/* * Copyright (c) 1996 John Shifflett, GeoLog Consulting * john@geolog.com * jshiffle@netcom.com * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC * provided much of the inspiration and some of the code for this * driver. Everything I know about Amiga DMA was gleaned from careful * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I * borrowed shamelessly from all over that source. Thanks Hamish! * * _This_ driver is (I feel) an improvement over the old one in * several respects: * * - Target Disconnection/Reconnection is now supported. Any * system with more than one device active on the SCSI bus * will benefit from this. The driver defaults to what I * call 'adaptive disconnect' - meaning that each command * is evaluated individually as to whether or not it should * be run with the option to disconnect/reselect (if the * device chooses), or as a "SCSI-bus-hog". * * - Synchronous data transfers are now supported. Because of * a few devices that choke after telling the driver that * they can do sync transfers, we don't automatically use * this faster protocol - it can be enabled via the command- * line on a device-by-device basis. * * - Runtime operating parameters can now be specified through * the 'amiboot' or the 'insmod' command line. For amiboot do: * "amiboot [usual stuff] wd33c93=blah,blah,blah" * The defaults should be good for most people. See the comment * for 'setup_strings' below for more details. * * - The old driver relied exclusively on what the Western Digital * docs call "Combination Level 2 Commands", which are a great * idea in that the CPU is relieved of a lot of interrupt * overhead. However, by accepting a certain (user-settable) * amount of additional interrupts, this driver achieves * better control over the SCSI bus, and data transfers are * almost as fast while being much easier to define, track, * and debug. * * * TODO: * more speed. linked commands. * * * People with bug reports, wish-lists, complaints, comments, * or improvements are asked to pah-leeez email me (John Shifflett) * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get * this thing into as good a shape as possible, and I'm positive * there are lots of lurking bugs and "Stupid Places". * * Updates: * * Added support for pre -A chips, which don't have advanced features * and will generate CSR_RESEL rather than CSR_RESEL_AM. * Richard Hirst <richard@sleepie.demon.co.uk> August 2000 * * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of * default_sx_per for asynchronous data transfers. Added adjustment * of transfer periods in sx_table to the actual input-clock. * peter fuerst <post@pfrst.de> February 2007 */ #include <linux/module.h> #include <linux/string.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/blkdev.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include <asm/irq.h> #include "wd33c93.h" #define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns #define WD33C93_VERSION "1.26++" #define WD33C93_DATE "10/Feb/2007" MODULE_AUTHOR("John Shifflett"); MODULE_DESCRIPTION("Generic WD33C93 SCSI driver"); MODULE_LICENSE("GPL"); /* * 'setup_strings' is a single string used to pass operating parameters and * settings from the kernel/module command-line to the driver. 'setup_args[]' * is an array of strings that define the compile-time default values for * these settings. If Linux boots with an amiboot or insmod command-line, * those settings are combined with 'setup_args[]'. Note that amiboot * command-lines are prefixed with "wd33c93=" while insmod uses a * "setup_strings=" prefix. The driver recognizes the following keywords * (lower case required) and arguments: * * - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with * the 7 possible SCSI devices. Set a bit to negotiate for * asynchronous transfers on that device. To maintain * backwards compatibility, a command-line such as * "wd33c93=255" will be automatically translated to * "wd33c93=nosync:0xff". * - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is * optional - if not present, same as "nodma:1". * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer * period. Default is 500; acceptable values are 250 - 1000. * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them. * x = 1 does 'adaptive' disconnects, which is the default * and generally the best choice. * - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes * various types of debug output to printed - see the DB_xxx * defines in wd33c93.h * - clock:x -x = clock input in MHz for WD33c93 chip. Normal values * would be from 8 through 20. Default is 8. * - burst:x -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use * Single Byte DMA, which is the default. Argument is * optional - if not present, same as "burst:1". * - fast:x -x = 1 to enable Fast SCSI, which is only effective with * input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable * it, which is the default. Argument is optional - if not * present, same as "fast:1". * - next -No argument. Used to separate blocks of keywords when * there's more than one host adapter in the system. * * Syntax Notes: * - Numeric arguments can be decimal or the '0x' form of hex notation. There * _must_ be a colon between a keyword and its numeric argument, with no * spaces. * - Keywords are separated by commas, no spaces, in the standard kernel * command-line manner. * - A keyword in the 'nth' comma-separated command-line member will overwrite * the 'nth' element of setup_args[]. A blank command-line member (in * other words, a comma with no preceding keyword) will _not_ overwrite * the corresponding setup_args[] element. * - If a keyword is used more than once, the first one applies to the first * SCSI host found, the second to the second card, etc, unless the 'next' * keyword is used to change the order. * * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'): * - wd33c93=nosync:255 * - wd33c93=nodma * - wd33c93=nodma:1 * - wd33c93=disconnect:2,nosync:0x08,period:250 * - wd33c93=debug:0x1c */ /* Normally, no defaults are specified */ static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" }; static char *setup_strings; module_param(setup_strings, charp, 0); static void wd33c93_execute(struct Scsi_Host *instance); #ifdef CONFIG_WD33C93_PIO static inline uchar read_wd33c93(const wd33c93_regs regs, uchar reg_num) { uchar data; outb(reg_num, regs.SASR); data = inb(regs.SCMD); return data; } static inline unsigned long read_wd33c93_count(const wd33c93_regs regs) { unsigned long value; outb(WD_TRANSFER_COUNT_MSB, regs.SASR); value = inb(regs.SCMD) << 16; value |= inb(regs.SCMD) << 8; value |= inb(regs.SCMD); return value; } static inline uchar read_aux_stat(const wd33c93_regs regs) { return inb(regs.SASR); } static inline void write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value) { outb(reg_num, regs.SASR); outb(value, regs.SCMD); } static inline void write_wd33c93_count(const wd33c93_regs regs, unsigned long value) { outb(WD_TRANSFER_COUNT_MSB, regs.SASR); outb((value >> 16) & 0xff, regs.SCMD); outb((value >> 8) & 0xff, regs.SCMD); outb( value & 0xff, regs.SCMD); } #define write_wd33c93_cmd(regs, cmd) \ write_wd33c93((regs), WD_COMMAND, (cmd)) static inline void write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[]) { int i; outb(WD_CDB_1, regs.SASR); for (i=0; i<len; i++) outb(cmnd[i], regs.SCMD); } #else /* CONFIG_WD33C93_PIO */ static inline uchar read_wd33c93(const wd33c93_regs regs, uchar reg_num) { *regs.SASR = reg_num; mb(); return (*regs.SCMD); } static unsigned long read_wd33c93_count(const wd33c93_regs regs) { unsigned long value; *regs.SASR = WD_TRANSFER_COUNT_MSB; mb(); value = *regs.SCMD << 16; value |= *regs.SCMD << 8; value |= *regs.SCMD; mb(); return value; } static inline uchar read_aux_stat(const wd33c93_regs regs) { return *regs.SASR; } static inline void write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value) { *regs.SASR = reg_num; mb(); *regs.SCMD = value; mb(); } static void write_wd33c93_count(const wd33c93_regs regs, unsigned long value) { *regs.SASR = WD_TRANSFER_COUNT_MSB; mb(); *regs.SCMD = value >> 16; *regs.SCMD = value >> 8; *regs.SCMD = value; mb(); } static inline void write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd) { *regs.SASR = WD_COMMAND; mb(); *regs.SCMD = cmd; mb(); } static inline void write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[]) { int i; *regs.SASR = WD_CDB_1; for (i = 0; i < len; i++) *regs.SCMD = cmnd[i]; } #endif /* CONFIG_WD33C93_PIO */ static inline uchar read_1_byte(const wd33c93_regs regs) { uchar asr; uchar x = 0; write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80); do { asr = read_aux_stat(regs); if (asr & ASR_DBR) x = read_wd33c93(regs, WD_DATA); } while (!(asr & ASR_INT)); return x; } static int round_period(unsigned int period, const struct sx_period *sx_table) { int x; for (x = 1; sx_table[x].period_ns; x++) { if ((period <= sx_table[x - 0].period_ns) && (period > sx_table[x - 1].period_ns)) { return x; } } return 7; } /* * Calculate Synchronous Transfer Register value from SDTR code. */ static uchar calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast, const struct sx_period *sx_table) { /* When doing Fast SCSI synchronous data transfers, the corresponding * value in 'sx_table' is two times the actually used transfer period. */ uchar result; if (offset && fast) { fast = STR_FSS; period *= 2; } else { fast = 0; } period *= 4; /* convert SDTR code to ns */ result = sx_table[round_period(period,sx_table)].reg_value; result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF; result |= fast; return result; } /* * Calculate SDTR code bytes [3],[4] from period and offset. */ static inline void calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast, uchar msg[2]) { /* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The * actually used transfer period for Fast SCSI synchronous data * transfers is half that value. */ period /= 4; if (offset && fast) period /= 2; msg[0] = period; msg[1] = offset; } static int wd33c93_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) { struct WD33C93_hostdata *hostdata; struct scsi_cmnd *tmp; hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata; DB(DB_QUEUE_COMMAND, printk("Q-%d-%02x( ", cmd->device->id, cmd->cmnd[0])) /* Set up a few fields in the scsi_cmnd structure for our own use: * - host_scribble is the pointer to the next cmd in the input queue * - scsi_done points to the routine we call when a cmd is finished * - result is what you'd expect */ cmd->host_scribble = NULL; cmd->scsi_done = done; cmd->result = 0; /* We use the Scsi_Pointer structure that's included with each command * as a scratchpad (as it's intended to be used!). The handy thing about * the SCp.xxx fields is that they're always associated with a given * cmd, and are preserved across disconnect-reselect. This means we * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages * if we keep all the critical pointers and counters in SCp: * - SCp.ptr is the pointer into the RAM buffer * - SCp.this_residual is the size of that buffer * - SCp.buffer points to the current scatter-gather buffer * - SCp.buffers_residual tells us how many S.G. buffers there are * - SCp.have_data_in is not used * - SCp.sent_command is not used * - SCp.phase records this command's SRCID_ER bit setting */ if (scsi_bufflen(cmd)) { cmd->SCp.buffer = scsi_sglist(cmd); cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1; cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); cmd->SCp.this_residual = cmd->SCp.buffer->length; } else { cmd->SCp.buffer = NULL; cmd->SCp.buffers_residual = 0; cmd->SCp.ptr = NULL; cmd->SCp.this_residual = 0; } /* WD docs state that at the conclusion of a "LEVEL2" command, the * status byte can be retrieved from the LUN register. Apparently, * this is the case only for *uninterrupted* LEVEL2 commands! If * there are any unexpected phases entered, even if they are 100% * legal (different devices may choose to do things differently), * the LEVEL2 command sequence is exited. This often occurs prior * to receiving the status byte, in which case the driver does a * status phase interrupt and gets the status byte on its own. * While such a command can then be "resumed" (ie restarted to * finish up as a LEVEL2 command), the LUN register will NOT be * a valid status byte at the command's conclusion, and we must * use the byte obtained during the earlier interrupt. Here, we * preset SCp.Status to an illegal value (0xff) so that when * this command finally completes, we can tell where the actual * status byte is stored. */ cmd->SCp.Status = ILLEGAL_STATUS_BYTE; /* * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE * commands are added to the head of the queue so that the desired * sense data is not lost before REQUEST_SENSE executes. */ spin_lock_irq(&hostdata->lock); if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) { cmd->host_scribble = (uchar *) hostdata->input_Q; hostdata->input_Q = cmd; } else { /* find the end of the queue */ for (tmp = (struct scsi_cmnd *) hostdata->input_Q; tmp->host_scribble; tmp = (struct scsi_cmnd *) tmp->host_scribble) ; tmp->host_scribble = (uchar *) cmd; } /* We know that there's at least one command in 'input_Q' now. * Go see if any of them are runnable! */ wd33c93_execute(cmd->device->host); DB(DB_QUEUE_COMMAND, printk(")Q ")) spin_unlock_irq(&hostdata->lock); return 0; } DEF_SCSI_QCMD(wd33c93_queuecommand) /* * This routine attempts to start a scsi command. If the host_card is * already connected, we give up immediately. Otherwise, look through * the input_Q, using the first command we find that's intended * for a currently non-busy target/lun. * * wd33c93_execute() is always called with interrupts disabled or from * the wd33c93_intr itself, which means that a wd33c93 interrupt * cannot occur while we are in here. */ static void wd33c93_execute(struct Scsi_Host *instance) { struct WD33C93_hostdata *hostdata = (struct WD33C93_hostdata *) instance->hostdata; const wd33c93_regs regs = hostdata->regs; struct scsi_cmnd *cmd, *prev; DB(DB_EXECUTE, printk("EX(")) if (hostdata->selecting || hostdata->connected) { DB(DB_EXECUTE, printk(")EX-0 ")) return; } /* * Search through the input_Q for a command destined * for an idle target/lun. */ cmd = (struct scsi_cmnd *) hostdata->input_Q; prev = NULL; while (cmd) { if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun))) break; prev = cmd; cmd = (struct scsi_cmnd *) cmd->host_scribble; } /* quit if queue empty or all possible targets are busy */ if (!cmd) { DB(DB_EXECUTE, printk(")EX-1 ")) return; } /* remove command from queue */ if (prev) prev->host_scribble = cmd->host_scribble; else hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble; #ifdef PROC_STATISTICS hostdata->cmd_cnt[cmd->device->id]++; #endif /* * Start the selection process */ if (cmd->sc_data_direction == DMA_TO_DEVICE) write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id); else write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD); /* Now we need to figure out whether or not this command is a good * candidate for disconnect/reselect. We guess to the best of our * ability, based on a set of hierarchical rules. When several * devices are operating simultaneously, disconnects are usually * an advantage. In a single device system, or if only 1 device * is being accessed, transfers usually go faster if disconnects * are not allowed: * * + Commands should NEVER disconnect if hostdata->disconnect = * DIS_NEVER (this holds for tape drives also), and ALWAYS * disconnect if hostdata->disconnect = DIS_ALWAYS. * + Tape drive commands should always be allowed to disconnect. * + Disconnect should be allowed if disconnected_Q isn't empty. * + Commands should NOT disconnect if input_Q is empty. * + Disconnect should be allowed if there are commands in input_Q * for a different target/lun. In this case, the other commands * should be made disconnect-able, if not already. * * I know, I know - this code would flunk me out of any * "C Programming 101" class ever offered. But it's easy * to change around and experiment with for now. */ cmd->SCp.phase = 0; /* assume no disconnect */ if (hostdata->disconnect == DIS_NEVER) goto no; if (hostdata->disconnect == DIS_ALWAYS) goto yes; if (cmd->device->type == 1) /* tape drive? */ goto yes; if (hostdata->disconnected_Q) /* other commands disconnected? */ goto yes; if (!(hostdata->input_Q)) /* input_Q empty? */ goto no; for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev; prev = (struct scsi_cmnd *) prev->host_scribble) { if ((prev->device->id != cmd->device->id) || (prev->device->lun != cmd->device->lun)) { for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev; prev = (struct scsi_cmnd *) prev->host_scribble) prev->SCp.phase = 1; goto yes; } } goto no; yes: cmd->SCp.phase = 1; #ifdef PROC_STATISTICS hostdata->disc_allowed_cnt[cmd->device->id]++; #endif no: write_wd33c93(regs, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0)); write_wd33c93(regs, WD_TARGET_LUN, cmd->device->lun); write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]); hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun); if ((hostdata->level2 == L2_NONE) || (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) { /* * Do a 'Select-With-ATN' command. This will end with * one of the following interrupts: * CSR_RESEL_AM: failure - can try again later. * CSR_TIMEOUT: failure - give up. * CSR_SELECT: success - proceed. */ hostdata->selecting = cmd; /* Every target has its own synchronous transfer setting, kept in the * sync_xfer array, and a corresponding status byte in sync_stat[]. * Each target's sync_stat[] entry is initialized to SX_UNSET, and its * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET * means that the parameters are undetermined as yet, and that we * need to send an SDTR message to this device after selection is * complete: We set SS_FIRST to tell the interrupt routine to do so. * If we've been asked not to try synchronous transfers on this * target (and _all_ luns within it), we'll still send the SDTR message * later, but at that time we'll negotiate for async by specifying a * sync fifo depth of 0. */ if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) hostdata->sync_stat[cmd->device->id] = SS_FIRST; hostdata->state = S_SELECTING; write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ write_wd33c93_cmd(regs, WD_CMD_SEL_ATN); } else { /* * Do a 'Select-With-ATN-Xfer' command. This will end with * one of the following interrupts: * CSR_RESEL_AM: failure - can try again later. * CSR_TIMEOUT: failure - give up. * anything else: success - proceed. */ hostdata->connected = cmd; write_wd33c93(regs, WD_COMMAND_PHASE, 0); /* copy command_descriptor_block into WD chip * (take advantage of auto-incrementing) */ write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd); /* The wd33c93 only knows about Group 0, 1, and 5 commands when * it's doing a 'select-and-transfer'. To be safe, we write the * size of the CDB into the OWN_ID register for every case. This * way there won't be problems with vendor-unique, audio, etc. */ write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len); /* When doing a non-disconnect command with DMA, we can save * ourselves a DATA phase interrupt later by setting everything * up ahead of time. */ if ((cmd->SCp.phase == 0) && (hostdata->no_dma == 0)) { if (hostdata->dma_setup(cmd, (cmd->sc_data_direction == DMA_TO_DEVICE) ? DATA_OUT_DIR : DATA_IN_DIR)) write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ else { write_wd33c93_count(regs, cmd->SCp.this_residual); write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode); hostdata->dma = D_DMA_RUNNING; } } else write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ hostdata->state = S_RUNNING_LEVEL2; write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); } /* * Since the SCSI bus can handle only 1 connection at a time, * we get out of here now. If the selection fails, or when * the command disconnects, we'll come back to this routine * to search the input_Q again... */ DB(DB_EXECUTE, printk("%s)EX-2 ", (cmd->SCp.phase) ? "d:" : "")) } static void transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt, int data_in_dir, struct WD33C93_hostdata *hostdata) { uchar asr; DB(DB_TRANSFER, printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out")) write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); write_wd33c93_count(regs, cnt); write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO); if (data_in_dir) { do { asr = read_aux_stat(regs); if (asr & ASR_DBR) *buf++ = read_wd33c93(regs, WD_DATA); } while (!(asr & ASR_INT)); } else { do { asr = read_aux_stat(regs); if (asr & ASR_DBR) write_wd33c93(regs, WD_DATA, *buf++); } while (!(asr & ASR_INT)); } /* Note: we are returning with the interrupt UN-cleared. * Since (presumably) an entire I/O operation has * completed, the bus phase is probably different, and * the interrupt routine will discover this when it * responds to the uncleared int. */ } static void transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd, int data_in_dir) { struct WD33C93_hostdata *hostdata; unsigned long length; hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata; /* Normally, you'd expect 'this_residual' to be non-zero here. * In a series of scatter-gather transfers, however, this * routine will usually be called with 'this_residual' equal * to 0 and 'buffers_residual' non-zero. This means that a * previous transfer completed, clearing 'this_residual', and * now we need to setup the next scatter-gather buffer as the * source or destination for THIS transfer. */ if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) { ++cmd->SCp.buffer; --cmd->SCp.buffers_residual; cmd->SCp.this_residual = cmd->SCp.buffer->length; cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); } if (!cmd->SCp.this_residual) /* avoid bogus setups */ return; write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]); /* 'hostdata->no_dma' is TRUE if we don't even want to try DMA. * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns. */ if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) { #ifdef PROC_STATISTICS hostdata->pio_cnt++; #endif transfer_pio(regs, (uchar *) cmd->SCp.ptr, cmd->SCp.this_residual, data_in_dir, hostdata); length = cmd->SCp.this_residual; cmd->SCp.this_residual = read_wd33c93_count(regs); cmd->SCp.ptr += (length - cmd->SCp.this_residual); } /* We are able to do DMA (in fact, the Amiga hardware is * already going!), so start up the wd33c93 in DMA mode. * We set 'hostdata->dma' = D_DMA_RUNNING so that when the * transfer completes and causes an interrupt, we're * reminded to tell the Amiga to shut down its end. We'll * postpone the updating of 'this_residual' and 'ptr' * until then. */ else { #ifdef PROC_STATISTICS hostdata->dma_cnt++; #endif write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode); write_wd33c93_count(regs, cmd->SCp.this_residual); if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) { write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); hostdata->state = S_RUNNING_LEVEL2; } else write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO); hostdata->dma = D_DMA_RUNNING; } } void wd33c93_intr(struct Scsi_Host *instance) { struct WD33C93_hostdata *hostdata = (struct WD33C93_hostdata *) instance->hostdata; const wd33c93_regs regs = hostdata->regs; struct scsi_cmnd *patch, *cmd; uchar asr, sr, phs, id, lun, *ucp, msg; unsigned long length, flags; asr = read_aux_stat(regs); if (!(asr & ASR_INT) || (asr & ASR_BSY)) return; spin_lock_irqsave(&hostdata->lock, flags); #ifdef PROC_STATISTICS hostdata->int_cnt++; #endif cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */ sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear the interrupt */ phs = read_wd33c93(regs, WD_COMMAND_PHASE); DB(DB_INTR, printk("{%02x:%02x-", asr, sr)) /* After starting a DMA transfer, the next interrupt * is guaranteed to be in response to completion of * the transfer. Since the Amiga DMA hardware runs in * in an open-ended fashion, it needs to be told when * to stop; do that here if D_DMA_RUNNING is true. * Also, we have to update 'this_residual' and 'ptr' * based on the contents of the TRANSFER_COUNT register, * in case the device decided to do an intermediate * disconnect (a device may do this if it has to do a * seek, or just to be nice and let other devices have * some bus time during long transfers). After doing * whatever is needed, we go on and service the WD3393 * interrupt normally. */ if (hostdata->dma == D_DMA_RUNNING) { DB(DB_TRANSFER, printk("[%p/%d:", cmd->SCp.ptr, cmd->SCp.this_residual)) hostdata->dma_stop(cmd->device->host, cmd, 1); hostdata->dma = D_DMA_OFF; length = cmd->SCp.this_residual; cmd->SCp.this_residual = read_wd33c93_count(regs); cmd->SCp.ptr += (length - cmd->SCp.this_residual); DB(DB_TRANSFER, printk("%p/%d]", cmd->SCp.ptr, cmd->SCp.this_residual)) } /* Respond to the specific WD3393 interrupt - there are quite a few! */ switch (sr) { case CSR_TIMEOUT: DB(DB_INTR, printk("TIMEOUT")) if (hostdata->state == S_RUNNING_LEVEL2) hostdata->connected = NULL; else { cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */ hostdata->selecting = NULL; } cmd->result = DID_NO_CONNECT << 16; hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); hostdata->state = S_UNCONNECTED; cmd->scsi_done(cmd); /* From esp.c: * There is a window of time within the scsi_done() path * of execution where interrupts are turned back on full * blast and left that way. During that time we could * reconnect to a disconnected command, then we'd bomb * out below. We could also end up executing two commands * at _once_. ...just so you know why the restore_flags() * is here... */ spin_unlock_irqrestore(&hostdata->lock, flags); /* We are not connected to a target - check to see if there * are commands waiting to be executed. */ wd33c93_execute(instance); break; /* Note: this interrupt should not occur in a LEVEL2 command */ case CSR_SELECT: DB(DB_INTR, printk("SELECT")) hostdata->connected = cmd = (struct scsi_cmnd *) hostdata->selecting; hostdata->selecting = NULL; /* construct an IDENTIFY message with correct disconnect bit */ hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun); if (cmd->SCp.phase) hostdata->outgoing_msg[0] |= 0x40; if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) { hostdata->sync_stat[cmd->device->id] = SS_WAITING; /* Tack on a 2nd message to ask about synchronous transfers. If we've * been asked to do only asynchronous transfers on this device, we * request a fifo depth of 0, which is equivalent to async - should * solve the problems some people have had with GVP's Guru ROM. */ hostdata->outgoing_msg[1] = EXTENDED_MESSAGE; hostdata->outgoing_msg[2] = 3; hostdata->outgoing_msg[3] = EXTENDED_SDTR; if (hostdata->no_sync & (1 << cmd->device->id)) { calc_sync_msg(hostdata->default_sx_per, 0, 0, hostdata->outgoing_msg + 4); } else { calc_sync_msg(optimum_sx_per(hostdata), OPTIMUM_SX_OFF, hostdata->fast, hostdata->outgoing_msg + 4); } hostdata->outgoing_len = 6; #ifdef SYNC_DEBUG ucp = hostdata->outgoing_msg + 1; printk(" sending SDTR %02x03%02x%02x%02x ", ucp[0], ucp[2], ucp[3], ucp[4]); #endif } else hostdata->outgoing_len = 1; hostdata->state = S_CONNECTED; spin_unlock_irqrestore(&hostdata->lock, flags); break; case CSR_XFER_DONE | PHS_DATA_IN: case CSR_UNEXP | PHS_DATA_IN: case CSR_SRV_REQ | PHS_DATA_IN: DB(DB_INTR, printk("IN-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual)) transfer_bytes(regs, cmd, DATA_IN_DIR); if (hostdata->state != S_RUNNING_LEVEL2) hostdata->state = S_CONNECTED; spin_unlock_irqrestore(&hostdata->lock, flags); break; case CSR_XFER_DONE | PHS_DATA_OUT: case CSR_UNEXP | PHS_DATA_OUT: case CSR_SRV_REQ | PHS_DATA_OUT: DB(DB_INTR, printk("OUT-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual)) transfer_bytes(regs, cmd, DATA_OUT_DIR); if (hostdata->state != S_RUNNING_LEVEL2) hostdata->state = S_CONNECTED; spin_unlock_irqrestore(&hostdata->lock, flags); break; /* Note: this interrupt should not occur in a LEVEL2 command */ case CSR_XFER_DONE | PHS_COMMAND: case CSR_UNEXP | PHS_COMMAND: case CSR_SRV_REQ | PHS_COMMAND: DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0])) transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, hostdata); hostdata->state = S_CONNECTED; spin_unlock_irqrestore(&hostdata->lock, flags); break; case CSR_XFER_DONE | PHS_STATUS: case CSR_UNEXP | PHS_STATUS: case CSR_SRV_REQ | PHS_STATUS: DB(DB_INTR, printk("STATUS=")) cmd->SCp.Status = read_1_byte(regs); DB(DB_INTR, printk("%02x", cmd->SCp.Status)) if (hostdata->level2 >= L2_BASIC) { sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */ udelay(7); hostdata->state = S_RUNNING_LEVEL2; write_wd33c93(regs, WD_COMMAND_PHASE, 0x50); write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); } else { hostdata->state = S_CONNECTED; } spin_unlock_irqrestore(&hostdata->lock, flags); break; case CSR_XFER_DONE | PHS_MESS_IN: case CSR_UNEXP | PHS_MESS_IN: case CSR_SRV_REQ | PHS_MESS_IN: DB(DB_INTR, printk("MSG_IN=")) msg = read_1_byte(regs); sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */ udelay(7); hostdata->incoming_msg[hostdata->incoming_ptr] = msg; if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE) msg = EXTENDED_MESSAGE; else hostdata->incoming_ptr = 0; cmd->SCp.Message = msg; switch (msg) { case COMMAND_COMPLETE: DB(DB_INTR, printk("CCMP")) write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); hostdata->state = S_PRE_CMP_DISC; break; case SAVE_POINTERS: DB(DB_INTR, printk("SDP")) write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; break; case RESTORE_POINTERS: DB(DB_INTR, printk("RDP")) if (hostdata->level2 >= L2_BASIC) { write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); hostdata->state = S_RUNNING_LEVEL2; } else { write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; } break; case DISCONNECT: DB(DB_INTR, printk("DIS")) cmd->device->disconnect = 1; write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); hostdata->state = S_PRE_TMP_DISC; break; case MESSAGE_REJECT: DB(DB_INTR, printk("REJ")) #ifdef SYNC_DEBUG printk("-REJ-"); #endif if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) { hostdata->sync_stat[cmd->device->id] = SS_SET; /* we want default_sx_per, not DEFAULT_SX_PER */ hostdata->sync_xfer[cmd->device->id] = calc_sync_xfer(hostdata->default_sx_per / 4, 0, 0, hostdata->sx_table); } write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; break; case EXTENDED_MESSAGE: DB(DB_INTR, printk("EXT")) ucp = hostdata->incoming_msg; #ifdef SYNC_DEBUG printk("%02x", ucp[hostdata->incoming_ptr]); #endif /* Is this the last byte of the extended message? */ if ((hostdata->incoming_ptr >= 2) && (hostdata->incoming_ptr == (ucp[1] + 1))) { switch (ucp[2]) { /* what's the EXTENDED code? */ case EXTENDED_SDTR: /* default to default async period */ id = calc_sync_xfer(hostdata-> default_sx_per / 4, 0, 0, hostdata->sx_table); if (hostdata->sync_stat[cmd->device->id] != SS_WAITING) { /* A device has sent an unsolicited SDTR message; rather than go * through the effort of decoding it and then figuring out what * our reply should be, we're just gonna say that we have a * synchronous fifo depth of 0. This will result in asynchronous * transfers - not ideal but so much easier. * Actually, this is OK because it assures us that if we don't * specifically ask for sync transfers, we won't do any. */ write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ hostdata->outgoing_msg[0] = EXTENDED_MESSAGE; hostdata->outgoing_msg[1] = 3; hostdata->outgoing_msg[2] = EXTENDED_SDTR; calc_sync_msg(hostdata-> default_sx_per, 0, 0, hostdata->outgoing_msg + 3); hostdata->outgoing_len = 5; } else { if (ucp[4]) /* well, sync transfer */ id = calc_sync_xfer(ucp[3], ucp[4], hostdata->fast, hostdata->sx_table); else if (ucp[3]) /* very unlikely... */ id = calc_sync_xfer(ucp[3], ucp[4], 0, hostdata->sx_table); } hostdata->sync_xfer[cmd->device->id] = id; #ifdef SYNC_DEBUG printk(" sync_xfer=%02x\n", hostdata->sync_xfer[cmd->device->id]); #endif hostdata->sync_stat[cmd->device->id] = SS_SET; write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; break; case EXTENDED_WDTR: write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ printk("sending WDTR "); hostdata->outgoing_msg[0] = EXTENDED_MESSAGE; hostdata->outgoing_msg[1] = 2; hostdata->outgoing_msg[2] = EXTENDED_WDTR; hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */ hostdata->outgoing_len = 4; write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; break; default: write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ printk ("Rejecting Unknown Extended Message(%02x). ", ucp[2]); hostdata->outgoing_msg[0] = MESSAGE_REJECT; hostdata->outgoing_len = 1; write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; break; } hostdata->incoming_ptr = 0; } /* We need to read more MESS_IN bytes for the extended message */ else { hostdata->incoming_ptr++; write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; } break; default: printk("Rejecting Unknown Message(%02x) ", msg); write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ hostdata->outgoing_msg[0] = MESSAGE_REJECT; hostdata->outgoing_len = 1; write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); hostdata->state = S_CONNECTED; } spin_unlock_irqrestore(&hostdata->lock, flags); break; /* Note: this interrupt will occur only after a LEVEL2 command */ case CSR_SEL_XFER_DONE: /* Make sure that reselection is enabled at this point - it may * have been turned off for the command that just completed. */ write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); if (phs == 0x60) { DB(DB_INTR, printk("SX-DONE")) cmd->SCp.Message = COMMAND_COMPLETE; lun = read_wd33c93(regs, WD_TARGET_LUN); DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun)) hostdata->connected = NULL; hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); hostdata->state = S_UNCONNECTED; if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE) cmd->SCp.Status = lun; if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) cmd->result = (cmd-> result & 0x00ffff) | (DID_ERROR << 16); else cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); cmd->scsi_done(cmd); /* We are no longer connected to a target - check to see if * there are commands waiting to be executed. */ spin_unlock_irqrestore(&hostdata->lock, flags); wd33c93_execute(instance); } else { printk ("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---", asr, sr, phs); spin_unlock_irqrestore(&hostdata->lock, flags); } break; /* Note: this interrupt will occur only after a LEVEL2 command */ case CSR_SDP: DB(DB_INTR, printk("SDP")) hostdata->state = S_RUNNING_LEVEL2; write_wd33c93(regs, WD_COMMAND_PHASE, 0x41); write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); spin_unlock_irqrestore(&hostdata->lock, flags); break; case CSR_XFER_DONE | PHS_MESS_OUT: case CSR_UNEXP | PHS_MESS_OUT: case CSR_SRV_REQ | PHS_MESS_OUT: DB(DB_INTR, printk("MSG_OUT=")) /* To get here, we've probably requested MESSAGE_OUT and have * already put the correct bytes in outgoing_msg[] and filled * in outgoing_len. We simply send them out to the SCSI bus. * Sometimes we get MESSAGE_OUT phase when we're not expecting * it - like when our SDTR message is rejected by a target. Some * targets send the REJECT before receiving all of the extended * message, and then seem to go back to MESSAGE_OUT for a byte * or two. Not sure why, or if I'm doing something wrong to * cause this to happen. Regardless, it seems that sending * NOP messages in these situations results in no harm and * makes everyone happy. */ if (hostdata->outgoing_len == 0) { hostdata->outgoing_len = 1; hostdata->outgoing_msg[0] = NOP; } transfer_pio(regs, hostdata->outgoing_msg, hostdata->outgoing_len, DATA_OUT_DIR, hostdata); DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0])) hostdata->outgoing_len = 0; hostdata->state = S_CONNECTED; spin_unlock_irqrestore(&hostdata->lock, flags); break; case CSR_UNEXP_DISC: /* I think I've seen this after a request-sense that was in response * to an error condition, but not sure. We certainly need to do * something when we get this interrupt - the question is 'what?'. * Let's think positively, and assume some command has finished * in a legal manner (like a command that provokes a request-sense), * so we treat it as a normal command-complete-disconnect. */ /* Make sure that reselection is enabled at this point - it may * have been turned off for the command that just completed. */ write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); if (cmd == NULL) { printk(" - Already disconnected! "); hostdata->state = S_UNCONNECTED; spin_unlock_irqrestore(&hostdata->lock, flags); return; } DB(DB_INTR, printk("UNEXP_DISC")) hostdata->connected = NULL; hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); hostdata->state = S_UNCONNECTED; if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16); else cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); cmd->scsi_done(cmd); /* We are no longer connected to a target - check to see if * there are commands waiting to be executed. */ /* look above for comments on scsi_done() */ spin_unlock_irqrestore(&hostdata->lock, flags); wd33c93_execute(instance); break; case CSR_DISC: /* Make sure that reselection is enabled at this point - it may * have been turned off for the command that just completed. */ write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); DB(DB_INTR, printk("DISC")) if (cmd == NULL) { printk(" - Already disconnected! "); hostdata->state = S_UNCONNECTED; } switch (hostdata->state) { case S_PRE_CMP_DISC: hostdata->connected = NULL; hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); hostdata->state = S_UNCONNECTED; DB(DB_INTR, printk(":%d", cmd->SCp.Status)) if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) cmd->result = (cmd-> result & 0x00ffff) | (DID_ERROR << 16); else cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); cmd->scsi_done(cmd); break; case S_PRE_TMP_DISC: case S_RUNNING_LEVEL2: cmd->host_scribble = (uchar *) hostdata->disconnected_Q; hostdata->disconnected_Q = cmd; hostdata->connected = NULL; hostdata->state = S_UNCONNECTED; #ifdef PROC_STATISTICS hostdata->disc_done_cnt[cmd->device->id]++; #endif break; default: printk("*** Unexpected DISCONNECT interrupt! ***"); hostdata->state = S_UNCONNECTED; } /* We are no longer connected to a target - check to see if * there are commands waiting to be executed. */ spin_unlock_irqrestore(&hostdata->lock, flags); wd33c93_execute(instance); break; case CSR_RESEL_AM: case CSR_RESEL: DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : "")) /* Old chips (pre -A ???) don't have advanced features and will * generate CSR_RESEL. In that case we have to extract the LUN the * hard way (see below). * First we have to make sure this reselection didn't * happen during Arbitration/Selection of some other device. * If yes, put losing command back on top of input_Q. */ if (hostdata->level2 <= L2_NONE) { if (hostdata->selecting) { cmd = (struct scsi_cmnd *) hostdata->selecting; hostdata->selecting = NULL; hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); cmd->host_scribble = (uchar *) hostdata->input_Q; hostdata->input_Q = cmd; } } else { if (cmd) { if (phs == 0x00) { hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); cmd->host_scribble = (uchar *) hostdata->input_Q; hostdata->input_Q = cmd; } else { printk ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", asr, sr, phs); while (1) printk("\r"); } } } /* OK - find out which device reselected us. */ id = read_wd33c93(regs, WD_SOURCE_ID); id &= SRCID_MASK; /* and extract the lun from the ID message. (Note that we don't * bother to check for a valid message here - I guess this is * not the right way to go, but...) */ if (sr == CSR_RESEL_AM) { lun = read_wd33c93(regs, WD_DATA); if (hostdata->level2 < L2_RESELECT) write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); lun &= 7; } else { /* Old chip; wait for msgin phase to pick up the LUN. */ for (lun = 255; lun; lun--) { if ((asr = read_aux_stat(regs)) & ASR_INT) break; udelay(10); } if (!(asr & ASR_INT)) { printk ("wd33c93: Reselected without IDENTIFY\n"); lun = 0; } else { /* Verify this is a change to MSG_IN and read the message */ sr = read_wd33c93(regs, WD_SCSI_STATUS); udelay(7); if (sr == (CSR_ABORT | PHS_MESS_IN) || sr == (CSR_UNEXP | PHS_MESS_IN) || sr == (CSR_SRV_REQ | PHS_MESS_IN)) { /* Got MSG_IN, grab target LUN */ lun = read_1_byte(regs); /* Now we expect a 'paused with ACK asserted' int.. */ asr = read_aux_stat(regs); if (!(asr & ASR_INT)) { udelay(10); asr = read_aux_stat(regs); if (!(asr & ASR_INT)) printk ("wd33c93: No int after LUN on RESEL (%02x)\n", asr); } sr = read_wd33c93(regs, WD_SCSI_STATUS); udelay(7); if (sr != CSR_MSGIN) printk ("wd33c93: Not paused with ACK on RESEL (%02x)\n", sr); lun &= 7; write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); } else { printk ("wd33c93: Not MSG_IN on reselect (%02x)\n", sr); lun = 0; } } } /* Now we look for the command that's reconnecting. */ cmd = (struct scsi_cmnd *) hostdata->disconnected_Q; patch = NULL; while (cmd) { if (id == cmd->device->id && lun == cmd->device->lun) break; patch = cmd; cmd = (struct scsi_cmnd *) cmd->host_scribble; } /* Hmm. Couldn't find a valid command.... What to do? */ if (!cmd) { printk ("---TROUBLE: target %d.%d not in disconnect queue---", id, lun); spin_unlock_irqrestore(&hostdata->lock, flags); return; } /* Ok, found the command - now start it up again. */ if (patch) patch->host_scribble = cmd->host_scribble; else hostdata->disconnected_Q = (struct scsi_cmnd *) cmd->host_scribble; hostdata->connected = cmd; /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]' * because these things are preserved over a disconnect. * But we DO need to fix the DPD bit so it's correct for this command. */ if (cmd->sc_data_direction == DMA_TO_DEVICE) write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id); else write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD); if (hostdata->level2 >= L2_RESELECT) { write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */ write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); hostdata->state = S_RUNNING_LEVEL2; } else hostdata->state = S_CONNECTED; spin_unlock_irqrestore(&hostdata->lock, flags); break; default: printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs); spin_unlock_irqrestore(&hostdata->lock, flags); } DB(DB_INTR, printk("} ")) } static void reset_wd33c93(struct Scsi_Host *instance) { struct WD33C93_hostdata *hostdata = (struct WD33C93_hostdata *) instance->hostdata; const wd33c93_regs regs = hostdata->regs; uchar sr; #ifdef CONFIG_SGI_IP22 { int busycount = 0; extern void sgiwd93_reset(unsigned long); /* wait 'til the chip gets some time for us */ while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100) udelay (10); /* * there are scsi devices out there, which manage to lock up * the wd33c93 in a busy condition. In this state it won't * accept the reset command. The only way to solve this is to * give the chip a hardware reset (if possible). The code below * does this for the SGI Indy, where this is possible */ /* still busy ? */ if (read_aux_stat(regs) & ASR_BSY) sgiwd93_reset(instance->base); /* yeah, give it the hard one */ } #endif write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF | instance->this_id | hostdata->clock_freq); write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, calc_sync_xfer(hostdata->default_sx_per / 4, DEFAULT_SX_OFF, 0, hostdata->sx_table)); write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET); #ifdef CONFIG_MVME147_SCSI udelay(25); /* The old wd33c93 on MVME147 needs this, at least */ #endif while (!(read_aux_stat(regs) & ASR_INT)) ; sr = read_wd33c93(regs, WD_SCSI_STATUS); hostdata->microcode = read_wd33c93(regs, WD_CDB_1); if (sr == 0x00) hostdata->chip = C_WD33C93; else if (sr == 0x01) { write_wd33c93(regs, WD_QUEUE_TAG, 0xa5); /* any random number */ sr = read_wd33c93(regs, WD_QUEUE_TAG); if (sr == 0xa5) { hostdata->chip = C_WD33C93B; write_wd33c93(regs, WD_QUEUE_TAG, 0); } else hostdata->chip = C_WD33C93A; } else hostdata->chip = C_UNKNOWN_CHIP; if (hostdata->chip != C_WD33C93B) /* Fast SCSI unavailable */ hostdata->fast = 0; write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE); write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); } int wd33c93_host_reset(struct scsi_cmnd * SCpnt) { struct Scsi_Host *instance; struct WD33C93_hostdata *hostdata; int i; instance = SCpnt->device->host; hostdata = (struct WD33C93_hostdata *) instance->hostdata; printk("scsi%d: reset. ", instance->host_no); disable_irq(instance->irq); hostdata->dma_stop(instance, NULL, 0); for (i = 0; i < 8; i++) { hostdata->busy[i] = 0; hostdata->sync_xfer[i] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF, 0, hostdata->sx_table); hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */ } hostdata->input_Q = NULL; hostdata->selecting = NULL; hostdata->connected = NULL; hostdata->disconnected_Q = NULL; hostdata->state = S_UNCONNECTED; hostdata->dma = D_DMA_OFF; hostdata->incoming_ptr = 0; hostdata->outgoing_len = 0; reset_wd33c93(instance); SCpnt->result = DID_RESET << 16; enable_irq(instance->irq); return SUCCESS; } int wd33c93_abort(struct scsi_cmnd * cmd) { struct Scsi_Host *instance; struct WD33C93_hostdata *hostdata; wd33c93_regs regs; struct scsi_cmnd *tmp, *prev; disable_irq(cmd->device->host->irq); instance = cmd->device->host; hostdata = (struct WD33C93_hostdata *) instance->hostdata; regs = hostdata->regs; /* * Case 1 : If the command hasn't been issued yet, we simply remove it * from the input_Q. */ tmp = (struct scsi_cmnd *) hostdata->input_Q; prev = NULL; while (tmp) { if (tmp == cmd) { if (prev) prev->host_scribble = cmd->host_scribble; else hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble; cmd->host_scribble = NULL; cmd->result = DID_ABORT << 16; printk ("scsi%d: Abort - removing command from input_Q. ", instance->host_no); enable_irq(cmd->device->host->irq); cmd->scsi_done(cmd); return SUCCESS; } prev = tmp; tmp = (struct scsi_cmnd *) tmp->host_scribble; } /* * Case 2 : If the command is connected, we're going to fail the abort * and let the high level SCSI driver retry at a later time or * issue a reset. * * Timeouts, and therefore aborted commands, will be highly unlikely * and handling them cleanly in this situation would make the common * case of noresets less efficient, and would pollute our code. So, * we fail. */ if (hostdata->connected == cmd) { uchar sr, asr; unsigned long timeout; printk("scsi%d: Aborting connected command - ", instance->host_no); printk("stopping DMA - "); if (hostdata->dma == D_DMA_RUNNING) { hostdata->dma_stop(instance, cmd, 0); hostdata->dma = D_DMA_OFF; } printk("sending wd33c93 ABORT command - "); write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); write_wd33c93_cmd(regs, WD_CMD_ABORT); /* Now we have to attempt to flush out the FIFO... */ printk("flushing fifo - "); timeout = 1000000; do { asr = read_aux_stat(regs); if (asr & ASR_DBR) read_wd33c93(regs, WD_DATA); } while (!(asr & ASR_INT) && timeout-- > 0); sr = read_wd33c93(regs, WD_SCSI_STATUS); printk ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", asr, sr, read_wd33c93_count(regs), timeout); /* * Abort command processed. * Still connected. * We must disconnect. */ printk("sending wd33c93 DISCONNECT command - "); write_wd33c93_cmd(regs, WD_CMD_DISCONNECT); timeout = 1000000; asr = read_aux_stat(regs); while ((asr & ASR_CIP) && timeout-- > 0) asr = read_aux_stat(regs); sr = read_wd33c93(regs, WD_SCSI_STATUS); printk("asr=%02x, sr=%02x.", asr, sr); hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); hostdata->connected = NULL; hostdata->state = S_UNCONNECTED; cmd->result = DID_ABORT << 16; /* sti();*/ wd33c93_execute(instance); enable_irq(cmd->device->host->irq); cmd->scsi_done(cmd); return SUCCESS; } /* * Case 3: If the command is currently disconnected from the bus, * we're not going to expend much effort here: Let's just return * an ABORT_SNOOZE and hope for the best... */ tmp = (struct scsi_cmnd *) hostdata->disconnected_Q; while (tmp) { if (tmp == cmd) { printk ("scsi%d: Abort - command found on disconnected_Q - ", instance->host_no); printk("Abort SNOOZE. "); enable_irq(cmd->device->host->irq); return FAILED; } tmp = (struct scsi_cmnd *) tmp->host_scribble; } /* * Case 4 : If we reached this point, the command was not found in any of * the queues. * * We probably reached this point because of an unlikely race condition * between the command completing successfully and the abortion code, * so we won't panic, but we will notify the user in case something really * broke. */ /* sti();*/ wd33c93_execute(instance); enable_irq(cmd->device->host->irq); printk("scsi%d: warning : SCSI command probably completed successfully" " before abortion. ", instance->host_no); return FAILED; } #define MAX_WD33C93_HOSTS 4 #define MAX_SETUP_ARGS ARRAY_SIZE(setup_args) #define SETUP_BUFFER_SIZE 200 static char setup_buffer[SETUP_BUFFER_SIZE]; static char setup_used[MAX_SETUP_ARGS]; static int done_setup = 0; static int wd33c93_setup(char *str) { int i; char *p1, *p2; /* The kernel does some processing of the command-line before calling * this function: If it begins with any decimal or hex number arguments, * ints[0] = how many numbers found and ints[1] through [n] are the values * themselves. str points to where the non-numeric arguments (if any) * start: We do our own parsing of those. We construct synthetic 'nosync' * keywords out of numeric args (to maintain compatibility with older * versions) and then add the rest of the arguments. */ p1 = setup_buffer; *p1 = '\0'; if (str) strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer)); setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0'; p1 = setup_buffer; i = 0; while (*p1 && (i < MAX_SETUP_ARGS)) { p2 = strchr(p1, ','); if (p2) { *p2 = '\0'; if (p1 != p2) setup_args[i] = p1; p1 = p2 + 1; i++; } else { setup_args[i] = p1; break; } } for (i = 0; i < MAX_SETUP_ARGS; i++) setup_used[i] = 0; done_setup = 1; return 1; } __setup("wd33c93=", wd33c93_setup); /* check_setup_args() returns index if key found, 0 if not */ static int check_setup_args(char *key, int *flags, int *val, char *buf) { int x; char *cp; for (x = 0; x < MAX_SETUP_ARGS; x++) { if (setup_used[x]) continue; if (!strncmp(setup_args[x], key, strlen(key))) break; if (!strncmp(setup_args[x], "next", strlen("next"))) return 0; } if (x == MAX_SETUP_ARGS) return 0; setup_used[x] = 1; cp = setup_args[x] + strlen(key); *val = -1; if (*cp != ':') return ++x; cp++; if ((*cp >= '0') && (*cp <= '9')) { *val = simple_strtoul(cp, NULL, 0); } return ++x; } /* * Calculate internal data-transfer-clock cycle from input-clock * frequency (/MHz) and fill 'sx_table'. * * The original driver used to rely on a fixed sx_table, containing periods * for (only) the lower limits of the respective input-clock-frequency ranges * (8-10/12-15/16-20 MHz). Although it seems, that no problems occurred with * this setting so far, it might be desirable to adjust the transfer periods * closer to the really attached, possibly 25% higher, input-clock, since * - the wd33c93 may really use a significant shorter period, than it has * negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz * instead). * - the wd33c93 may ask the target for a lower transfer rate, than the target * is capable of (eg. negotiating for an assumed minimum of 252ns instead of * possible 200ns, which indeed shows up in tests as an approx. 10% lower * transfer rate). */ static inline unsigned int round_4(unsigned int x) { switch (x & 3) { case 1: --x; break; case 2: ++x; case 3: ++x; } return x; } static void calc_sx_table(unsigned int mhz, struct sx_period sx_table[9]) { unsigned int d, i; if (mhz < 11) d = 2; /* divisor for 8-10 MHz input-clock */ else if (mhz < 16) d = 3; /* divisor for 12-15 MHz input-clock */ else d = 4; /* divisor for 16-20 MHz input-clock */ d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */ sx_table[0].period_ns = 1; sx_table[0].reg_value = 0x20; for (i = 1; i < 8; i++) { sx_table[i].period_ns = round_4((i+1)*d / 100); sx_table[i].reg_value = (i+1)*0x10; } sx_table[7].reg_value = 0; sx_table[8].period_ns = 0; sx_table[8].reg_value = 0; } /* * check and, maybe, map an init- or "clock:"- argument. */ static uchar set_clk_freq(int freq, int *mhz) { int x = freq; if (WD33C93_FS_8_10 == freq) freq = 8; else if (WD33C93_FS_12_15 == freq) freq = 12; else if (WD33C93_FS_16_20 == freq) freq = 16; else if (freq > 7 && freq < 11) x = WD33C93_FS_8_10; else if (freq > 11 && freq < 16) x = WD33C93_FS_12_15; else if (freq > 15 && freq < 21) x = WD33C93_FS_16_20; else { /* Hmm, wouldn't it be safer to assume highest freq here? */ x = WD33C93_FS_8_10; freq = 8; } *mhz = freq; return x; } /* * to be used with the resync: fast: ... options */ static inline void set_resync ( struct WD33C93_hostdata *hd, int mask ) { int i; for (i = 0; i < 8; i++) if (mask & (1 << i)) hd->sync_stat[i] = SS_UNSET; } void wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs, dma_setup_t setup, dma_stop_t stop, int clock_freq) { struct WD33C93_hostdata *hostdata; int i; int flags; int val; char buf[32]; if (!done_setup && setup_strings) wd33c93_setup(setup_strings); hostdata = (struct WD33C93_hostdata *) instance->hostdata; hostdata->regs = regs; hostdata->clock_freq = set_clk_freq(clock_freq, &i); calc_sx_table(i, hostdata->sx_table); hostdata->dma_setup = setup; hostdata->dma_stop = stop; hostdata->dma_bounce_buffer = NULL; hostdata->dma_bounce_len = 0; for (i = 0; i < 8; i++) { hostdata->busy[i] = 0; hostdata->sync_xfer[i] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF, 0, hostdata->sx_table); hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */ #ifdef PROC_STATISTICS hostdata->cmd_cnt[i] = 0; hostdata->disc_allowed_cnt[i] = 0; hostdata->disc_done_cnt[i] = 0; #endif } hostdata->input_Q = NULL; hostdata->selecting = NULL; hostdata->connected = NULL; hostdata->disconnected_Q = NULL; hostdata->state = S_UNCONNECTED; hostdata->dma = D_DMA_OFF; hostdata->level2 = L2_BASIC; hostdata->disconnect = DIS_ADAPTIVE; hostdata->args = DEBUG_DEFAULTS; hostdata->incoming_ptr = 0; hostdata->outgoing_len = 0; hostdata->default_sx_per = DEFAULT_SX_PER; hostdata->no_dma = 0; /* default is DMA enabled */ #ifdef PROC_INTERFACE hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP; #ifdef PROC_STATISTICS hostdata->dma_cnt = 0; hostdata->pio_cnt = 0; hostdata->int_cnt = 0; #endif #endif if (check_setup_args("clock", &flags, &val, buf)) { hostdata->clock_freq = set_clk_freq(val, &val); calc_sx_table(val, hostdata->sx_table); } if (check_setup_args("nosync", &flags, &val, buf)) hostdata->no_sync = val; if (check_setup_args("nodma", &flags, &val, buf)) hostdata->no_dma = (val == -1) ? 1 : val; if (check_setup_args("period", &flags, &val, buf)) hostdata->default_sx_per = hostdata->sx_table[round_period((unsigned int) val, hostdata->sx_table)].period_ns; if (check_setup_args("disconnect", &flags, &val, buf)) { if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS)) hostdata->disconnect = val; else hostdata->disconnect = DIS_ADAPTIVE; } if (check_setup_args("level2", &flags, &val, buf)) hostdata->level2 = val; if (check_setup_args("debug", &flags, &val, buf)) hostdata->args = val & DB_MASK; if (check_setup_args("burst", &flags, &val, buf)) hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA; if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */ && check_setup_args("fast", &flags, &val, buf)) hostdata->fast = !!val; if ((i = check_setup_args("next", &flags, &val, buf))) { while (i) setup_used[--i] = 1; } #ifdef PROC_INTERFACE if (check_setup_args("proc", &flags, &val, buf)) hostdata->proc = val; #endif spin_lock_irq(&hostdata->lock); reset_wd33c93(instance); spin_unlock_irq(&hostdata->lock); printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d", instance->host_no, (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == C_WD33C93A) ? "WD33c93A" : (hostdata->chip == C_WD33C93B) ? "WD33c93B" : "unknown", hostdata->microcode, hostdata->no_sync, hostdata->no_dma); #ifdef DEBUGGING_ON printk(" debug_flags=0x%02x\n", hostdata->args); #else printk(" debugging=OFF\n"); #endif printk(" setup_args="); for (i = 0; i < MAX_SETUP_ARGS; i++) printk("%s,", setup_args[i]); printk("\n"); printk(" Version %s - %s\n", WD33C93_VERSION, WD33C93_DATE); } int wd33c93_write_info(struct Scsi_Host *instance, char *buf, int len) { #ifdef PROC_INTERFACE char *bp; struct WD33C93_hostdata *hd; int x; hd = (struct WD33C93_hostdata *) instance->hostdata; /* We accept the following * keywords (same format as command-line, but arguments are not optional): * debug * disconnect * period * resync * proc * nodma * level2 * burst * fast * nosync */ buf[len] = '\0'; for (bp = buf; *bp; ) { while (',' == *bp || ' ' == *bp) ++bp; if (!strncmp(bp, "debug:", 6)) { hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK; } else if (!strncmp(bp, "disconnect:", 11)) { x = simple_strtoul(bp+11, &bp, 0); if (x < DIS_NEVER || x > DIS_ALWAYS) x = DIS_ADAPTIVE; hd->disconnect = x; } else if (!strncmp(bp, "period:", 7)) { x = simple_strtoul(bp+7, &bp, 0); hd->default_sx_per = hd->sx_table[round_period((unsigned int) x, hd->sx_table)].period_ns; } else if (!strncmp(bp, "resync:", 7)) { set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0)); } else if (!strncmp(bp, "proc:", 5)) { hd->proc = simple_strtoul(bp+5, &bp, 0); } else if (!strncmp(bp, "nodma:", 6)) { hd->no_dma = simple_strtoul(bp+6, &bp, 0); } else if (!strncmp(bp, "level2:", 7)) { hd->level2 = simple_strtoul(bp+7, &bp, 0); } else if (!strncmp(bp, "burst:", 6)) { hd->dma_mode = simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA; } else if (!strncmp(bp, "fast:", 5)) { x = !!simple_strtol(bp+5, &bp, 0); if (x != hd->fast) set_resync(hd, 0xff); hd->fast = x; } else if (!strncmp(bp, "nosync:", 7)) { x = simple_strtoul(bp+7, &bp, 0); set_resync(hd, x ^ hd->no_sync); hd->no_sync = x; } else { break; /* unknown keyword,syntax-error,... */ } } return len; #else return 0; #endif } int wd33c93_show_info(struct seq_file *m, struct Scsi_Host *instance) { #ifdef PROC_INTERFACE struct WD33C93_hostdata *hd; struct scsi_cmnd *cmd; int x; hd = (struct WD33C93_hostdata *) instance->hostdata; spin_lock_irq(&hd->lock); if (hd->proc & PR_VERSION) seq_printf(m, "\nVersion %s - %s.", WD33C93_VERSION, WD33C93_DATE); if (hd->proc & PR_INFO) { seq_printf(m, "\nclock_freq=%02x no_sync=%02x no_dma=%d" " dma_mode=%02x fast=%d", hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast); seq_printf(m, "\nsync_xfer[] = "); for (x = 0; x < 7; x++) seq_printf(m, "\t%02x", hd->sync_xfer[x]); seq_printf(m, "\nsync_stat[] = "); for (x = 0; x < 7; x++) seq_printf(m, "\t%02x", hd->sync_stat[x]); } #ifdef PROC_STATISTICS if (hd->proc & PR_STATISTICS) { seq_printf(m, "\ncommands issued: "); for (x = 0; x < 7; x++) seq_printf(m, "\t%ld", hd->cmd_cnt[x]); seq_printf(m, "\ndisconnects allowed:"); for (x = 0; x < 7; x++) seq_printf(m, "\t%ld", hd->disc_allowed_cnt[x]); seq_printf(m, "\ndisconnects done: "); for (x = 0; x < 7; x++) seq_printf(m, "\t%ld", hd->disc_done_cnt[x]); seq_printf(m, "\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO", hd->int_cnt, hd->dma_cnt, hd->pio_cnt); } #endif if (hd->proc & PR_CONNECTED) { seq_printf(m, "\nconnected: "); if (hd->connected) { cmd = (struct scsi_cmnd *) hd->connected; seq_printf(m, " %d:%d(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]); } } if (hd->proc & PR_INPUTQ) { seq_printf(m, "\ninput_Q: "); cmd = (struct scsi_cmnd *) hd->input_Q; while (cmd) { seq_printf(m, " %d:%d(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]); cmd = (struct scsi_cmnd *) cmd->host_scribble; } } if (hd->proc & PR_DISCQ) { seq_printf(m, "\ndisconnected_Q:"); cmd = (struct scsi_cmnd *) hd->disconnected_Q; while (cmd) { seq_printf(m, " %d:%d(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]); cmd = (struct scsi_cmnd *) cmd->host_scribble; } } seq_printf(m, "\n"); spin_unlock_irq(&hd->lock); #endif /* PROC_INTERFACE */ return 0; } EXPORT_SYMBOL(wd33c93_host_reset); EXPORT_SYMBOL(wd33c93_init); EXPORT_SYMBOL(wd33c93_abort); EXPORT_SYMBOL(wd33c93_queuecommand); EXPORT_SYMBOL(wd33c93_intr); EXPORT_SYMBOL(wd33c93_show_info); EXPORT_SYMBOL(wd33c93_write_info);