/* * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * File: bssdb.c * * Purpose: Handles the Basic Service Set & Node Database functions * * Functions: * BSSpSearchBSSList - Search known BSS list for Desire SSID or BSSID * BSSvClearBSSList - Clear BSS List * BSSbInsertToBSSList - Insert a BSS set into known BSS list * BSSbUpdateToBSSList - Update BSS set in known BSS list * BSSbIsSTAInNodeDB - Search Node DB table to find the index of matched DstAddr * BSSvCreateOneNode - Allocate an Node for Node DB * BSSvUpdateAPNode - Update AP Node content in Index 0 of KnownNodeDB * BSSvSecondCallBack - One second timer callback function to update Node DB info & AP link status * BSSvUpdateNodeTxCounter - Update Tx attemps, Tx failure counter in Node DB for auto-fallback rate control * * Revision History: * * Author: Lyndon Chen * * Date: July 17, 2002 */ #include "tmacro.h" #include "tether.h" #include "device.h" #include "80211hdr.h" #include "bssdb.h" #include "wmgr.h" #include "datarate.h" #include "desc.h" #include "wcmd.h" #include "wpa.h" #include "baseband.h" #include "rf.h" #include "card.h" #include "mac.h" #include "wpa2.h" #include "control.h" #include "rndis.h" #include "iowpa.h" #include "power.h" static int msglevel = MSG_LEVEL_INFO; /* static int msglevel = MSG_LEVEL_DEBUG; */ static const u16 awHWRetry0[5][5] = { {RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M}, {RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M}, {RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M}, {RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M}, {RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M} }; static const u16 awHWRetry1[5][5] = { {RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M}, {RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M}, {RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M}, {RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M}, {RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M} }; static void s_vCheckSensitivity(struct vnt_private *pDevice); static void s_vCheckPreEDThreshold(struct vnt_private *pDevice); static void s_uCalculateLinkQual(struct vnt_private *pDevice); /* * Routine Description: * Search known BSS list for Desire SSID or BSSID. * * Return Value: * PTR to KnownBSS or NULL */ PKnownBSS BSSpSearchBSSList(struct vnt_private *pDevice, u8 *pbyDesireBSSID, u8 *pbyDesireSSID, CARD_PHY_TYPE ePhyType) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; u8 *pbyBSSID = NULL; PWLAN_IE_SSID pSSID = NULL; PKnownBSS pCurrBSS = NULL; PKnownBSS pSelect = NULL; u8 ZeroBSSID[WLAN_BSSID_LEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; int ii = 0; int jj = 0; if (pbyDesireBSSID) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSSpSearchBSSList BSSID[%pM]\n", pbyDesireBSSID); if (!is_broadcast_ether_addr(pbyDesireBSSID) && memcmp(pbyDesireBSSID, ZeroBSSID, 6) != 0) pbyBSSID = pbyDesireBSSID; } if (pbyDesireSSID && ((PWLAN_IE_SSID) pbyDesireSSID)->len != 0) pSSID = (PWLAN_IE_SSID) pbyDesireSSID; if (pbyBSSID && pDevice->bRoaming == false) { /* match BSSID first */ for (ii = 0; ii < MAX_BSS_NUM; ii++) { pCurrBSS = &(pMgmt->sBSSList[ii]); pCurrBSS->bSelected = false; if (pCurrBSS->bActive && pCurrBSS->bSelected == false && ether_addr_equal(pCurrBSS->abyBSSID, pbyBSSID)) { if (pSSID) { /* compare ssid */ if (!memcmp(pSSID->abySSID, ((PWLAN_IE_SSID) pCurrBSS->abySSID)->abySSID, pSSID->len) && (pMgmt->eConfigMode == WMAC_CONFIG_AUTO || (pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) || (pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)))) { pCurrBSS->bSelected = true; return pCurrBSS; } } else if (pMgmt->eConfigMode == WMAC_CONFIG_AUTO || (pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) || (pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))) { pCurrBSS->bSelected = true; return pCurrBSS; } } } } else { /* ignore BSSID */ for (ii = 0; ii < MAX_BSS_NUM; ii++) { pCurrBSS = &(pMgmt->sBSSList[ii]); /* 2007-0721-01<Mark>by MikeLiu * if ((pCurrBSS->bActive) && * (pCurrBSS->bSelected == false)) { */ pCurrBSS->bSelected = false; if (pCurrBSS->bActive) { if (pSSID && /* matched SSID */ (memcmp(pSSID->abySSID, ((PWLAN_IE_SSID) pCurrBSS->abySSID)->abySSID, pSSID->len) || pSSID->len != ((PWLAN_IE_SSID) pCurrBSS->abySSID)->len)) { /* SSID not match skip this BSS */ continue; } if ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) || (pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo))) { /* Type not match skip this BSS */ DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSS type mismatch.... Config[%d] BSS[0x%04x]\n", pMgmt->eConfigMode, pCurrBSS->wCapInfo); continue; } if (ePhyType != PHY_TYPE_AUTO && ((ePhyType == PHY_TYPE_11A && PHY_TYPE_11A != pCurrBSS->eNetworkTypeInUse) || (ePhyType != PHY_TYPE_11A && PHY_TYPE_11A == pCurrBSS->eNetworkTypeInUse))) { /* PhyType not match skip this BSS */ DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Physical type mismatch.... ePhyType[%d] BSS[%d]\n", ePhyType, pCurrBSS->eNetworkTypeInUse); continue; } pMgmt->pSameBSS[jj].uChannel = pCurrBSS->uChannel; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSSpSearchBSSList pSelect1[%pM]\n", pCurrBSS->abyBSSID); jj++; if (!pSelect) pSelect = pCurrBSS; /* compare RSSI, select the strongest signal */ else if (pCurrBSS->uRSSI < pSelect->uRSSI) pSelect = pCurrBSS; } } pDevice->bSameBSSMaxNum = jj; if (pSelect) { pSelect->bSelected = true; if (pDevice->bRoaming == false) { /* Einsn Add @20070907 */ memcpy(pbyDesireSSID, pCurrBSS->abySSID, WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1); } return pSelect; } } return NULL; } /* * Routine Description: * Clear BSS List * * Return Value: * None. */ void BSSvClearBSSList(struct vnt_private *pDevice, int bKeepCurrBSSID) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; int ii; for (ii = 0; ii < MAX_BSS_NUM; ii++) { if (bKeepCurrBSSID && pMgmt->sBSSList[ii].bActive && ether_addr_equal(pMgmt->sBSSList[ii].abyBSSID, pMgmt->abyCurrBSSID)) { /* mike mark: * there are two BSSID's in list. If that AP is * in hidden ssid mode, one SSID is null, but * other's might not be obvious, so if it * associate's with your STA, you must keep the * two of them!! bKeepCurrBSSID = false; */ continue; } pMgmt->sBSSList[ii].bActive = false; memset(&pMgmt->sBSSList[ii], 0, sizeof(KnownBSS)); } BSSvClearAnyBSSJoinRecord(pDevice); } /* * Routine Description: * search BSS list by BSSID & SSID if matched * * Return Value: * true if found. */ PKnownBSS BSSpAddrIsInBSSList(struct vnt_private *pDevice, u8 *abyBSSID, PWLAN_IE_SSID pSSID) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; PKnownBSS pBSSList = NULL; int ii; for (ii = 0; ii < MAX_BSS_NUM; ii++) { pBSSList = &(pMgmt->sBSSList[ii]); if (pBSSList->bActive && ether_addr_equal(pBSSList->abyBSSID, abyBSSID) && pSSID->len == ((PWLAN_IE_SSID) pBSSList->abySSID)->len && memcmp(pSSID->abySSID, ((PWLAN_IE_SSID) pBSSList->abySSID)->abySSID, pSSID->len) == 0) return pBSSList; } return NULL; } /* * Routine Description: * Insert a BSS set into known BSS list * * Return Value: * true if success. */ int BSSbInsertToBSSList(struct vnt_private *pDevice, u8 *abyBSSIDAddr, u64 qwTimestamp, u16 wBeaconInterval, u16 wCapInfo, u8 byCurrChannel, PWLAN_IE_SSID pSSID, PWLAN_IE_SUPP_RATES pSuppRates, PWLAN_IE_SUPP_RATES pExtSuppRates, PERPObject psERP, PWLAN_IE_RSN pRSN, PWLAN_IE_RSN_EXT pRSNWPA, PWLAN_IE_COUNTRY pIE_Country, PWLAN_IE_QUIET pIE_Quiet, u32 uIELength, u8 *pbyIEs, void *pRxPacketContext) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_rx_mgmt *pRxPacket = (struct vnt_rx_mgmt *) pRxPacketContext; PKnownBSS pBSSList = NULL; unsigned int ii; bool bParsingQuiet = false; pBSSList = (PKnownBSS) &(pMgmt->sBSSList[0]); for (ii = 0; ii < MAX_BSS_NUM; ii++) { pBSSList = (PKnownBSS) &(pMgmt->sBSSList[ii]); if (!pBSSList->bActive) break; } if (ii == MAX_BSS_NUM) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Get free KnowBSS node failed.\n"); return false; } /* save the BSS info */ pBSSList->bActive = true; memcpy(pBSSList->abyBSSID, abyBSSIDAddr, WLAN_BSSID_LEN); pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp); pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval); pBSSList->wCapInfo = cpu_to_le16(wCapInfo); pBSSList->uClearCount = 0; if (pSSID->len > WLAN_SSID_MAXLEN) pSSID->len = WLAN_SSID_MAXLEN; memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN); pBSSList->uChannel = byCurrChannel; if (pSuppRates->len > WLAN_RATES_MAXLEN) pSuppRates->len = WLAN_RATES_MAXLEN; memcpy(pBSSList->abySuppRates, pSuppRates, pSuppRates->len + WLAN_IEHDR_LEN); if (pExtSuppRates) { if (pExtSuppRates->len > WLAN_RATES_MAXLEN) pExtSuppRates->len = WLAN_RATES_MAXLEN; memcpy(pBSSList->abyExtSuppRates, pExtSuppRates, pExtSuppRates->len + WLAN_IEHDR_LEN); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSSbInsertToBSSList: pExtSuppRates->len = %d\n", pExtSuppRates->len); } else { memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1); } pBSSList->sERP.byERP = psERP->byERP; pBSSList->sERP.bERPExist = psERP->bERPExist; /* Check if BSS is 802.11a/b/g */ if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) pBSSList->eNetworkTypeInUse = PHY_TYPE_11A; else if (pBSSList->sERP.bERPExist == true) pBSSList->eNetworkTypeInUse = PHY_TYPE_11G; else pBSSList->eNetworkTypeInUse = PHY_TYPE_11B; pBSSList->byRxRate = pRxPacket->byRxRate; pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF; pBSSList->uRSSI = pRxPacket->uRSSI; pBSSList->bySQ = pRxPacket->bySQ; if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA && pMgmt->eCurrState == WMAC_STATE_ASSOC && /* assoc with BSS */ pBSSList == pMgmt->pCurrBSS) bParsingQuiet = true; WPA_ClearRSN(pBSSList); if (pRSNWPA) { unsigned int uLen = pRSNWPA->len + 2; if (uLen <= (uIELength - (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) { pBSSList->wWPALen = uLen; memcpy(pBSSList->byWPAIE, pRSNWPA, uLen); WPA_ParseRSN(pBSSList, pRSNWPA); } } WPA2_ClearRSN(pBSSList); if (pRSN) { unsigned int uLen = pRSN->len + 2; if (uLen <= (uIELength - (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) { pBSSList->wRSNLen = uLen; memcpy(pBSSList->byRSNIE, pRSN, uLen); WPA2vParseRSN(pBSSList, pRSN); } } if (pMgmt->eAuthenMode == WMAC_AUTH_WPA2 || pBSSList->bWPA2Valid == true) { PSKeyItem pTransmitKey = NULL; bool bIs802_1x = false; for (ii = 0; ii < pBSSList->wAKMSSAuthCount; ii++) { if (pBSSList->abyAKMSSAuthType[ii] == WLAN_11i_AKMSS_802_1X) { bIs802_1x = true; break; } } if (bIs802_1x == true && pSSID->len == ((PWLAN_IE_SSID) pMgmt->abyDesireSSID)->len && !memcmp(pSSID->abySSID, ((PWLAN_IE_SSID) pMgmt->abyDesireSSID)->abySSID, pSSID->len)) { bAdd_PMKID_Candidate((void *) pDevice, pBSSList->abyBSSID, &pBSSList->sRSNCapObj); if (pDevice->bLinkPass == true && pMgmt->eCurrState == WMAC_STATE_ASSOC && (KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, PAIRWISE_KEY, &pTransmitKey) == true || KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, GROUP_KEY, &pTransmitKey) == true)) { pDevice->gsPMKIDCandidate.StatusType = Ndis802_11StatusType_PMKID_CandidateList; pDevice->gsPMKIDCandidate.Version = 1; } } } if (pDevice->bUpdateBBVGA) { /* Monitor if RSSI is too strong. */ pBSSList->byRSSIStatCnt = 0; RFvRSSITodBm(pDevice, (u8) (pRxPacket->uRSSI), &pBSSList->ldBmMAX); pBSSList->ldBmAverage[0] = pBSSList->ldBmMAX; pBSSList->ldBmAverRange = pBSSList->ldBmMAX; for (ii = 1; ii < RSSI_STAT_COUNT; ii++) pBSSList->ldBmAverage[ii] = 0; } pBSSList->uIELength = uIELength; if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN) pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN; memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength); return true; } /* * Routine Description: * Update BSS set in known BSS list * * Return Value: * true if success. */ /* TODO: input structure modify */ int BSSbUpdateToBSSList(struct vnt_private *pDevice, u64 qwTimestamp, u16 wBeaconInterval, u16 wCapInfo, u8 byCurrChannel, int bChannelHit, PWLAN_IE_SSID pSSID, PWLAN_IE_SUPP_RATES pSuppRates, PWLAN_IE_SUPP_RATES pExtSuppRates, PERPObject psERP, PWLAN_IE_RSN pRSN, PWLAN_IE_RSN_EXT pRSNWPA, PWLAN_IE_COUNTRY pIE_Country, PWLAN_IE_QUIET pIE_Quiet, PKnownBSS pBSSList, u32 uIELength, u8 *pbyIEs, void *pRxPacketContext) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_rx_mgmt *pRxPacket = (struct vnt_rx_mgmt *) pRxPacketContext; int ii, jj; signed long ldBm, ldBmSum; bool bParsingQuiet = false; if (!pBSSList) return false; pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp); pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval); pBSSList->wCapInfo = cpu_to_le16(wCapInfo); pBSSList->uClearCount = 0; pBSSList->uChannel = byCurrChannel; if (pSSID->len > WLAN_SSID_MAXLEN) pSSID->len = WLAN_SSID_MAXLEN; if (pSSID->len != 0 && pSSID->abySSID[0] != 0) memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN); memcpy(pBSSList->abySuppRates, pSuppRates, pSuppRates->len + WLAN_IEHDR_LEN); if (pExtSuppRates) memcpy(pBSSList->abyExtSuppRates, pExtSuppRates, pExtSuppRates->len + WLAN_IEHDR_LEN); else memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1); pBSSList->sERP.byERP = psERP->byERP; pBSSList->sERP.bERPExist = psERP->bERPExist; /* Check if BSS is 802.11a/b/g */ if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) pBSSList->eNetworkTypeInUse = PHY_TYPE_11A; else if (pBSSList->sERP.bERPExist == true) pBSSList->eNetworkTypeInUse = PHY_TYPE_11G; else pBSSList->eNetworkTypeInUse = PHY_TYPE_11B; pBSSList->byRxRate = pRxPacket->byRxRate; pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF; if (bChannelHit) pBSSList->uRSSI = pRxPacket->uRSSI; pBSSList->bySQ = pRxPacket->bySQ; if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA && pMgmt->eCurrState == WMAC_STATE_ASSOC && /* assoc with BSS */ pBSSList == pMgmt->pCurrBSS) bParsingQuiet = true; WPA_ClearRSN(pBSSList); /* mike update */ if (pRSNWPA) { unsigned int uLen = pRSNWPA->len + 2; if (uLen <= (uIELength - (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) { pBSSList->wWPALen = uLen; memcpy(pBSSList->byWPAIE, pRSNWPA, uLen); WPA_ParseRSN(pBSSList, pRSNWPA); } } WPA2_ClearRSN(pBSSList); /* mike update */ if (pRSN) { unsigned int uLen = pRSN->len + 2; if (uLen <= (uIELength - (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) { pBSSList->wRSNLen = uLen; memcpy(pBSSList->byRSNIE, pRSN, uLen); WPA2vParseRSN(pBSSList, pRSN); } } if (pRxPacket->uRSSI != 0) { RFvRSSITodBm(pDevice, (u8) (pRxPacket->uRSSI), &ldBm); /* Monitor if RSSI is too strong. */ pBSSList->byRSSIStatCnt++; pBSSList->byRSSIStatCnt %= RSSI_STAT_COUNT; pBSSList->ldBmAverage[pBSSList->byRSSIStatCnt] = ldBm; ldBmSum = 0; for (ii = 0, jj = 0; ii < RSSI_STAT_COUNT; ii++) { if (pBSSList->ldBmAverage[ii] != 0) { pBSSList->ldBmMAX = max(pBSSList->ldBmAverage[ii], ldBm); ldBmSum += pBSSList->ldBmAverage[ii]; jj++; } } pBSSList->ldBmAverRange = ldBmSum / jj; } pBSSList->uIELength = uIELength; if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN) pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN; memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength); return true; } /* * Routine Description: * Search Node DB table to find the index of matched DstAddr * * Return Value: * None */ int BSSbIsSTAInNodeDB(struct vnt_private *pDevice, u8 *abyDstAddr, u32 *puNodeIndex) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; unsigned int ii; /* Index = 0 reserved for AP Node */ for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) { if (pMgmt->sNodeDBTable[ii].bActive && ether_addr_equal(abyDstAddr, pMgmt->sNodeDBTable[ii].abyMACAddr)) { *puNodeIndex = ii; return true; } } return false; }; /* * Routine Description: * Find an empty node and allocate it; if no empty node * is found, then use the most inactive one. * * Return Value: * None */ void BSSvCreateOneNode(struct vnt_private *pDevice, u32 *puNodeIndex) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; int ii; u32 BigestCount = 0; u32 SelectIndex; struct sk_buff *skb; /* Index = 0 reserved for AP Node (In STA mode) Index = 0 reserved for Broadcast/MultiCast (In AP mode) */ SelectIndex = 1; for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) { if (pMgmt->sNodeDBTable[ii].bActive) { if (pMgmt->sNodeDBTable[ii].uInActiveCount > BigestCount) { BigestCount = pMgmt->sNodeDBTable[ii].uInActiveCount; SelectIndex = ii; } } else { break; } } /* if not found replace uInActiveCount with the largest one. */ if (ii == (MAX_NODE_NUM + 1)) { *puNodeIndex = SelectIndex; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Replace inactive node = %d\n", SelectIndex); /* clear ps buffer */ if (pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue.next) { while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue))) dev_kfree_skb(skb); } } else { *puNodeIndex = ii; } memset(&pMgmt->sNodeDBTable[*puNodeIndex], 0, sizeof(KnownNodeDB)); pMgmt->sNodeDBTable[*puNodeIndex].bActive = true; pMgmt->sNodeDBTable[*puNodeIndex].uRatePollTimeout = FALLBACK_POLL_SECOND; /* for AP mode PS queue */ skb_queue_head_init(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue); pMgmt->sNodeDBTable[*puNodeIndex].byAuthSequence = 0; pMgmt->sNodeDBTable[*puNodeIndex].wEnQueueCnt = 0; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Create node index = %d\n", ii); } /* * Routine Description: * Remove Node by NodeIndex * * * Return Value: * None */ void BSSvRemoveOneNode(struct vnt_private *pDevice, u32 uNodeIndex) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80}; struct sk_buff *skb; while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue))) dev_kfree_skb(skb); /* clear context */ memset(&pMgmt->sNodeDBTable[uNodeIndex], 0, sizeof(KnownNodeDB)); /* clear tx bit map */ pMgmt->abyPSTxMap[pMgmt->sNodeDBTable[uNodeIndex].wAID >> 3] &= ~byMask[pMgmt->sNodeDBTable[uNodeIndex].wAID & 7]; } /* * Routine Description: * Update AP Node content in Index 0 of KnownNodeDB * * * Return Value: * None */ void BSSvUpdateAPNode(struct vnt_private *pDevice, u16 *pwCapInfo, PWLAN_IE_SUPP_RATES pSuppRates, PWLAN_IE_SUPP_RATES pExtSuppRates) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; u32 uRateLen = WLAN_RATES_MAXLEN; memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB)); pMgmt->sNodeDBTable[0].bActive = true; if (pDevice->byBBType == BB_TYPE_11B) uRateLen = WLAN_RATES_MAXLEN_11B; pMgmt->abyCurrSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES) pSuppRates, (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates, uRateLen); pMgmt->abyCurrExtSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES) pExtSuppRates, (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates, uRateLen); RATEvParseMaxRate((void *) pDevice, (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates, (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates, true, &(pMgmt->sNodeDBTable[0].wMaxBasicRate), &(pMgmt->sNodeDBTable[0].wMaxSuppRate), &(pMgmt->sNodeDBTable[0].wSuppRate), &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate), &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate)); memcpy(pMgmt->sNodeDBTable[0].abyMACAddr, pMgmt->abyCurrBSSID, WLAN_ADDR_LEN); pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxSuppRate; pMgmt->sNodeDBTable[0].bShortPreamble = WLAN_GET_CAP_INFO_SHORTPREAMBLE(*pwCapInfo); pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND; /* Auto rate fallback function initiation. * RATEbInit(pDevice); */ DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pMgmt->sNodeDBTable[0].wTxDataRate = %d\n", pMgmt->sNodeDBTable[0].wTxDataRate); } /* * Routine Description: * Add Multicast Node content in Index 0 of KnownNodeDB * * * Return Value: * None */ void BSSvAddMulticastNode(struct vnt_private *pDevice) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; if (!pDevice->bEnableHostWEP) memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB)); memset(pMgmt->sNodeDBTable[0].abyMACAddr, 0xff, WLAN_ADDR_LEN); pMgmt->sNodeDBTable[0].bActive = true; pMgmt->sNodeDBTable[0].bPSEnable = false; skb_queue_head_init(&pMgmt->sNodeDBTable[0].sTxPSQueue); RATEvParseMaxRate((void *) pDevice, (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates, (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates, true, &(pMgmt->sNodeDBTable[0].wMaxBasicRate), &(pMgmt->sNodeDBTable[0].wMaxSuppRate), &(pMgmt->sNodeDBTable[0].wSuppRate), &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate), &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate)); pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxBasicRate; pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND; } /* * Routine Description: * * * Second call back function to update Node DB info & AP link status * * * Return Value: * none. */ void BSSvSecondCallBack(struct work_struct *work) { struct vnt_private *pDevice = container_of(work, struct vnt_private, second_callback_work.work); struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; int ii; PWLAN_IE_SSID pItemSSID, pCurrSSID; u32 uSleepySTACnt = 0; u32 uNonShortSlotSTACnt = 0; u32 uLongPreambleSTACnt = 0; if (pDevice->Flags & fMP_DISCONNECTED) return; spin_lock_irq(&pDevice->lock); pDevice->uAssocCount = 0; /* Power Saving Mode Tx Burst */ if (pDevice->bEnablePSMode == true) { pDevice->ulPSModeWaitTx++; if (pDevice->ulPSModeWaitTx >= 2) { pDevice->ulPSModeWaitTx = 0; pDevice->bPSModeTxBurst = false; } } pDevice->byERPFlag &= ~(WLAN_SET_ERP_BARKER_MODE(1) | WLAN_SET_ERP_NONERP_PRESENT(1)); if (pDevice->wUseProtectCntDown > 0) { pDevice->wUseProtectCntDown--; } else { /* disable protect mode */ pDevice->byERPFlag &= ~(WLAN_SET_ERP_USE_PROTECTION(1)); } if (pDevice->byReAssocCount > 0) { pDevice->byReAssocCount++; if (pDevice->byReAssocCount > 10 && pDevice->bLinkPass != true) { /* 10 sec timeout */ printk("Re-association timeout!!!\n"); pDevice->byReAssocCount = 0; /* if (pDevice->bWPASuppWextEnabled == true) */ { union iwreq_data wrqu; memset(&wrqu, 0, sizeof(wrqu)); wrqu.ap_addr.sa_family = ARPHRD_ETHER; PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n"); wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL); } } else if (pDevice->bLinkPass == true) { pDevice->byReAssocCount = 0; } } pMgmt->eLastState = pMgmt->eCurrState; s_uCalculateLinkQual(pDevice); for (ii = 0; ii < (MAX_NODE_NUM + 1); ii++) { if (pMgmt->sNodeDBTable[ii].bActive) { /* Increase in-activity counter */ pMgmt->sNodeDBTable[ii].uInActiveCount++; if (ii > 0) { if (pMgmt->sNodeDBTable[ii].uInActiveCount > MAX_INACTIVE_COUNT) { BSSvRemoveOneNode(pDevice, ii); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Inactive timeout [%d] sec, STA index = [%d] remove\n", MAX_INACTIVE_COUNT, ii); continue; } if (pMgmt->sNodeDBTable[ii].eNodeState >= NODE_ASSOC) { pDevice->uAssocCount++; /* check if Non ERP exist */ if (pMgmt->sNodeDBTable[ii].uInActiveCount < ERP_RECOVER_COUNT) { if (!pMgmt->sNodeDBTable[ii].bShortPreamble) { pDevice->byERPFlag |= WLAN_SET_ERP_BARKER_MODE(1); uLongPreambleSTACnt++; } if (!pMgmt->sNodeDBTable[ii].bERPExist) { pDevice->byERPFlag |= WLAN_SET_ERP_NONERP_PRESENT(1); pDevice->byERPFlag |= WLAN_SET_ERP_USE_PROTECTION(1); } if (!pMgmt->sNodeDBTable[ii].bShortSlotTime) uNonShortSlotSTACnt++; } } /* check if any STA in PS mode */ if (pMgmt->sNodeDBTable[ii].bPSEnable) uSleepySTACnt++; } /* Rate fallback check */ if (!pDevice->bFixRate) { if (ii > 0) { /* ii = 0 for multicast node (AP & Adhoc) */ RATEvTxRateFallBack((void *) pDevice, &(pMgmt->sNodeDBTable[ii])); } else if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) { /* ii = 0 reserved for unicast AP node (Infra STA) */ RATEvTxRateFallBack((void *) pDevice, &(pMgmt->sNodeDBTable[ii])); } } /* check if pending PS queue */ if (pMgmt->sNodeDBTable[ii].wEnQueueCnt != 0) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Index= %d, Queue = %d pending\n", ii, pMgmt->sNodeDBTable[ii].wEnQueueCnt); if (ii > 0 && pMgmt->sNodeDBTable[ii].wEnQueueCnt > 15) { BSSvRemoveOneNode(pDevice, ii); DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Pending many queues PS STA Index = %d remove\n", ii); continue; } } } } if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP && pDevice->byBBType == BB_TYPE_11G) { /* on/off protect mode */ if (WLAN_GET_ERP_USE_PROTECTION(pDevice->byERPFlag)) { if (!pDevice->bProtectMode) { MACvEnableProtectMD(pDevice); pDevice->bProtectMode = true; } } else if (pDevice->bProtectMode) { MACvDisableProtectMD(pDevice); pDevice->bProtectMode = false; } /* on/off short slot time */ if (uNonShortSlotSTACnt > 0) { if (pDevice->bShortSlotTime) { pDevice->bShortSlotTime = false; BBvSetShortSlotTime(pDevice); vUpdateIFS((void *) pDevice); } } else if (!pDevice->bShortSlotTime) { pDevice->bShortSlotTime = true; BBvSetShortSlotTime(pDevice); vUpdateIFS((void *) pDevice); } /* on/off barker long preamble mode */ if (uLongPreambleSTACnt > 0) { if (!pDevice->bBarkerPreambleMd) { MACvEnableBarkerPreambleMd(pDevice); pDevice->bBarkerPreambleMd = true; } } else if (pDevice->bBarkerPreambleMd) { MACvDisableBarkerPreambleMd(pDevice); pDevice->bBarkerPreambleMd = false; } } /* Check if any STA in PS mode, enable DTIM multicast deliver */ if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) { if (uSleepySTACnt > 0) pMgmt->sNodeDBTable[0].bPSEnable = true; else pMgmt->sNodeDBTable[0].bPSEnable = false; } pItemSSID = (PWLAN_IE_SSID) pMgmt->abyDesireSSID; pCurrSSID = (PWLAN_IE_SSID) pMgmt->abyCurrSSID; if (pMgmt->eCurrMode == WMAC_MODE_STANDBY || pMgmt->eCurrMode == WMAC_MODE_ESS_STA) { if (pMgmt->sNodeDBTable[0].bActive) { /* Assoc with BSS */ if (pDevice->bUpdateBBVGA) { s_vCheckSensitivity(pDevice); s_vCheckPreEDThreshold(pDevice); } if (pMgmt->sNodeDBTable[0].uInActiveCount >= (LOST_BEACON_COUNT/2) && pDevice->byBBVGACurrent != pDevice->abyBBVGA[0]) { pDevice->byBBVGANew = pDevice->abyBBVGA[0]; bScheduleCommand((void *) pDevice, WLAN_CMD_CHANGE_BBSENSITIVITY, NULL); } if (pMgmt->sNodeDBTable[0].uInActiveCount >= LOST_BEACON_COUNT) { pMgmt->sNodeDBTable[0].bActive = false; pMgmt->eCurrMode = WMAC_MODE_STANDBY; pMgmt->eCurrState = WMAC_STATE_IDLE; netif_stop_queue(pDevice->dev); pDevice->bLinkPass = false; ControlvMaskByte(pDevice, MESSAGE_REQUEST_MACREG, MAC_REG_PAPEDELAY, LEDSTS_STS, LEDSTS_SLOW); pDevice->bRoaming = true; pDevice->bIsRoaming = false; DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost AP beacon [%d] sec, disconnected !\n", pMgmt->sNodeDBTable[0].uInActiveCount); /* let wpa supplicant know AP may disconnect */ { union iwreq_data wrqu; memset(&wrqu, 0, sizeof(wrqu)); wrqu.ap_addr.sa_family = ARPHRD_ETHER; PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n"); wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL); } } } else if (pItemSSID->len != 0) { /* Davidwang */ if ((pDevice->bEnableRoaming == true) && (!(pMgmt->Cisco_cckm))) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bRoaming %d, !\n", pDevice->bRoaming); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bIsRoaming %d, !\n", pDevice->bIsRoaming); if ((pDevice->bRoaming == true) && (pDevice->bIsRoaming == true)) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Fast Roaming ...\n"); BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass); bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, pMgmt->abyDesireSSID); bScheduleCommand((void *) pDevice, WLAN_CMD_SSID, pMgmt->abyDesireSSID); pDevice->uAutoReConnectTime = 0; pDevice->uIsroamingTime = 0; pDevice->bRoaming = false; } else if (pDevice->bRoaming == false && pDevice->bIsRoaming == true) { pDevice->uIsroamingTime++; if (pDevice->uIsroamingTime >= 20) pDevice->bIsRoaming = false; } } else if (pDevice->uAutoReConnectTime < 10) { pDevice->uAutoReConnectTime++; /* network manager support need not do Roaming scan??? */ if (pDevice->bWPASuppWextEnabled == true) pDevice->uAutoReConnectTime = 0; } else { /* mike use old encryption status for wpa reauthen */ if (pDevice->bWPADEVUp) pDevice->eEncryptionStatus = pDevice->eOldEncryptionStatus; DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Roaming ...\n"); BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass); pMgmt->eScanType = WMAC_SCAN_ACTIVE; bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, pMgmt->abyDesireSSID); bScheduleCommand((void *) pDevice, WLAN_CMD_SSID, pMgmt->abyDesireSSID); pDevice->uAutoReConnectTime = 0; } } } if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) { /* if adhoc started which essid is NULL string, rescanning. */ if (pMgmt->eCurrState == WMAC_STATE_STARTED && pCurrSSID->len == 0) { if (pDevice->uAutoReConnectTime < 10) { pDevice->uAutoReConnectTime++; } else { DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Adhoc re-scanning ...\n"); pMgmt->eScanType = WMAC_SCAN_ACTIVE; bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, NULL); bScheduleCommand((void *) pDevice, WLAN_CMD_SSID, NULL); pDevice->uAutoReConnectTime = 0; } } if (pMgmt->eCurrState == WMAC_STATE_JOINTED) { if (pDevice->bUpdateBBVGA) { s_vCheckSensitivity(pDevice); s_vCheckPreEDThreshold(pDevice); } if (pMgmt->sNodeDBTable[0].uInActiveCount >= ADHOC_LOST_BEACON_COUNT) { DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost other STA beacon [%d] sec, started !\n", pMgmt->sNodeDBTable[0].uInActiveCount); pMgmt->sNodeDBTable[0].uInActiveCount = 0; pMgmt->eCurrState = WMAC_STATE_STARTED; netif_stop_queue(pDevice->dev); pDevice->bLinkPass = false; ControlvMaskByte(pDevice, MESSAGE_REQUEST_MACREG, MAC_REG_PAPEDELAY, LEDSTS_STS, LEDSTS_SLOW); } } } if (pDevice->bLinkPass == true) { if ((pMgmt->eAuthenMode < WMAC_AUTH_WPA || pDevice->fWPA_Authened == true) && (++pDevice->tx_data_time_out > 40)) { pDevice->tx_trigger = true; PSbSendNullPacket(pDevice); pDevice->tx_trigger = false; pDevice->tx_data_time_out = 0; } if (netif_queue_stopped(pDevice->dev)) netif_wake_queue(pDevice->dev); } spin_unlock_irq(&pDevice->lock); schedule_delayed_work(&pDevice->second_callback_work, HZ); } /* * Routine Description: * * * Update Tx attemps, Tx failure counter in Node DB * * * Return Value: * none. */ void BSSvUpdateNodeTxCounter(struct vnt_private *pDevice, u8 byTSR, u8 byPktNO) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_tx_pkt_info *pkt_info = pDevice->pkt_info; u32 uNodeIndex = 0; u8 byTxRetry; u16 wRate; u16 wFallBackRate = RATE_1M; u8 byFallBack; int ii; u8 *pbyDestAddr; u8 byPktNum; u16 wFIFOCtl; byPktNum = (byPktNO & 0x0F) >> 4; byTxRetry = (byTSR & 0xF0) >> 4; wRate = (u16) (byPktNO & 0xF0) >> 4; wFIFOCtl = pkt_info[byPktNum].fifo_ctl; pbyDestAddr = pkt_info[byPktNum].dest_addr; if (wFIFOCtl & FIFOCTL_AUTO_FB_0) byFallBack = AUTO_FB_0; else if (wFIFOCtl & FIFOCTL_AUTO_FB_1) byFallBack = AUTO_FB_1; else byFallBack = AUTO_FB_NONE; /* Only Unicast using support rates */ if (wFIFOCtl & FIFOCTL_NEEDACK) { if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) { pMgmt->sNodeDBTable[0].uTxAttempts += 1; if (!(byTSR & (TSR_TMO | TSR_RETRYTMO))) { /* transmit success, TxAttempts at least plus one */ pMgmt->sNodeDBTable[0].uTxOk[MAX_RATE]++; if ((byFallBack == AUTO_FB_NONE) || (wRate < RATE_18M)) { wFallBackRate = wRate; } else if (byFallBack == AUTO_FB_0) { if (byTxRetry < 5) wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry]; else wFallBackRate = awHWRetry0[wRate-RATE_18M][4]; } else if (byFallBack == AUTO_FB_1) { if (byTxRetry < 5) wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry]; else wFallBackRate = awHWRetry1[wRate-RATE_18M][4]; } pMgmt->sNodeDBTable[0].uTxOk[wFallBackRate]++; } else { pMgmt->sNodeDBTable[0].uTxFailures++; } pMgmt->sNodeDBTable[0].uTxRetry += byTxRetry; if (byTxRetry != 0) { pMgmt->sNodeDBTable[0].uTxFail[MAX_RATE] += byTxRetry; if (byFallBack == AUTO_FB_NONE || wRate < RATE_18M) { pMgmt->sNodeDBTable[0].uTxFail[wRate] += byTxRetry; } else if (byFallBack == AUTO_FB_0) { for (ii = 0; ii < byTxRetry; ii++) { if (ii < 5) wFallBackRate = awHWRetry0[wRate-RATE_18M][ii]; else wFallBackRate = awHWRetry0[wRate-RATE_18M][4]; pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++; } } else if (byFallBack == AUTO_FB_1) { for (ii = 0; ii < byTxRetry; ii++) { if (ii < 5) wFallBackRate = awHWRetry1[wRate-RATE_18M][ii]; else wFallBackRate = awHWRetry1[wRate-RATE_18M][4]; pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++; } } } } if ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA || pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && BSSbIsSTAInNodeDB((void *) pDevice, pbyDestAddr, &uNodeIndex)) { pMgmt->sNodeDBTable[uNodeIndex].uTxAttempts += 1; if (!(byTSR & (TSR_TMO | TSR_RETRYTMO))) { /* transmit success, TxAttempts at least plus one */ pMgmt->sNodeDBTable[uNodeIndex].uTxOk[MAX_RATE]++; if ((byFallBack == AUTO_FB_NONE) || (wRate < RATE_18M)) { wFallBackRate = wRate; } else if (byFallBack == AUTO_FB_0) { if (byTxRetry < 5) wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry]; else wFallBackRate = awHWRetry0[wRate-RATE_18M][4]; } else if (byFallBack == AUTO_FB_1) { if (byTxRetry < 5) wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry]; else wFallBackRate = awHWRetry1[wRate-RATE_18M][4]; } pMgmt->sNodeDBTable[uNodeIndex].uTxOk[wFallBackRate]++; } else { pMgmt->sNodeDBTable[uNodeIndex].uTxFailures++; } pMgmt->sNodeDBTable[uNodeIndex].uTxRetry += byTxRetry; if (byTxRetry != 0) { pMgmt->sNodeDBTable[uNodeIndex].uTxFail[MAX_RATE] += byTxRetry; if ((byFallBack == AUTO_FB_NONE) || (wRate < RATE_18M)) { pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wRate] += byTxRetry; } else if (byFallBack == AUTO_FB_0) { for (ii = 0; ii < byTxRetry; ii++) { if (ii < 5) wFallBackRate = awHWRetry0[wRate-RATE_18M][ii]; else wFallBackRate = awHWRetry0[wRate-RATE_18M][4]; pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++; } } else if (byFallBack == AUTO_FB_1) { for (ii = 0; ii < byTxRetry; ii++) { if (ii < 5) wFallBackRate = awHWRetry1[wRate-RATE_18M][ii]; else wFallBackRate = awHWRetry1[wRate-RATE_18M][4]; pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++; } } } } } } /* * Routine Description: * Clear Nodes & skb in DB Table * * * Parameters: * In: * hDeviceContext - The adapter context. * uStartIndex - starting index * Out: * none * * Return Value: * None. */ void BSSvClearNodeDBTable(struct vnt_private *pDevice, u32 uStartIndex) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct sk_buff *skb; int ii; for (ii = uStartIndex; ii < (MAX_NODE_NUM + 1); ii++) { if (pMgmt->sNodeDBTable[ii].bActive) { /* check if sTxPSQueue has been initial */ if (pMgmt->sNodeDBTable[ii].sTxPSQueue.next) { while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[ii].sTxPSQueue))) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "PS skb != NULL %d\n", ii); dev_kfree_skb(skb); } } memset(&pMgmt->sNodeDBTable[ii], 0, sizeof(KnownNodeDB)); } } } static void s_vCheckSensitivity(struct vnt_private *pDevice) { PKnownBSS pBSSList = NULL; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; int ii; if (pMgmt->eCurrState == WMAC_STATE_ASSOC || (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA && pMgmt->eCurrState == WMAC_STATE_JOINTED)) { pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID) pMgmt->abyCurrSSID); if (pBSSList) { /* Update BB register if RSSI is too strong */ signed long LocalldBmAverage = 0; signed long uNumofdBm = 0; for (ii = 0; ii < RSSI_STAT_COUNT; ii++) { if (pBSSList->ldBmAverage[ii] != 0) { uNumofdBm++; LocalldBmAverage += pBSSList->ldBmAverage[ii]; } } if (uNumofdBm > 0) { LocalldBmAverage = LocalldBmAverage/uNumofdBm; for (ii = 0; ii < BB_VGA_LEVEL; ii++) { DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"LocalldBmAverage:%ld, %ld %02x\n", LocalldBmAverage, pDevice->ldBmThreshold[ii], pDevice->abyBBVGA[ii]); if (LocalldBmAverage < pDevice->ldBmThreshold[ii]) { pDevice->byBBVGANew = pDevice->abyBBVGA[ii]; break; } } if (pDevice->byBBVGANew != pDevice->byBBVGACurrent) { pDevice->uBBVGADiffCount++; if (pDevice->uBBVGADiffCount >= BB_VGA_CHANGE_THRESHOLD) bScheduleCommand(pDevice, WLAN_CMD_CHANGE_BBSENSITIVITY, NULL); } else { pDevice->uBBVGADiffCount = 0; } } } } } static void s_uCalculateLinkQual(struct vnt_private *pDevice) { struct net_device_stats *stats = &pDevice->stats; unsigned long TxOkRatio, TxCnt; unsigned long RxOkRatio, RxCnt; unsigned long RssiRatio; unsigned long qual; long ldBm; TxCnt = stats->tx_packets + pDevice->wstats.discard.retries; RxCnt = stats->rx_packets + stats->rx_frame_errors; TxOkRatio = (TxCnt < 6) ? 4000:((stats->tx_packets * 4000) / TxCnt); RxOkRatio = (RxCnt < 6) ? 2000 : ((stats->rx_packets * 2000) / RxCnt); /* decide link quality */ if (pDevice->bLinkPass != true) { pDevice->wstats.qual.qual = 0; } else { RFvRSSITodBm(pDevice, (u8) (pDevice->uCurrRSSI), &ldBm); if (-ldBm < 50) RssiRatio = 4000; else if (-ldBm > 90) RssiRatio = 0; else RssiRatio = (40-(-ldBm-50)) * 4000 / 40; qual = (RssiRatio + TxOkRatio + RxOkRatio) / 100; if (qual < 100) pDevice->wstats.qual.qual = (u8) qual; else pDevice->wstats.qual.qual = 100; } } void BSSvClearAnyBSSJoinRecord(struct vnt_private *pDevice) { struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; int ii; for (ii = 0; ii < MAX_BSS_NUM; ii++) pMgmt->sBSSList[ii].bSelected = false; return; } static void s_vCheckPreEDThreshold(struct vnt_private *pDevice) { PKnownBSS pBSSList = NULL; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; if (pMgmt->eCurrState == WMAC_STATE_ASSOC || (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA && pMgmt->eCurrState == WMAC_STATE_JOINTED)) { pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID) pMgmt->abyCurrSSID); if (pBSSList) { pDevice->byBBPreEDRSSI = (u8) (~(pBSSList->ldBmAverRange) + 1); BBvUpdatePreEDThreshold(pDevice, false); } } }