/*
 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
 * All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * File: bssdb.c
 *
 * Purpose: Handles the Basic Service Set & Node Database functions
 *
 * Functions:
 *	BSSpSearchBSSList       - Search known BSS list for Desire SSID or BSSID
 *	BSSvClearBSSList        - Clear BSS List
 *	BSSbInsertToBSSList     - Insert a BSS set into known BSS list
 *	BSSbUpdateToBSSList     - Update BSS set in known BSS list
 *	BSSbIsSTAInNodeDB       - Search Node DB table to find the index of matched DstAddr
 *	BSSvCreateOneNode       - Allocate an Node for Node DB
 *	BSSvUpdateAPNode        - Update AP Node content in Index 0 of KnownNodeDB
 *	BSSvSecondCallBack      - One second timer callback function to update Node DB info & AP link status
 *	BSSvUpdateNodeTxCounter - Update Tx attemps, Tx failure counter in Node DB for auto-fallback rate control
 *
 * Revision History:
 *
 * Author: Lyndon Chen
 *
 * Date: July 17, 2002
 */

#include "tmacro.h"
#include "tether.h"
#include "device.h"
#include "80211hdr.h"
#include "bssdb.h"
#include "wmgr.h"
#include "datarate.h"
#include "desc.h"
#include "wcmd.h"
#include "wpa.h"
#include "baseband.h"
#include "rf.h"
#include "card.h"
#include "mac.h"
#include "wpa2.h"
#include "control.h"
#include "rndis.h"
#include "iowpa.h"
#include "power.h"

static int msglevel = MSG_LEVEL_INFO;
/* static int msglevel = MSG_LEVEL_DEBUG; */

static const u16 awHWRetry0[5][5] = {
			{RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M},
			{RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M},
			{RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M},
			{RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M},
			{RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M}
		};
static const u16 awHWRetry1[5][5] = {
			{RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M},
			{RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M},
			{RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M},
			{RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M},
			{RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M}
		};

static void s_vCheckSensitivity(struct vnt_private *pDevice);
static void s_vCheckPreEDThreshold(struct vnt_private *pDevice);
static void s_uCalculateLinkQual(struct vnt_private *pDevice);

/*
 * Routine Description:
 *	  Search known BSS list for Desire SSID or BSSID.
 *
 * Return Value:
 *	  PTR to KnownBSS or NULL
 */
PKnownBSS BSSpSearchBSSList(struct vnt_private *pDevice,
			    u8 *pbyDesireBSSID, u8 *pbyDesireSSID,
			    CARD_PHY_TYPE ePhyType)
{
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	u8 *pbyBSSID = NULL;
	PWLAN_IE_SSID pSSID = NULL;
	PKnownBSS pCurrBSS = NULL;
	PKnownBSS pSelect = NULL;
	u8 ZeroBSSID[WLAN_BSSID_LEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
	int ii = 0;
	int jj = 0;

	if (pbyDesireBSSID) {
		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
			"BSSpSearchBSSList BSSID[%pM]\n", pbyDesireBSSID);
		if (!is_broadcast_ether_addr(pbyDesireBSSID) &&
		    memcmp(pbyDesireBSSID, ZeroBSSID, 6) != 0)
			pbyBSSID = pbyDesireBSSID;
	}
	if (pbyDesireSSID &&
	    ((PWLAN_IE_SSID) pbyDesireSSID)->len != 0)
		pSSID = (PWLAN_IE_SSID) pbyDesireSSID;

	if (pbyBSSID && pDevice->bRoaming == false) {
		/* match BSSID first */
		for (ii = 0; ii < MAX_BSS_NUM; ii++) {
			pCurrBSS = &(pMgmt->sBSSList[ii]);

			pCurrBSS->bSelected = false;

			if (pCurrBSS->bActive &&
			    pCurrBSS->bSelected == false &&
			    ether_addr_equal(pCurrBSS->abyBSSID, pbyBSSID)) {
				if (pSSID) {
					/* compare ssid */
					if (!memcmp(pSSID->abySSID,
						     ((PWLAN_IE_SSID) pCurrBSS->abySSID)->abySSID,
						     pSSID->len) &&
					    (pMgmt->eConfigMode == WMAC_CONFIG_AUTO ||
					     (pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA &&
					      WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
					     (pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA &&
					      WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)))) {

						pCurrBSS->bSelected = true;
						return pCurrBSS;
					}
				} else if (pMgmt->eConfigMode == WMAC_CONFIG_AUTO ||
					   (pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA &&
					    WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
					   (pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA &&
					    WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))) {
					pCurrBSS->bSelected = true;
					return pCurrBSS;
				}
			}
		}
	} else {
		/* ignore BSSID */
		for (ii = 0; ii < MAX_BSS_NUM; ii++) {
			pCurrBSS = &(pMgmt->sBSSList[ii]);

			/* 2007-0721-01<Mark>by MikeLiu
			 *   if ((pCurrBSS->bActive) &&
			 *		  (pCurrBSS->bSelected == false)) { */

			pCurrBSS->bSelected = false;
			if (pCurrBSS->bActive) {

				if (pSSID &&
				    /* matched SSID */
				    (memcmp(pSSID->abySSID,
					    ((PWLAN_IE_SSID) pCurrBSS->abySSID)->abySSID,
					    pSSID->len) ||
				     pSSID->len !=
					((PWLAN_IE_SSID) pCurrBSS->abySSID)->len)) {
					/* SSID not match skip this BSS */
					continue;
				}

				if ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA &&
				     WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ||
				    (pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA &&
				     WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo))) {
					/* Type not match skip this BSS */
					DBG_PRT(MSG_LEVEL_DEBUG,
						KERN_INFO "BSS type mismatch.... Config[%d] BSS[0x%04x]\n",
						pMgmt->eConfigMode,
						pCurrBSS->wCapInfo);
					continue;
				}

				if (ePhyType != PHY_TYPE_AUTO &&
				    ((ePhyType == PHY_TYPE_11A &&
				     PHY_TYPE_11A != pCurrBSS->eNetworkTypeInUse) ||
				    (ePhyType != PHY_TYPE_11A &&
				     PHY_TYPE_11A == pCurrBSS->eNetworkTypeInUse))) {
					/* PhyType not match skip this BSS */
					DBG_PRT(MSG_LEVEL_DEBUG,
						KERN_INFO "Physical type mismatch.... ePhyType[%d] BSS[%d]\n",
						ePhyType,
						pCurrBSS->eNetworkTypeInUse);
					continue;
				}

				pMgmt->pSameBSS[jj].uChannel = pCurrBSS->uChannel;
				DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
					"BSSpSearchBSSList pSelect1[%pM]\n",
					pCurrBSS->abyBSSID);
				jj++;

				if (!pSelect)
					pSelect = pCurrBSS;
				/* compare RSSI, select the strongest signal */
				else if (pCurrBSS->uRSSI < pSelect->uRSSI)
					pSelect = pCurrBSS;
			}
		}

		pDevice->bSameBSSMaxNum = jj;

		if (pSelect) {
			pSelect->bSelected = true;
			if (pDevice->bRoaming == false) {
				/* Einsn Add @20070907 */
				memcpy(pbyDesireSSID,
				       pCurrBSS->abySSID,
				       WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
			}

			return pSelect;
		}
	}
	return NULL;

}

/*
 * Routine Description:
 *	  Clear BSS List
 *
 * Return Value:
 *	  None.
 */
void BSSvClearBSSList(struct vnt_private *pDevice, int bKeepCurrBSSID)
{
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	int ii;

	for (ii = 0; ii < MAX_BSS_NUM; ii++) {
		if (bKeepCurrBSSID &&
		    pMgmt->sBSSList[ii].bActive &&
		    ether_addr_equal(pMgmt->sBSSList[ii].abyBSSID,
				     pMgmt->abyCurrBSSID)) {

			/* mike mark:
			 * there are two BSSID's in list. If that AP is
			 * in hidden ssid mode, one SSID is null, but
			 * other's might not be obvious, so if it
			 * associate's with your STA, you must keep the
			 * two of them!!  bKeepCurrBSSID = false;
			 */

			continue;
		}

		pMgmt->sBSSList[ii].bActive = false;
		memset(&pMgmt->sBSSList[ii], 0, sizeof(KnownBSS));
	}
	BSSvClearAnyBSSJoinRecord(pDevice);
}

/*
 * Routine Description:
 *	  search BSS list by BSSID & SSID if matched
 *
 * Return Value:
 *	  true if found.
 */
PKnownBSS BSSpAddrIsInBSSList(struct vnt_private *pDevice,
			      u8 *abyBSSID,
			      PWLAN_IE_SSID pSSID)
{
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	PKnownBSS pBSSList = NULL;
	int ii;

	for (ii = 0; ii < MAX_BSS_NUM; ii++) {
		pBSSList = &(pMgmt->sBSSList[ii]);
		if (pBSSList->bActive &&
		    ether_addr_equal(pBSSList->abyBSSID, abyBSSID) &&
		    pSSID->len == ((PWLAN_IE_SSID) pBSSList->abySSID)->len &&
		    memcmp(pSSID->abySSID,
			    ((PWLAN_IE_SSID) pBSSList->abySSID)->abySSID,
			    pSSID->len) == 0)
			return pBSSList;
	}

	return NULL;
}

/*
 * Routine Description:
 *	  Insert a BSS set into known BSS list
 *
 * Return Value:
 *	  true if success.
 */
int BSSbInsertToBSSList(struct vnt_private *pDevice,
			u8 *abyBSSIDAddr,
			u64 qwTimestamp,
			u16 wBeaconInterval,
			u16 wCapInfo,
			u8 byCurrChannel,
			PWLAN_IE_SSID pSSID,
			PWLAN_IE_SUPP_RATES pSuppRates,
			PWLAN_IE_SUPP_RATES pExtSuppRates,
			PERPObject psERP,
			PWLAN_IE_RSN pRSN,
			PWLAN_IE_RSN_EXT pRSNWPA,
			PWLAN_IE_COUNTRY pIE_Country,
			PWLAN_IE_QUIET pIE_Quiet,
			u32 uIELength,
			u8 *pbyIEs,
			void *pRxPacketContext)
{
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	struct vnt_rx_mgmt *pRxPacket =
		(struct vnt_rx_mgmt *) pRxPacketContext;
	PKnownBSS pBSSList = NULL;
	unsigned int ii;
	bool bParsingQuiet = false;

	pBSSList = (PKnownBSS) &(pMgmt->sBSSList[0]);

	for (ii = 0; ii < MAX_BSS_NUM; ii++) {
		pBSSList = (PKnownBSS) &(pMgmt->sBSSList[ii]);
		if (!pBSSList->bActive)
			break;
	}

	if (ii == MAX_BSS_NUM) {
		DBG_PRT(MSG_LEVEL_DEBUG,
			KERN_INFO "Get free KnowBSS node failed.\n");
		return false;
	}
	/* save the BSS info */
	pBSSList->bActive = true;
	memcpy(pBSSList->abyBSSID, abyBSSIDAddr, WLAN_BSSID_LEN);
	pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp);
	pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
	pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
	pBSSList->uClearCount = 0;

	if (pSSID->len > WLAN_SSID_MAXLEN)
		pSSID->len = WLAN_SSID_MAXLEN;
	memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);

	pBSSList->uChannel = byCurrChannel;

	if (pSuppRates->len > WLAN_RATES_MAXLEN)
		pSuppRates->len = WLAN_RATES_MAXLEN;
	memcpy(pBSSList->abySuppRates, pSuppRates,
	       pSuppRates->len + WLAN_IEHDR_LEN);

	if (pExtSuppRates) {
		if (pExtSuppRates->len > WLAN_RATES_MAXLEN)
			pExtSuppRates->len = WLAN_RATES_MAXLEN;
		memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,
		       pExtSuppRates->len + WLAN_IEHDR_LEN);
		DBG_PRT(MSG_LEVEL_DEBUG,
			KERN_INFO "BSSbInsertToBSSList: pExtSuppRates->len = %d\n",
			pExtSuppRates->len);

	} else {
		memset(pBSSList->abyExtSuppRates, 0,
		       WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
	}
	pBSSList->sERP.byERP = psERP->byERP;
	pBSSList->sERP.bERPExist = psERP->bERPExist;

	/* Check if BSS is 802.11a/b/g */
	if (pBSSList->uChannel > CB_MAX_CHANNEL_24G)
		pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
	else if (pBSSList->sERP.bERPExist == true)
		pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
	else
		pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;

	pBSSList->byRxRate = pRxPacket->byRxRate;
	pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
	pBSSList->uRSSI = pRxPacket->uRSSI;
	pBSSList->bySQ = pRxPacket->bySQ;

	if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA &&
	    pMgmt->eCurrState == WMAC_STATE_ASSOC &&
	    /* assoc with BSS */
	    pBSSList == pMgmt->pCurrBSS)
		bParsingQuiet = true;

	WPA_ClearRSN(pBSSList);

	if (pRSNWPA) {
		unsigned int uLen = pRSNWPA->len + 2;

		if (uLen <= (uIELength -
			     (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
			pBSSList->wWPALen = uLen;
			memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
			WPA_ParseRSN(pBSSList, pRSNWPA);
		}
	}

	WPA2_ClearRSN(pBSSList);

	if (pRSN) {
		unsigned int uLen = pRSN->len + 2;

		if (uLen <= (uIELength -
			     (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) {
			pBSSList->wRSNLen = uLen;
			memcpy(pBSSList->byRSNIE, pRSN, uLen);
			WPA2vParseRSN(pBSSList, pRSN);
		}
	}

	if (pMgmt->eAuthenMode == WMAC_AUTH_WPA2 ||
	    pBSSList->bWPA2Valid == true) {

		PSKeyItem  pTransmitKey = NULL;
		bool	   bIs802_1x = false;

		for (ii = 0; ii < pBSSList->wAKMSSAuthCount; ii++) {
			if (pBSSList->abyAKMSSAuthType[ii] ==
					WLAN_11i_AKMSS_802_1X) {
				bIs802_1x = true;
				break;
			}
		}
		if (bIs802_1x == true &&
		    pSSID->len == ((PWLAN_IE_SSID) pMgmt->abyDesireSSID)->len &&
		    !memcmp(pSSID->abySSID,
			     ((PWLAN_IE_SSID) pMgmt->abyDesireSSID)->abySSID,
			     pSSID->len)) {

			bAdd_PMKID_Candidate((void *) pDevice,
					 pBSSList->abyBSSID,
					 &pBSSList->sRSNCapObj);

			if (pDevice->bLinkPass == true &&
			    pMgmt->eCurrState == WMAC_STATE_ASSOC &&
			    (KeybGetTransmitKey(&(pDevice->sKey),
						 pDevice->abyBSSID,
						 PAIRWISE_KEY,
						 &pTransmitKey) == true ||
			     KeybGetTransmitKey(&(pDevice->sKey),
						 pDevice->abyBSSID,
						 GROUP_KEY,
						 &pTransmitKey) == true)) {
				pDevice->gsPMKIDCandidate.StatusType =
					Ndis802_11StatusType_PMKID_CandidateList;
				pDevice->gsPMKIDCandidate.Version = 1;


			}
		}
	}

	if (pDevice->bUpdateBBVGA) {
		/* Monitor if RSSI is too strong. */
		pBSSList->byRSSIStatCnt = 0;
		RFvRSSITodBm(pDevice, (u8) (pRxPacket->uRSSI),
			     &pBSSList->ldBmMAX);
		pBSSList->ldBmAverage[0] = pBSSList->ldBmMAX;
		pBSSList->ldBmAverRange = pBSSList->ldBmMAX;
		for (ii = 1; ii < RSSI_STAT_COUNT; ii++)
			pBSSList->ldBmAverage[ii] = 0;
	}

	pBSSList->uIELength = uIELength;
	if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
		pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
	memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);

	return true;
}

/*
 * Routine Description:
 *	  Update BSS set in known BSS list
 *
 * Return Value:
 *	  true if success.
 */
/* TODO: input structure modify */
int BSSbUpdateToBSSList(struct vnt_private *pDevice,
			u64 qwTimestamp,
			u16 wBeaconInterval,
			u16 wCapInfo,
			u8 byCurrChannel,
			int bChannelHit,
			PWLAN_IE_SSID pSSID,
			PWLAN_IE_SUPP_RATES pSuppRates,
			PWLAN_IE_SUPP_RATES pExtSuppRates,
			PERPObject psERP,
			PWLAN_IE_RSN pRSN,
			PWLAN_IE_RSN_EXT pRSNWPA,
			PWLAN_IE_COUNTRY pIE_Country,
			PWLAN_IE_QUIET pIE_Quiet,
			PKnownBSS pBSSList,
			u32 uIELength,
			u8 *pbyIEs,
			void *pRxPacketContext)
{
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	struct vnt_rx_mgmt *pRxPacket =
		(struct vnt_rx_mgmt *) pRxPacketContext;
	int ii, jj;
	signed long ldBm, ldBmSum;
	bool bParsingQuiet = false;

	if (!pBSSList)
		return false;

	pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp);

	pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
	pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
	pBSSList->uClearCount = 0;
	pBSSList->uChannel = byCurrChannel;

	if (pSSID->len > WLAN_SSID_MAXLEN)
		pSSID->len = WLAN_SSID_MAXLEN;

	if (pSSID->len != 0 && pSSID->abySSID[0] != 0)
		memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
	memcpy(pBSSList->abySuppRates, pSuppRates,
	       pSuppRates->len + WLAN_IEHDR_LEN);

	if (pExtSuppRates)
		memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,
		       pExtSuppRates->len + WLAN_IEHDR_LEN);
	else
		memset(pBSSList->abyExtSuppRates, 0,
		       WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
	pBSSList->sERP.byERP = psERP->byERP;
	pBSSList->sERP.bERPExist = psERP->bERPExist;

	/* Check if BSS is 802.11a/b/g */
	if (pBSSList->uChannel > CB_MAX_CHANNEL_24G)
		pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
	else if (pBSSList->sERP.bERPExist == true)
		pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
	else
		pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;

	pBSSList->byRxRate = pRxPacket->byRxRate;
	pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
	if (bChannelHit)
		pBSSList->uRSSI = pRxPacket->uRSSI;
	pBSSList->bySQ = pRxPacket->bySQ;

	if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA &&
	    pMgmt->eCurrState == WMAC_STATE_ASSOC &&
	    /* assoc with BSS */
	    pBSSList == pMgmt->pCurrBSS)
		bParsingQuiet = true;

	WPA_ClearRSN(pBSSList); /* mike update */

	if (pRSNWPA) {
		unsigned int uLen = pRSNWPA->len + 2;
		if (uLen <= (uIELength -
			     (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
			pBSSList->wWPALen = uLen;
			memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
			WPA_ParseRSN(pBSSList, pRSNWPA);
		}
	}

	WPA2_ClearRSN(pBSSList); /* mike update */

	if (pRSN) {
		unsigned int uLen = pRSN->len + 2;
		if (uLen <= (uIELength -
			     (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) {
			pBSSList->wRSNLen = uLen;
			memcpy(pBSSList->byRSNIE, pRSN, uLen);
			WPA2vParseRSN(pBSSList, pRSN);
		}
	}

	if (pRxPacket->uRSSI != 0) {
		RFvRSSITodBm(pDevice, (u8) (pRxPacket->uRSSI), &ldBm);
		/* Monitor if RSSI is too strong. */
		pBSSList->byRSSIStatCnt++;
		pBSSList->byRSSIStatCnt %= RSSI_STAT_COUNT;
		pBSSList->ldBmAverage[pBSSList->byRSSIStatCnt] = ldBm;
		ldBmSum = 0;
		for (ii = 0, jj = 0; ii < RSSI_STAT_COUNT; ii++) {
			if (pBSSList->ldBmAverage[ii] != 0) {
				pBSSList->ldBmMAX =
					max(pBSSList->ldBmAverage[ii], ldBm);
				ldBmSum +=
					pBSSList->ldBmAverage[ii];
				jj++;
			}
		}
		pBSSList->ldBmAverRange = ldBmSum / jj;
	}

	pBSSList->uIELength = uIELength;
	if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
		pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
	memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);

	return true;
}

/*
 * Routine Description:
 *	  Search Node DB table to find the index of matched DstAddr
 *
 * Return Value:
 *	  None
 */
int BSSbIsSTAInNodeDB(struct vnt_private *pDevice,
		      u8 *abyDstAddr,
		      u32 *puNodeIndex)
{
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	unsigned int ii;

	/* Index = 0 reserved for AP Node */
	for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
		if (pMgmt->sNodeDBTable[ii].bActive &&
		    ether_addr_equal(abyDstAddr,
				     pMgmt->sNodeDBTable[ii].abyMACAddr)) {
			*puNodeIndex = ii;
			return true;
		}
	}

	return false;
};

/*
 * Routine Description:
 *	  Find an empty node and allocate it; if no empty node
 *	  is found, then use the most inactive one.
 *
 * Return Value:
 *	  None
 */
void BSSvCreateOneNode(struct vnt_private *pDevice, u32 *puNodeIndex)
{
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	int ii;
	u32 BigestCount = 0;
	u32 SelectIndex;
	struct sk_buff *skb;

	/* Index = 0 reserved for AP Node (In STA mode)
	   Index = 0 reserved for Broadcast/MultiCast (In AP mode) */
	SelectIndex = 1;
	for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
		if (pMgmt->sNodeDBTable[ii].bActive) {
			if (pMgmt->sNodeDBTable[ii].uInActiveCount > BigestCount) {
				BigestCount =
					pMgmt->sNodeDBTable[ii].uInActiveCount;
				SelectIndex = ii;
			}
		} else {
			break;
		}
	}

	/* if not found replace uInActiveCount with the largest one. */
	if (ii == (MAX_NODE_NUM + 1)) {
		*puNodeIndex = SelectIndex;
		DBG_PRT(MSG_LEVEL_DEBUG,
			KERN_INFO "Replace inactive node = %d\n", SelectIndex);
		/* clear ps buffer */
		if (pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue.next) {
			while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue)))
				dev_kfree_skb(skb);
		}
	} else {
		*puNodeIndex = ii;
	}

	memset(&pMgmt->sNodeDBTable[*puNodeIndex], 0, sizeof(KnownNodeDB));
	pMgmt->sNodeDBTable[*puNodeIndex].bActive = true;
	pMgmt->sNodeDBTable[*puNodeIndex].uRatePollTimeout = FALLBACK_POLL_SECOND;
	/* for AP mode PS queue */
	skb_queue_head_init(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue);
	pMgmt->sNodeDBTable[*puNodeIndex].byAuthSequence = 0;
	pMgmt->sNodeDBTable[*puNodeIndex].wEnQueueCnt = 0;
	DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Create node index = %d\n", ii);
}

/*
 * Routine Description:
 *	  Remove Node by NodeIndex
 *
 *
 * Return Value:
 *	  None
 */
void BSSvRemoveOneNode(struct vnt_private *pDevice, u32 uNodeIndex)
{
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
	struct sk_buff *skb;

	while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue)))
		dev_kfree_skb(skb);
	/* clear context */
	memset(&pMgmt->sNodeDBTable[uNodeIndex], 0, sizeof(KnownNodeDB));
	/* clear tx bit map */
	pMgmt->abyPSTxMap[pMgmt->sNodeDBTable[uNodeIndex].wAID >> 3] &=
		~byMask[pMgmt->sNodeDBTable[uNodeIndex].wAID & 7];
}

/*
 * Routine Description:
 *	  Update AP Node content in Index 0 of KnownNodeDB
 *
 *
 * Return Value:
 *	  None
 */
void BSSvUpdateAPNode(struct vnt_private *pDevice,
		      u16 *pwCapInfo,
		      PWLAN_IE_SUPP_RATES pSuppRates,
		      PWLAN_IE_SUPP_RATES pExtSuppRates)
{
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	u32 uRateLen = WLAN_RATES_MAXLEN;

	memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));

	pMgmt->sNodeDBTable[0].bActive = true;
	if (pDevice->byBBType == BB_TYPE_11B)
		uRateLen = WLAN_RATES_MAXLEN_11B;
	pMgmt->abyCurrSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES) pSuppRates,
						(PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates,
						uRateLen);
	pMgmt->abyCurrExtSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES) pExtSuppRates,
						   (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates,
						   uRateLen);
	RATEvParseMaxRate((void *) pDevice,
			  (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates,
			  (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates,
			  true,
			  &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
			  &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
			  &(pMgmt->sNodeDBTable[0].wSuppRate),
			  &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
			  &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate));
	memcpy(pMgmt->sNodeDBTable[0].abyMACAddr, pMgmt->abyCurrBSSID,
	       WLAN_ADDR_LEN);
	pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxSuppRate;
	pMgmt->sNodeDBTable[0].bShortPreamble =
			WLAN_GET_CAP_INFO_SHORTPREAMBLE(*pwCapInfo);
	pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
	/* Auto rate fallback function initiation.
	 * RATEbInit(pDevice); */
	DBG_PRT(MSG_LEVEL_DEBUG,
		KERN_INFO"pMgmt->sNodeDBTable[0].wTxDataRate = %d\n",
		pMgmt->sNodeDBTable[0].wTxDataRate);

}

/*
 * Routine Description:
 *	  Add Multicast Node content in Index 0 of KnownNodeDB
 *
 *
 * Return Value:
 *	  None
 */
void BSSvAddMulticastNode(struct vnt_private *pDevice)
{
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;

	if (!pDevice->bEnableHostWEP)
		memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
	memset(pMgmt->sNodeDBTable[0].abyMACAddr, 0xff, WLAN_ADDR_LEN);
	pMgmt->sNodeDBTable[0].bActive = true;
	pMgmt->sNodeDBTable[0].bPSEnable = false;
	skb_queue_head_init(&pMgmt->sNodeDBTable[0].sTxPSQueue);
	RATEvParseMaxRate((void *) pDevice,
			  (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates,
			  (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates,
			  true,
			  &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
			  &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
			  &(pMgmt->sNodeDBTable[0].wSuppRate),
			  &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
			  &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate));
	pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxBasicRate;
	pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;

}

/*
 * Routine Description:
 *
 *
 *	Second call back function to update Node DB info & AP link status
 *
 *
 * Return Value:
 *	  none.
 */
void BSSvSecondCallBack(struct work_struct *work)
{
	struct vnt_private *pDevice = container_of(work,
			struct vnt_private, second_callback_work.work);
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	int ii;
	PWLAN_IE_SSID pItemSSID, pCurrSSID;
	u32 uSleepySTACnt = 0;
	u32 uNonShortSlotSTACnt = 0;
	u32 uLongPreambleSTACnt = 0;

	if (pDevice->Flags & fMP_DISCONNECTED)
		return;

	spin_lock_irq(&pDevice->lock);

	pDevice->uAssocCount = 0;

	/* Power Saving Mode Tx Burst */
	if (pDevice->bEnablePSMode == true) {
		pDevice->ulPSModeWaitTx++;
		if (pDevice->ulPSModeWaitTx >= 2) {
			pDevice->ulPSModeWaitTx = 0;
			pDevice->bPSModeTxBurst = false;
		}
	}

	pDevice->byERPFlag &=
		~(WLAN_SET_ERP_BARKER_MODE(1) | WLAN_SET_ERP_NONERP_PRESENT(1));

	if (pDevice->wUseProtectCntDown > 0) {
		pDevice->wUseProtectCntDown--;
	} else {
		/* disable protect mode */
		pDevice->byERPFlag &= ~(WLAN_SET_ERP_USE_PROTECTION(1));
	}

	if (pDevice->byReAssocCount > 0) {
		pDevice->byReAssocCount++;
		if (pDevice->byReAssocCount > 10 &&
		    pDevice->bLinkPass != true) { /* 10 sec timeout */
			printk("Re-association timeout!!!\n");
			pDevice->byReAssocCount = 0;
			/* if (pDevice->bWPASuppWextEnabled == true) */
			{
				union iwreq_data  wrqu;
				memset(&wrqu, 0, sizeof(wrqu));
				wrqu.ap_addr.sa_family = ARPHRD_ETHER;
				PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
				wireless_send_event(pDevice->dev, SIOCGIWAP,
						    &wrqu, NULL);
			}
		} else if (pDevice->bLinkPass == true) {
			pDevice->byReAssocCount = 0;
		}
	}

	pMgmt->eLastState = pMgmt->eCurrState;

	s_uCalculateLinkQual(pDevice);

	for (ii = 0; ii < (MAX_NODE_NUM + 1); ii++) {

		if (pMgmt->sNodeDBTable[ii].bActive) {
			/* Increase in-activity counter */
			pMgmt->sNodeDBTable[ii].uInActiveCount++;

			if (ii > 0) {
				if (pMgmt->sNodeDBTable[ii].uInActiveCount >
						MAX_INACTIVE_COUNT) {
					BSSvRemoveOneNode(pDevice, ii);
					DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
						"Inactive timeout [%d] sec, STA index = [%d] remove\n",
						MAX_INACTIVE_COUNT, ii);
					continue;
				}

				if (pMgmt->sNodeDBTable[ii].eNodeState >=
						NODE_ASSOC) {

					pDevice->uAssocCount++;

					/* check if Non ERP exist */
					if (pMgmt->sNodeDBTable[ii].uInActiveCount <
							ERP_RECOVER_COUNT) {
						if (!pMgmt->sNodeDBTable[ii].bShortPreamble) {
							pDevice->byERPFlag |=
								WLAN_SET_ERP_BARKER_MODE(1);
							uLongPreambleSTACnt++;
						}
						if (!pMgmt->sNodeDBTable[ii].bERPExist) {
							pDevice->byERPFlag |=
								WLAN_SET_ERP_NONERP_PRESENT(1);
							pDevice->byERPFlag |=
								WLAN_SET_ERP_USE_PROTECTION(1);
						}
						if (!pMgmt->sNodeDBTable[ii].bShortSlotTime)
							uNonShortSlotSTACnt++;
					}
				}

				/* check if any STA in PS mode */
				if (pMgmt->sNodeDBTable[ii].bPSEnable)
					uSleepySTACnt++;

			}

			/* Rate fallback check */
			if (!pDevice->bFixRate) {
				if (ii > 0) {
					/* ii = 0 for multicast node (AP & Adhoc) */
					RATEvTxRateFallBack((void *) pDevice,
						&(pMgmt->sNodeDBTable[ii]));
				} else if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
					/* ii = 0 reserved for unicast AP node (Infra STA) */
					RATEvTxRateFallBack((void *) pDevice,
						&(pMgmt->sNodeDBTable[ii]));
				}

			}

			/* check if pending PS queue */
			if (pMgmt->sNodeDBTable[ii].wEnQueueCnt != 0) {
				DBG_PRT(MSG_LEVEL_DEBUG,
					KERN_INFO "Index= %d, Queue = %d pending\n",
					ii,
					pMgmt->sNodeDBTable[ii].wEnQueueCnt);
				if (ii > 0 &&
				    pMgmt->sNodeDBTable[ii].wEnQueueCnt > 15) {
					BSSvRemoveOneNode(pDevice, ii);
					DBG_PRT(MSG_LEVEL_NOTICE,
						KERN_INFO "Pending many queues PS STA Index = %d remove\n",
						ii);
					continue;
				}
			}
		}

	}

	if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP &&
	    pDevice->byBBType == BB_TYPE_11G) {

		/* on/off protect mode */
		if (WLAN_GET_ERP_USE_PROTECTION(pDevice->byERPFlag)) {
			if (!pDevice->bProtectMode) {
				MACvEnableProtectMD(pDevice);
				pDevice->bProtectMode = true;
			}
		} else if (pDevice->bProtectMode) {
			MACvDisableProtectMD(pDevice);
			pDevice->bProtectMode = false;
		}
		/* on/off short slot time */

		if (uNonShortSlotSTACnt > 0) {
			if (pDevice->bShortSlotTime) {
				pDevice->bShortSlotTime = false;
				BBvSetShortSlotTime(pDevice);
				vUpdateIFS((void *) pDevice);
			}
		} else if (!pDevice->bShortSlotTime) {
				pDevice->bShortSlotTime = true;
				BBvSetShortSlotTime(pDevice);
				vUpdateIFS((void *) pDevice);
		}

		/* on/off barker long preamble mode */

		if (uLongPreambleSTACnt > 0) {
			if (!pDevice->bBarkerPreambleMd) {
				MACvEnableBarkerPreambleMd(pDevice);
				pDevice->bBarkerPreambleMd = true;
			}
		} else if (pDevice->bBarkerPreambleMd) {
				MACvDisableBarkerPreambleMd(pDevice);
				pDevice->bBarkerPreambleMd = false;
		}

	}

	/* Check if any STA in PS mode, enable DTIM multicast deliver */
	if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
		if (uSleepySTACnt > 0)
			pMgmt->sNodeDBTable[0].bPSEnable = true;
		else
			pMgmt->sNodeDBTable[0].bPSEnable = false;
	}

	pItemSSID = (PWLAN_IE_SSID) pMgmt->abyDesireSSID;
	pCurrSSID = (PWLAN_IE_SSID) pMgmt->abyCurrSSID;

	if (pMgmt->eCurrMode == WMAC_MODE_STANDBY ||
	    pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {

		if (pMgmt->sNodeDBTable[0].bActive) { /* Assoc with BSS */

			if (pDevice->bUpdateBBVGA) {
				s_vCheckSensitivity(pDevice);
				s_vCheckPreEDThreshold(pDevice);
			}

			if (pMgmt->sNodeDBTable[0].uInActiveCount >=
							(LOST_BEACON_COUNT/2) &&
			    pDevice->byBBVGACurrent != pDevice->abyBBVGA[0]) {
				pDevice->byBBVGANew = pDevice->abyBBVGA[0];
				bScheduleCommand((void *) pDevice,
						 WLAN_CMD_CHANGE_BBSENSITIVITY,
						 NULL);
			}

			if (pMgmt->sNodeDBTable[0].uInActiveCount >=
					LOST_BEACON_COUNT) {
				pMgmt->sNodeDBTable[0].bActive = false;
				pMgmt->eCurrMode = WMAC_MODE_STANDBY;
				pMgmt->eCurrState = WMAC_STATE_IDLE;
				netif_stop_queue(pDevice->dev);
				pDevice->bLinkPass = false;
				ControlvMaskByte(pDevice,
						 MESSAGE_REQUEST_MACREG,
						 MAC_REG_PAPEDELAY, LEDSTS_STS,
						 LEDSTS_SLOW);
				pDevice->bRoaming = true;
				pDevice->bIsRoaming = false;

				DBG_PRT(MSG_LEVEL_NOTICE,
					KERN_INFO "Lost AP beacon [%d] sec, disconnected !\n",
					pMgmt->sNodeDBTable[0].uInActiveCount);
				/* let wpa supplicant know AP may disconnect */
				{
					union iwreq_data  wrqu;
					memset(&wrqu, 0, sizeof(wrqu));
						wrqu.ap_addr.sa_family = ARPHRD_ETHER;
					PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
					wireless_send_event(pDevice->dev,
							    SIOCGIWAP,
							    &wrqu,
							    NULL);
				}
			}
		} else if (pItemSSID->len != 0) {
			/* Davidwang */
			if ((pDevice->bEnableRoaming == true) &&
			    (!(pMgmt->Cisco_cckm))) {
				DBG_PRT(MSG_LEVEL_DEBUG,
					KERN_INFO "bRoaming %d, !\n",
					pDevice->bRoaming);
				DBG_PRT(MSG_LEVEL_DEBUG,
					KERN_INFO "bIsRoaming %d, !\n",
					pDevice->bIsRoaming);
				if ((pDevice->bRoaming == true) &&
				    (pDevice->bIsRoaming == true)) {
					DBG_PRT(MSG_LEVEL_DEBUG,
						KERN_INFO "Fast   Roaming ...\n");
					BSSvClearBSSList((void *) pDevice,
							 pDevice->bLinkPass);
					bScheduleCommand((void *) pDevice,
							 WLAN_CMD_BSSID_SCAN,
							 pMgmt->abyDesireSSID);
					bScheduleCommand((void *) pDevice,
							 WLAN_CMD_SSID,
							 pMgmt->abyDesireSSID);
					pDevice->uAutoReConnectTime = 0;
					pDevice->uIsroamingTime = 0;
					pDevice->bRoaming = false;
				} else if (pDevice->bRoaming == false &&
					   pDevice->bIsRoaming == true) {
					pDevice->uIsroamingTime++;
					if (pDevice->uIsroamingTime >= 20)
						pDevice->bIsRoaming = false;
				}
			} else if (pDevice->uAutoReConnectTime < 10) {
				pDevice->uAutoReConnectTime++;
				/* network manager support need not do Roaming scan??? */
				if (pDevice->bWPASuppWextEnabled == true)
					pDevice->uAutoReConnectTime = 0;
			} else {
				/* mike use old encryption status for wpa reauthen */
				if (pDevice->bWPADEVUp)
					pDevice->eEncryptionStatus =
						pDevice->eOldEncryptionStatus;

				DBG_PRT(MSG_LEVEL_DEBUG,
					KERN_INFO "Roaming ...\n");
				BSSvClearBSSList((void *) pDevice,
						 pDevice->bLinkPass);
				pMgmt->eScanType = WMAC_SCAN_ACTIVE;
				bScheduleCommand((void *) pDevice,
						 WLAN_CMD_BSSID_SCAN,
						 pMgmt->abyDesireSSID);
				bScheduleCommand((void *) pDevice,
						 WLAN_CMD_SSID,
						 pMgmt->abyDesireSSID);
				pDevice->uAutoReConnectTime = 0;
			}
		}
	}

	if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
		/* if adhoc started which essid is NULL string, rescanning. */
		if (pMgmt->eCurrState == WMAC_STATE_STARTED &&
		    pCurrSSID->len == 0) {
			if (pDevice->uAutoReConnectTime < 10) {
				pDevice->uAutoReConnectTime++;
			} else {
				DBG_PRT(MSG_LEVEL_NOTICE,
					KERN_INFO "Adhoc re-scanning ...\n");
				pMgmt->eScanType = WMAC_SCAN_ACTIVE;
				bScheduleCommand((void *) pDevice,
						 WLAN_CMD_BSSID_SCAN, NULL);
				bScheduleCommand((void *) pDevice,
						 WLAN_CMD_SSID, NULL);
				pDevice->uAutoReConnectTime = 0;
			}
		}
		if (pMgmt->eCurrState == WMAC_STATE_JOINTED) {

			if (pDevice->bUpdateBBVGA) {
				s_vCheckSensitivity(pDevice);
				s_vCheckPreEDThreshold(pDevice);
			}
			if (pMgmt->sNodeDBTable[0].uInActiveCount >=
						ADHOC_LOST_BEACON_COUNT) {
				DBG_PRT(MSG_LEVEL_NOTICE,
					KERN_INFO "Lost other STA beacon [%d] sec, started !\n",
					pMgmt->sNodeDBTable[0].uInActiveCount);
				pMgmt->sNodeDBTable[0].uInActiveCount = 0;
				pMgmt->eCurrState = WMAC_STATE_STARTED;
				netif_stop_queue(pDevice->dev);
				pDevice->bLinkPass = false;
				ControlvMaskByte(pDevice,
						 MESSAGE_REQUEST_MACREG,
						 MAC_REG_PAPEDELAY, LEDSTS_STS,
						 LEDSTS_SLOW);
			}
		}
	}

	if (pDevice->bLinkPass == true) {
		if ((pMgmt->eAuthenMode < WMAC_AUTH_WPA ||
		     pDevice->fWPA_Authened == true) &&
		    (++pDevice->tx_data_time_out > 40)) {
			pDevice->tx_trigger = true;

			PSbSendNullPacket(pDevice);

			pDevice->tx_trigger = false;
			pDevice->tx_data_time_out = 0;
		}

		if (netif_queue_stopped(pDevice->dev))
			netif_wake_queue(pDevice->dev);
	}

	spin_unlock_irq(&pDevice->lock);

	schedule_delayed_work(&pDevice->second_callback_work, HZ);
}

/*
 * Routine Description:
 *
 *
 *	Update Tx attemps, Tx failure counter in Node DB
 *
 *
 * Return Value:
 *	  none.
 */
void BSSvUpdateNodeTxCounter(struct vnt_private *pDevice, u8 byTSR, u8 byPktNO)
{
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	struct vnt_tx_pkt_info *pkt_info = pDevice->pkt_info;
	u32 uNodeIndex = 0;
	u8 byTxRetry;
	u16 wRate;
	u16 wFallBackRate = RATE_1M;
	u8 byFallBack;
	int ii;
	u8 *pbyDestAddr;
	u8 byPktNum;
	u16 wFIFOCtl;

	byPktNum = (byPktNO & 0x0F) >> 4;
	byTxRetry = (byTSR & 0xF0) >> 4;
	wRate = (u16) (byPktNO & 0xF0) >> 4;
	wFIFOCtl = pkt_info[byPktNum].fifo_ctl;
	pbyDestAddr = pkt_info[byPktNum].dest_addr;

	if (wFIFOCtl & FIFOCTL_AUTO_FB_0)
		byFallBack = AUTO_FB_0;
	else if (wFIFOCtl & FIFOCTL_AUTO_FB_1)
		byFallBack = AUTO_FB_1;
	else
		byFallBack = AUTO_FB_NONE;

	/* Only Unicast using support rates */
	if (wFIFOCtl & FIFOCTL_NEEDACK) {
		if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
			pMgmt->sNodeDBTable[0].uTxAttempts += 1;
			if (!(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
				/* transmit success, TxAttempts at least plus one */
				pMgmt->sNodeDBTable[0].uTxOk[MAX_RATE]++;
				if ((byFallBack == AUTO_FB_NONE) ||
				    (wRate < RATE_18M)) {
					wFallBackRate = wRate;
				} else if (byFallBack == AUTO_FB_0) {
					if (byTxRetry < 5)
						wFallBackRate =
							awHWRetry0[wRate-RATE_18M][byTxRetry];
					else
						wFallBackRate =
							awHWRetry0[wRate-RATE_18M][4];
				} else if (byFallBack == AUTO_FB_1) {
					if (byTxRetry < 5)
						wFallBackRate =
							awHWRetry1[wRate-RATE_18M][byTxRetry];
					else
						wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
				}
				pMgmt->sNodeDBTable[0].uTxOk[wFallBackRate]++;
			} else {
				pMgmt->sNodeDBTable[0].uTxFailures++;
			}
			pMgmt->sNodeDBTable[0].uTxRetry += byTxRetry;
			if (byTxRetry != 0) {
				pMgmt->sNodeDBTable[0].uTxFail[MAX_RATE] += byTxRetry;
				if (byFallBack == AUTO_FB_NONE ||
				    wRate < RATE_18M) {
					pMgmt->sNodeDBTable[0].uTxFail[wRate] += byTxRetry;
				} else if (byFallBack == AUTO_FB_0) {
					for (ii = 0; ii < byTxRetry; ii++) {
						if (ii < 5)
							wFallBackRate =
								awHWRetry0[wRate-RATE_18M][ii];
						else
							wFallBackRate =
								awHWRetry0[wRate-RATE_18M][4];
						pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
					}
				} else if (byFallBack == AUTO_FB_1) {
					for (ii = 0; ii < byTxRetry; ii++) {
						if (ii < 5)
							wFallBackRate =
								awHWRetry1[wRate-RATE_18M][ii];
						else
							wFallBackRate =
								awHWRetry1[wRate-RATE_18M][4];
						pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
					}
				}
			}
		}

		if ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA ||
		     pMgmt->eCurrMode == WMAC_MODE_ESS_AP) &&
		    BSSbIsSTAInNodeDB((void *) pDevice,
				       pbyDestAddr,
				       &uNodeIndex)) {
			pMgmt->sNodeDBTable[uNodeIndex].uTxAttempts += 1;
			if (!(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
				/* transmit success, TxAttempts at least plus one */
				pMgmt->sNodeDBTable[uNodeIndex].uTxOk[MAX_RATE]++;
				if ((byFallBack == AUTO_FB_NONE) ||
					(wRate < RATE_18M)) {
					wFallBackRate = wRate;
				} else if (byFallBack == AUTO_FB_0) {
					if (byTxRetry < 5)
						wFallBackRate =
							awHWRetry0[wRate-RATE_18M][byTxRetry];
					else
						wFallBackRate =
							awHWRetry0[wRate-RATE_18M][4];
				} else if (byFallBack == AUTO_FB_1) {
					if (byTxRetry < 5)
						wFallBackRate =
							awHWRetry1[wRate-RATE_18M][byTxRetry];
					else
						wFallBackRate =
							awHWRetry1[wRate-RATE_18M][4];
				}
				pMgmt->sNodeDBTable[uNodeIndex].uTxOk[wFallBackRate]++;
			} else {
				pMgmt->sNodeDBTable[uNodeIndex].uTxFailures++;
			}
			pMgmt->sNodeDBTable[uNodeIndex].uTxRetry += byTxRetry;
			if (byTxRetry != 0) {
				pMgmt->sNodeDBTable[uNodeIndex].uTxFail[MAX_RATE] += byTxRetry;
				if ((byFallBack == AUTO_FB_NONE) ||
				    (wRate < RATE_18M)) {
					pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wRate] += byTxRetry;
				} else if (byFallBack == AUTO_FB_0) {
					for (ii = 0; ii < byTxRetry; ii++) {
						if (ii < 5)
							wFallBackRate =
								awHWRetry0[wRate-RATE_18M][ii];
						else
							wFallBackRate =
								awHWRetry0[wRate-RATE_18M][4];
						pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
					}
				} else if (byFallBack == AUTO_FB_1) {
					for (ii = 0; ii < byTxRetry; ii++) {
						if (ii < 5)
							wFallBackRate = awHWRetry1[wRate-RATE_18M][ii];
						else
							wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
						pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
					}
				}
			}
		}
	}
}

/*
 * Routine Description:
 *	  Clear Nodes & skb in DB Table
 *
 *
 * Parameters:
 *	In:
 *		hDeviceContext	- The adapter context.
 *		uStartIndex	- starting index
 *	Out:
 *		none
 *
 * Return Value:
 *	  None.
 */
void BSSvClearNodeDBTable(struct vnt_private *pDevice, u32 uStartIndex)
{
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	struct sk_buff	*skb;
	int ii;

	for (ii = uStartIndex; ii < (MAX_NODE_NUM + 1); ii++) {
		if (pMgmt->sNodeDBTable[ii].bActive) {
			/* check if sTxPSQueue has been initial */
			if (pMgmt->sNodeDBTable[ii].sTxPSQueue.next) {
				while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[ii].sTxPSQueue))) {
					DBG_PRT(MSG_LEVEL_DEBUG,
						KERN_INFO "PS skb != NULL %d\n",
						ii);
					dev_kfree_skb(skb);
				}
			}
			memset(&pMgmt->sNodeDBTable[ii], 0, sizeof(KnownNodeDB));
		}
	}
}

static void s_vCheckSensitivity(struct vnt_private *pDevice)
{
	PKnownBSS pBSSList = NULL;
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	int ii;

	if (pMgmt->eCurrState == WMAC_STATE_ASSOC ||
	    (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA &&
	     pMgmt->eCurrState == WMAC_STATE_JOINTED)) {
		pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID,
					       (PWLAN_IE_SSID) pMgmt->abyCurrSSID);
		if (pBSSList) {
			/* Update BB register if RSSI is too strong */
			signed long    LocalldBmAverage = 0;
			signed long    uNumofdBm = 0;
			for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
				if (pBSSList->ldBmAverage[ii] != 0) {
					uNumofdBm++;
					LocalldBmAverage += pBSSList->ldBmAverage[ii];
				}
			}
			if (uNumofdBm > 0) {
				LocalldBmAverage = LocalldBmAverage/uNumofdBm;
				for (ii = 0; ii < BB_VGA_LEVEL; ii++) {
					DBG_PRT(MSG_LEVEL_DEBUG,
						KERN_INFO"LocalldBmAverage:%ld, %ld %02x\n",
						LocalldBmAverage,
						pDevice->ldBmThreshold[ii],
						pDevice->abyBBVGA[ii]);
					if (LocalldBmAverage < pDevice->ldBmThreshold[ii]) {
						pDevice->byBBVGANew =
							pDevice->abyBBVGA[ii];
						break;
					}
				}
				if (pDevice->byBBVGANew !=
						pDevice->byBBVGACurrent) {
					pDevice->uBBVGADiffCount++;
					if (pDevice->uBBVGADiffCount >=
							BB_VGA_CHANGE_THRESHOLD)
						bScheduleCommand(pDevice,
							WLAN_CMD_CHANGE_BBSENSITIVITY,
							NULL);
				} else {
					pDevice->uBBVGADiffCount = 0;
				}
			}
		}
	}
}

static void s_uCalculateLinkQual(struct vnt_private *pDevice)
{
	struct net_device_stats *stats = &pDevice->stats;
	unsigned long TxOkRatio, TxCnt;
	unsigned long RxOkRatio, RxCnt;
	unsigned long RssiRatio;
	unsigned long qual;
	long ldBm;

	TxCnt = stats->tx_packets + pDevice->wstats.discard.retries;

	RxCnt = stats->rx_packets + stats->rx_frame_errors;

	TxOkRatio = (TxCnt < 6) ? 4000:((stats->tx_packets * 4000) / TxCnt);

	RxOkRatio = (RxCnt < 6) ? 2000 :
				((stats->rx_packets * 2000) / RxCnt);

	/* decide link quality */
	if (pDevice->bLinkPass != true) {
		pDevice->wstats.qual.qual = 0;
	} else {
		RFvRSSITodBm(pDevice, (u8) (pDevice->uCurrRSSI), &ldBm);
		if (-ldBm < 50)
			RssiRatio = 4000;
		else if (-ldBm > 90)
			RssiRatio = 0;
		else
			RssiRatio = (40-(-ldBm-50)) * 4000 / 40;

		qual = (RssiRatio + TxOkRatio + RxOkRatio) / 100;
		if (qual < 100)
			pDevice->wstats.qual.qual = (u8) qual;
		else
			pDevice->wstats.qual.qual = 100;
	}
}

void BSSvClearAnyBSSJoinRecord(struct vnt_private *pDevice)
{
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
	int ii;

	for (ii = 0; ii < MAX_BSS_NUM; ii++)
		pMgmt->sBSSList[ii].bSelected = false;

	return;
}

static void s_vCheckPreEDThreshold(struct vnt_private *pDevice)
{
	PKnownBSS pBSSList = NULL;
	struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;

	if (pMgmt->eCurrState == WMAC_STATE_ASSOC ||
	    (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA &&
	     pMgmt->eCurrState == WMAC_STATE_JOINTED)) {
		pBSSList = BSSpAddrIsInBSSList(pDevice,
					       pMgmt->abyCurrBSSID,
					       (PWLAN_IE_SSID) pMgmt->abyCurrSSID);
		if (pBSSList) {
			pDevice->byBBPreEDRSSI =
				(u8) (~(pBSSList->ldBmAverRange) + 1);
			BBvUpdatePreEDThreshold(pDevice, false);
		}
	}
}