK_DBGP */ struct usb_hcd; static inline int xen_dbgp_reset_prep(struct usb_hcd *hcd) { return 1; /* Shouldn't this be 0? */ } static inline int xen_dbgp_external_startup(struct usb_hcd *hcd) { return -1; } #ifdef CONFIG_EARLY_PRINTK_DBGP /* Call backs from fotg210 host driver to fotg210 debug driver */ extern int dbgp_external_startup(struct usb_hcd *); extern int dbgp_reset_prep(struct usb_hcd *hcd); #else static inline int dbgp_reset_prep(struct usb_hcd *hcd) { return xen_dbgp_reset_prep(hcd); } static inline int dbgp_external_startup(struct usb_hcd *hcd) { return xen_dbgp_external_startup(hcd); } #endif /*-------------------------------------------------------------------------*/ #define QTD_NEXT(fotg210, dma) cpu_to_hc32(fotg210, (u32)dma) /* * EHCI Specification 0.95 Section 3.5 * QTD: describe data transfer components (buffer, direction, ...) * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram". * * These are associated only with "QH" (Queue Head) structures, * used with control, bulk, and interrupt transfers. */ struct fotg210_qtd { /* first part defined by EHCI spec */ __hc32 hw_next; /* see EHCI 3.5.1 */ __hc32 hw_alt_next; /* see EHCI 3.5.2 */ __hc32 hw_token; /* see EHCI 3.5.3 */ #define QTD_TOGGLE (1 << 31) /* data toggle */ #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff) #define QTD_IOC (1 << 15) /* interrupt on complete */ #define QTD_CERR(tok) (((tok)>>10) & 0x3) #define QTD_PID(tok) (((tok)>>8) & 0x3) #define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */ #define QTD_STS_HALT (1 << 6) /* halted on error */ #define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */ #define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */ #define QTD_STS_XACT (1 << 3) /* device gave illegal response */ #define QTD_STS_MMF (1 << 2) /* incomplete split transaction */ #define QTD_STS_STS (1 << 1) /* split transaction state */ #define QTD_STS_PING (1 << 0) /* issue PING? */ #define ACTIVE_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_ACTIVE) #define HALT_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_HALT) #define STATUS_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_STS) __hc32 hw_buf[5]; /* see EHCI 3.5.4 */ __hc32 hw_buf_hi[5]; /* Appendix B */ /* the rest is HCD-private */ dma_addr_t qtd_dma; /* qtd address */ struct list_head qtd_list; /* sw qtd list */ struct urb *urb; /* qtd's urb */ size_t length; /* length of buffer */ } __aligned(32); /* mask NakCnt+T in qh->hw_alt_next */ #define QTD_MASK(fotg210) cpu_to_hc32(fotg210, ~0x1f) #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1) /*-------------------------------------------------------------------------*/ /* type tag from {qh,itd,fstn}->hw_next */ #define Q_NEXT_TYPE(fotg210, dma) ((dma) & cpu_to_hc32(fotg210, 3 << 1)) /* * Now the following defines are not converted using the * cpu_to_le32() macro anymore, since we have to support * "dynamic" switching between be and le support, so that the driver * can be used on one system with SoC EHCI controller using big-endian * descriptors as well as a normal little-endian PCI EHCI controller. */ /* values for that type tag */ #define Q_TYPE_ITD (0 << 1) #define Q_TYPE_QH (1 << 1) #define Q_TYPE_SITD (2 << 1) #define Q_TYPE_FSTN (3 << 1) /* next async queue entry, or pointer to interrupt/periodic QH */ #define QH_NEXT(fotg210, dma) \ (cpu_to_hc32(fotg210, (((u32)dma)&~0x01f)|Q_TYPE_QH)) /* for periodic/async schedules and qtd lists, mark end of list */ #define FOTG210_LIST_END(fotg210) \ cpu_to_hc32(fotg210, 1) /* "null pointer" to hw */ /* * Entries in periodic shadow table are pointers to one of four kinds * of data structure. That's dictated by the hardware; a type tag is * encoded in the low bits of the hardware's periodic schedule. Use * Q_NEXT_TYPE to get the tag. * * For entries in the async schedule, the type tag always says "qh". */ union fotg210_shadow { struct fotg210_qh *qh; /* Q_TYPE_QH */ struct fotg210_itd *itd; /* Q_TYPE_ITD */ struct fotg210_fstn *fstn; /* Q_TYPE_FSTN */ __hc32 *hw_next; /* (all types) */ void *ptr; }; /*-------------------------------------------------------------------------*/ /* * EHCI Specification 0.95 Section 3.6 * QH: describes control/bulk/interrupt endpoints * See Fig 3-7 "Queue Head Structure Layout". * * These appear in both the async and (for interrupt) periodic schedules. */ /* first part defined by EHCI spec */ struct fotg210_qh_hw { __hc32 hw_next; /* see EHCI 3.6.1 */ __hc32 hw_info1; /* see EHCI 3.6.2 */ #define QH_CONTROL_EP (1 << 27) /* FS/LS control endpoint */ #define QH_HEAD (1 << 15) /* Head of async reclamation list */ #define QH_TOGGLE_CTL (1 << 14) /* Data toggle control */ #define QH_HIGH_SPEED (2 << 12) /* Endpoint speed */ #define QH_LOW_SPEED (1 << 12) #define QH_FULL_SPEED (0 << 12) #define QH_INACTIVATE (1 << 7) /* Inactivate on next transaction */ __hc32 hw_info2; /* see EHCI 3.6.2 */ #define QH_SMASK 0x000000ff #define QH_CMASK 0x0000ff00 #define QH_HUBADDR 0x007f0000 #define QH_HUBPORT 0x3f800000 #define QH_MULT 0xc0000000 __hc32 hw_current; /* qtd list - see EHCI 3.6.4 */ /* qtd overlay (hardware parts of a struct fotg210_qtd) */ __hc32 hw_qtd_next; __hc32 hw_alt_next; __hc32 hw_token; __hc32 hw_buf[5]; __hc32 hw_buf_hi[5]; } __aligned(32); struct fotg210_qh { struct fotg210_qh_hw *hw; /* Must come first */ /* the rest is HCD-private */ dma_addr_t qh_dma; /* address of qh */ union fotg210_shadow qh_next; /* ptr to qh; or periodic */ struct list_head qtd_list; /* sw qtd list */ struct list_head intr_node; /* list of intr QHs */ struct fotg210_qtd *dummy; struct fotg210_qh *unlink_next; /* next on unlink list */ unsigned unlink_cycle; u8 needs_rescan; /* Dequeue during giveback */ u8 qh_state; #define QH_STATE_LINKED 1 /* HC sees this */ #define QH_STATE_UNLINK 2 /* HC may still see this */ #define QH_STATE_IDLE 3 /* HC doesn't see this */ #define QH_STATE_UNLINK_WAIT 4 /* LINKED and on unlink q */ #define QH_STATE_COMPLETING 5 /* don't touch token.HALT */ u8 xacterrs; /* XactErr retry counter */ #define QH_XACTERR_MAX 32 /* XactErr retry limit */ /* periodic schedule info */ u8 usecs; /* intr bandwidth */ u8 gap_uf; /* uframes split/csplit gap */ u8 c_usecs; /* ... split completion bw */ u16 tt_usecs; /* tt downstream bandwidth */ unsigned short period; /* polling interval */ unsigned short start; /* where polling starts */ #define NO_FRAME ((unsigned short)~0) /* pick new start */ struct usb_device *dev; /* access to TT */ unsigned is_out:1; /* bulk or intr OUT */ unsigned clearing_tt:1; /* Clear-TT-Buf in progress */ }; /*-------------------------------------------------------------------------*/ /* description of one iso transaction (up to 3 KB data if highspeed) */ struct fotg210_iso_packet { /* These will be copied to iTD when scheduling */ u64 bufp; /* itd->hw_bufp{,_hi}[pg] |= */ __hc32 transaction; /* itd->hw_transaction[i] |= */ u8 cross; /* buf crosses pages */ /* for full speed OUT splits */ u32 buf1; }; /* temporary schedule data for packets from iso urbs (both speeds) * each packet is one logical usb transaction to the device (not TT), * beginning at stream->next_uframe */ struct fotg210_iso_sched { struct list_head td_list; unsigned span; struct fotg210_iso_packet packet[0]; }; /* * fotg210_iso_stream - groups all (s)itds for this endpoint. * acts like a qh would, if EHCI had them for ISO. */ struct fotg210_iso_stream { /* first field matches fotg210_hq, but is NULL */ struct fotg210_qh_hw *hw; u8 bEndpointAddress; u8 highspeed; struct list_head td_list; /* queued itds */ struct list_head free_list; /* list of unused itds */ struct usb_device *udev; struct usb_host_endpoint *ep; /* output of (re)scheduling */ int next_uframe; __hc32 splits; /* the rest is derived from the endpoint descriptor, * trusting urb->interval == f(epdesc->bInterval) and * including the extra info for hw_bufp[0..2] */ u8 usecs, c_usecs; u16 interval; u16 tt_usecs; u16 maxp; u16 raw_mask; unsigned bandwidth; /* This is used to initialize iTD's hw_bufp fields */ __hc32 buf0; __hc32 buf1; __hc32 buf2; /* this is used to initialize sITD's tt info */ __hc32 address; }; /*-------------------------------------------------------------------------*/ /* * EHCI Specification 0.95 Section 3.3 * Fig 3-4 "Isochronous Transaction Descriptor (iTD)" * * Schedule records for high speed iso xfers */ struct fotg210_itd { /* first part defined by EHCI spec */ __hc32 hw_next; /* see EHCI 3.3.1 */ __hc32 hw_transaction[8]; /* see EHCI 3.3.2 */ #define FOTG210_ISOC_ACTIVE (1<<31) /* activate transfer this slot */ #define FOTG210_ISOC_BUF_ERR (1<<30) /* Data buffer error */ #define FOTG210_ISOC_BABBLE (1<<29) /* babble detected */ #define FOTG210_ISOC_XACTERR (1<<28) /* XactErr - transaction error */ #define FOTG210_ITD_LENGTH(tok) (((tok)>>16) & 0x0fff) #define FOTG210_ITD_IOC (1 << 15) /* interrupt on complete */ #define ITD_ACTIVE(fotg210) cpu_to_hc32(fotg210, FOTG210_ISOC_ACTIVE) __hc32 hw_bufp[7]; /* see EHCI 3.3.3 */ __hc32 hw_bufp_hi[7]; /* Appendix B */ /* the rest is HCD-private */ dma_addr_t itd_dma; /* for this itd */ union fotg210_shadow itd_next; /* ptr to periodic q entry */ struct urb *urb; struct fotg210_iso_stream *stream; /* endpoint's queue */ struct list_head itd_list; /* list of stream's itds */ /* any/all hw_transactions here may be used by that urb */ unsigned frame; /* where scheduled */ unsigned pg; unsigned index[8]; /* in urb->iso_frame_desc */ } __aligned(32); /*-------------------------------------------------------------------------*/ /* * EHCI Specification 0.96 Section 3.7 * Periodic Frame Span Traversal Node (FSTN) * * Manages split interrupt transactions (using TT) that span frame boundaries * into uframes 0/1; see 4.12.2.2. In those uframes, a "save place" FSTN * makes the HC jump (back) to a QH to scan for fs/ls QH completions until * it hits a "restore" FSTN; then it returns to finish other uframe 0/1 work. */ struct fotg210_fstn { __hc32 hw_next; /* any periodic q entry */ __hc32 hw_prev; /* qh or FOTG210_LIST_END */ /* the rest is HCD-private */ dma_addr_t fstn_dma; union fotg210_shadow fstn_next; /* ptr to periodic q entry */ } __aligned(32); /*-------------------------------------------------------------------------*/ /* Prepare the PORTSC wakeup flags during controller suspend/resume */ #define fotg210_prepare_ports_for_controller_suspend(fotg210, do_wakeup) \ fotg210_adjust_port_wakeup_flags(fotg210, true, do_wakeup); #define fotg210_prepare_ports_for_controller_resume(fotg210) \ fotg210_adjust_port_wakeup_flags(fotg210, false, false); /*-------------------------------------------------------------------------*/ /* * Some EHCI controllers have a Transaction Translator built into the * root hub. This is a non-standard feature. Each controller will need * to add code to the following inline functions, and call them as * needed (mostly in root hub code). */ static inline unsigned int fotg210_get_speed(struct fotg210_hcd *fotg210, unsigned int portsc) { return (readl(&fotg210->regs->otgcsr) & OTGCSR_HOST_SPD_TYP) >> 22; } /* Returns the speed of a device attached to a port on the root hub. */ static inline unsigned int fotg210_port_speed(struct fotg210_hcd *fotg210, unsigned int portsc) { switch (fotg210_get_speed(fotg210, portsc)) { case 0: return 0; case 1: return USB_PORT_STAT_LOW_SPEED; case 2: default: return USB_PORT_STAT_HIGH_SPEED; } } /*-------------------------------------------------------------------------*/ #define fotg210_has_fsl_portno_bug(e) (0) /* * While most USB host controllers implement their registers in * little-endian format, a minority (celleb companion chip) implement * them in big endian format. * * This attempts to support either format at compile time without a * runtime penalty, or both formats with the additional overhead * of checking a flag bit. * */ #define fotg210_big_endian_mmio(e) 0 #define fotg210_big_endian_capbase(e) 0 static inline unsigned int fotg210_readl(const struct fotg210_hcd *fotg210, __u32 __iomem *regs) { return readl(regs); } static inline void fotg210_writel(const struct fotg210_hcd *fotg210, const unsigned int val, __u32 __iomem *regs) { writel(val, regs); } /* cpu to fotg210 */ static inline __hc32 cpu_to_hc32(const struct fotg210_hcd *fotg210, const u32 x) { return cpu_to_le32(x); } /* fotg210 to cpu */ static inline u32 hc32_to_cpu(const struct fotg210_hcd *fotg210, const __hc32 x) { return le32_to_cpu(x); } static inline u32 hc32_to_cpup(const struct fotg210_hcd *fotg210, const __hc32 *x) { return le32_to_cpup(x); } /*-------------------------------------------------------------------------*/ static inline unsigned fotg210_read_frame_index(struct fotg210_hcd *fotg210) { return fotg210_readl(fotg210, &fotg210->regs->frame_index); } #define fotg210_itdlen(urb, desc, t) ({ \ usb_pipein((urb)->pipe) ? \ (desc)->length - FOTG210_ITD_LENGTH(t) : \ FOTG210_ITD_LENGTH(t); \ }) /*-------------------------------------------------------------------------*/ #endif /* __LINUX_FOTG210_H */