/* * Copyright (c) 2009-2010 Intel Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * * The full GNU General Public License is included in this distribution in * the file called "COPYING". * * Authors: * Jesse Barnes <jbarnes@virtuousgeek.org> */ /* * Some Intel Ibex Peak based platforms support so-called "intelligent * power sharing", which allows the CPU and GPU to cooperate to maximize * performance within a given TDP (thermal design point). This driver * performs the coordination between the CPU and GPU, monitors thermal and * power statistics in the platform, and initializes power monitoring * hardware. It also provides a few tunables to control behavior. Its * primary purpose is to safely allow CPU and GPU turbo modes to be enabled * by tracking power and thermal budget; secondarily it can boost turbo * performance by allocating more power or thermal budget to the CPU or GPU * based on available headroom and activity. * * The basic algorithm is driven by a 5s moving average of tempurature. If * thermal headroom is available, the CPU and/or GPU power clamps may be * adjusted upwards. If we hit the thermal ceiling or a thermal trigger, * we scale back the clamp. Aside from trigger events (when we're critically * close or over our TDP) we don't adjust the clamps more than once every * five seconds. * * The thermal device (device 31, function 6) has a set of registers that * are updated by the ME firmware. The ME should also take the clamp values * written to those registers and write them to the CPU, but we currently * bypass that functionality and write the CPU MSR directly. * * UNSUPPORTED: * - dual MCP configs * * TODO: * - handle CPU hotplug * - provide turbo enable/disable api * * Related documents: * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2 * - CDI 401376 - Ibex Peak EDS * - ref 26037, 26641 - IPS BIOS spec * - ref 26489 - Nehalem BIOS writer's guide * - ref 26921 - Ibex Peak BIOS Specification */ #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/sched.h> #include <linux/seq_file.h> #include <linux/string.h> #include <linux/tick.h> #include <linux/timer.h> #include <linux/dmi.h> #include <drm/i915_drm.h> #include <asm/msr.h> #include <asm/processor.h> #include "intel_ips.h" #include <asm-generic/io-64-nonatomic-lo-hi.h> #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32 /* * Package level MSRs for monitor/control */ #define PLATFORM_INFO 0xce #define PLATFORM_TDP (1<<29) #define PLATFORM_RATIO (1<<28) #define IA32_MISC_ENABLE 0x1a0 #define IA32_MISC_TURBO_EN (1ULL<<38) #define TURBO_POWER_CURRENT_LIMIT 0x1ac #define TURBO_TDC_OVR_EN (1UL<<31) #define TURBO_TDC_MASK (0x000000007fff0000UL) #define TURBO_TDC_SHIFT (16) #define TURBO_TDP_OVR_EN (1UL<<15) #define TURBO_TDP_MASK (0x0000000000003fffUL) /* * Core/thread MSRs for monitoring */ #define IA32_PERF_CTL 0x199 #define IA32_PERF_TURBO_DIS (1ULL<<32) /* * Thermal PCI device regs */ #define THM_CFG_TBAR 0x10 #define THM_CFG_TBAR_HI 0x14 #define THM_TSIU 0x00 #define THM_TSE 0x01 #define TSE_EN 0xb8 #define THM_TSS 0x02 #define THM_TSTR 0x03 #define THM_TSTTP 0x04 #define THM_TSCO 0x08 #define THM_TSES 0x0c #define THM_TSGPEN 0x0d #define TSGPEN_HOT_LOHI (1<<1) #define TSGPEN_CRIT_LOHI (1<<2) #define THM_TSPC 0x0e #define THM_PPEC 0x10 #define THM_CTA 0x12 #define THM_PTA 0x14 #define PTA_SLOPE_MASK (0xff00) #define PTA_SLOPE_SHIFT 8 #define PTA_OFFSET_MASK (0x00ff) #define THM_MGTA 0x16 #define MGTA_SLOPE_MASK (0xff00) #define MGTA_SLOPE_SHIFT 8 #define MGTA_OFFSET_MASK (0x00ff) #define THM_TRC 0x1a #define TRC_CORE2_EN (1<<15) #define TRC_THM_EN (1<<12) #define TRC_C6_WAR (1<<8) #define TRC_CORE1_EN (1<<7) #define TRC_CORE_PWR (1<<6) #define TRC_PCH_EN (1<<5) #define TRC_MCH_EN (1<<4) #define TRC_DIMM4 (1<<3) #define TRC_DIMM3 (1<<2) #define TRC_DIMM2 (1<<1) #define TRC_DIMM1 (1<<0) #define THM_TES 0x20 #define THM_TEN 0x21 #define TEN_UPDATE_EN 1 #define THM_PSC 0x24 #define PSC_NTG (1<<0) /* No GFX turbo support */ #define PSC_NTPC (1<<1) /* No CPU turbo support */ #define PSC_PP_DEF (0<<2) /* Perf policy up to driver */ #define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */ #define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */ #define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */ #define PSP_PBRT (1<<4) /* BIOS run time support */ #define THM_CTV1 0x30 #define CTV_TEMP_ERROR (1<<15) #define CTV_TEMP_MASK 0x3f #define CTV_ #define THM_CTV2 0x32 #define THM_CEC 0x34 /* undocumented power accumulator in joules */ #define THM_AE 0x3f #define THM_HTS 0x50 /* 32 bits */ #define HTS_PCPL_MASK (0x7fe00000) #define HTS_PCPL_SHIFT 21 #define HTS_GPL_MASK (0x001ff000) #define HTS_GPL_SHIFT 12 #define HTS_PP_MASK (0x00000c00) #define HTS_PP_SHIFT 10 #define HTS_PP_DEF 0 #define HTS_PP_PROC 1 #define HTS_PP_BAL 2 #define HTS_PP_GFX 3 #define HTS_PCTD_DIS (1<<9) #define HTS_GTD_DIS (1<<8) #define HTS_PTL_MASK (0x000000fe) #define HTS_PTL_SHIFT 1 #define HTS_NVV (1<<0) #define THM_HTSHI 0x54 /* 16 bits */ #define HTS2_PPL_MASK (0x03ff) #define HTS2_PRST_MASK (0x3c00) #define HTS2_PRST_SHIFT 10 #define HTS2_PRST_UNLOADED 0 #define HTS2_PRST_RUNNING 1 #define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */ #define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */ #define HTS2_PRST_TDISUSR 4 /* user disabled turbo */ #define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */ #define HTS2_PRST_TDISPM 6 /* power management disabled turbo */ #define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */ #define THM_PTL 0x56 #define THM_MGTV 0x58 #define TV_MASK 0x000000000000ff00 #define TV_SHIFT 8 #define THM_PTV 0x60 #define PTV_MASK 0x00ff #define THM_MMGPC 0x64 #define THM_MPPC 0x66 #define THM_MPCPC 0x68 #define THM_TSPIEN 0x82 #define TSPIEN_AUX_LOHI (1<<0) #define TSPIEN_HOT_LOHI (1<<1) #define TSPIEN_CRIT_LOHI (1<<2) #define TSPIEN_AUX2_LOHI (1<<3) #define THM_TSLOCK 0x83 #define THM_ATR 0x84 #define THM_TOF 0x87 #define THM_STS 0x98 #define STS_PCPL_MASK (0x7fe00000) #define STS_PCPL_SHIFT 21 #define STS_GPL_MASK (0x001ff000) #define STS_GPL_SHIFT 12 #define STS_PP_MASK (0x00000c00) #define STS_PP_SHIFT 10 #define STS_PP_DEF 0 #define STS_PP_PROC 1 #define STS_PP_BAL 2 #define STS_PP_GFX 3 #define STS_PCTD_DIS (1<<9) #define STS_GTD_DIS (1<<8) #define STS_PTL_MASK (0x000000fe) #define STS_PTL_SHIFT 1 #define STS_NVV (1<<0) #define THM_SEC 0x9c #define SEC_ACK (1<<0) #define THM_TC3 0xa4 #define THM_TC1 0xa8 #define STS_PPL_MASK (0x0003ff00) #define STS_PPL_SHIFT 16 #define THM_TC2 0xac #define THM_DTV 0xb0 #define THM_ITV 0xd8 #define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */ #define ITV_ME_SEQNO_SHIFT (16) #define ITV_MCH_TEMP_MASK 0x0000ff00 #define ITV_MCH_TEMP_SHIFT (8) #define ITV_PCH_TEMP_MASK 0x000000ff #define thm_readb(off) readb(ips->regmap + (off)) #define thm_readw(off) readw(ips->regmap + (off)) #define thm_readl(off) readl(ips->regmap + (off)) #define thm_readq(off) readq(ips->regmap + (off)) #define thm_writeb(off, val) writeb((val), ips->regmap + (off)) #define thm_writew(off, val) writew((val), ips->regmap + (off)) #define thm_writel(off, val) writel((val), ips->regmap + (off)) static const int IPS_ADJUST_PERIOD = 5000; /* ms */ static bool late_i915_load = false; /* For initial average collection */ static const int IPS_SAMPLE_PERIOD = 200; /* ms */ static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */ #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD) /* Per-SKU limits */ struct ips_mcp_limits { int cpu_family; int cpu_model; /* includes extended model... */ int mcp_power_limit; /* mW units */ int core_power_limit; int mch_power_limit; int core_temp_limit; /* degrees C */ int mch_temp_limit; }; /* Max temps are -10 degrees C to avoid PROCHOT# */ struct ips_mcp_limits ips_sv_limits = { .mcp_power_limit = 35000, .core_power_limit = 29000, .mch_power_limit = 20000, .core_temp_limit = 95, .mch_temp_limit = 90 }; struct ips_mcp_limits ips_lv_limits = { .mcp_power_limit = 25000, .core_power_limit = 21000, .mch_power_limit = 13000, .core_temp_limit = 95, .mch_temp_limit = 90 }; struct ips_mcp_limits ips_ulv_limits = { .mcp_power_limit = 18000, .core_power_limit = 14000, .mch_power_limit = 11000, .core_temp_limit = 95, .mch_temp_limit = 90 }; struct ips_driver { struct pci_dev *dev; void *regmap; struct task_struct *monitor; struct task_struct *adjust; struct dentry *debug_root; /* Average CPU core temps (all averages in .01 degrees C for precision) */ u16 ctv1_avg_temp; u16 ctv2_avg_temp; /* GMCH average */ u16 mch_avg_temp; /* Average for the CPU (both cores?) */ u16 mcp_avg_temp; /* Average power consumption (in mW) */ u32 cpu_avg_power; u32 mch_avg_power; /* Offset values */ u16 cta_val; u16 pta_val; u16 mgta_val; /* Maximums & prefs, protected by turbo status lock */ spinlock_t turbo_status_lock; u16 mcp_temp_limit; u16 mcp_power_limit; u16 core_power_limit; u16 mch_power_limit; bool cpu_turbo_enabled; bool __cpu_turbo_on; bool gpu_turbo_enabled; bool __gpu_turbo_on; bool gpu_preferred; bool poll_turbo_status; bool second_cpu; bool turbo_toggle_allowed; struct ips_mcp_limits *limits; /* Optional MCH interfaces for if i915 is in use */ unsigned long (*read_mch_val)(void); bool (*gpu_raise)(void); bool (*gpu_lower)(void); bool (*gpu_busy)(void); bool (*gpu_turbo_disable)(void); /* For restoration at unload */ u64 orig_turbo_limit; u64 orig_turbo_ratios; }; static bool ips_gpu_turbo_enabled(struct ips_driver *ips); /** * ips_cpu_busy - is CPU busy? * @ips: IPS driver struct * * Check CPU for load to see whether we should increase its thermal budget. * * RETURNS: * True if the CPU could use more power, false otherwise. */ static bool ips_cpu_busy(struct ips_driver *ips) { if ((avenrun[0] >> FSHIFT) > 1) return true; return false; } /** * ips_cpu_raise - raise CPU power clamp * @ips: IPS driver struct * * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for * this platform. * * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as * long as we haven't hit the TDP limit for the SKU). */ static void ips_cpu_raise(struct ips_driver *ips) { u64 turbo_override; u16 cur_tdp_limit, new_tdp_limit; if (!ips->cpu_turbo_enabled) return; rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); cur_tdp_limit = turbo_override & TURBO_TDP_MASK; new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */ /* Clamp to SKU TDP limit */ if (((new_tdp_limit * 10) / 8) > ips->core_power_limit) new_tdp_limit = cur_tdp_limit; thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8); turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN; wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); turbo_override &= ~TURBO_TDP_MASK; turbo_override |= new_tdp_limit; wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); } /** * ips_cpu_lower - lower CPU power clamp * @ips: IPS driver struct * * Lower CPU power clamp b %IPS_CPU_STEP if possible. * * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going * as low as the platform limits will allow (though we could go lower there * wouldn't be much point). */ static void ips_cpu_lower(struct ips_driver *ips) { u64 turbo_override; u16 cur_limit, new_limit; rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); cur_limit = turbo_override & TURBO_TDP_MASK; new_limit = cur_limit - 8; /* 1W decrease */ /* Clamp to SKU TDP limit */ if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK)) new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK; thm_writew(THM_MPCPC, (new_limit * 10) / 8); turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN; wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); turbo_override &= ~TURBO_TDP_MASK; turbo_override |= new_limit; wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); } /** * do_enable_cpu_turbo - internal turbo enable function * @data: unused * * Internal function for actually updating MSRs. When we enable/disable * turbo, we need to do it on each CPU; this function is the one called * by on_each_cpu() when needed. */ static void do_enable_cpu_turbo(void *data) { u64 perf_ctl; rdmsrl(IA32_PERF_CTL, perf_ctl); if (perf_ctl & IA32_PERF_TURBO_DIS) { perf_ctl &= ~IA32_PERF_TURBO_DIS; wrmsrl(IA32_PERF_CTL, perf_ctl); } } /** * ips_enable_cpu_turbo - enable turbo mode on all CPUs * @ips: IPS driver struct * * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on * all logical threads. */ static void ips_enable_cpu_turbo(struct ips_driver *ips) { /* Already on, no need to mess with MSRs */ if (ips->__cpu_turbo_on) return; if (ips->turbo_toggle_allowed) on_each_cpu(do_enable_cpu_turbo, ips, 1); ips->__cpu_turbo_on = true; } /** * do_disable_cpu_turbo - internal turbo disable function * @data: unused * * Internal function for actually updating MSRs. When we enable/disable * turbo, we need to do it on each CPU; this function is the one called * by on_each_cpu() when needed. */ static void do_disable_cpu_turbo(void *data) { u64 perf_ctl; rdmsrl(IA32_PERF_CTL, perf_ctl); if (!(perf_ctl & IA32_PERF_TURBO_DIS)) { perf_ctl |= IA32_PERF_TURBO_DIS; wrmsrl(IA32_PERF_CTL, perf_ctl); } } /** * ips_disable_cpu_turbo - disable turbo mode on all CPUs * @ips: IPS driver struct * * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on * all logical threads. */ static void ips_disable_cpu_turbo(struct ips_driver *ips) { /* Already off, leave it */ if (!ips->__cpu_turbo_on) return; if (ips->turbo_toggle_allowed) on_each_cpu(do_disable_cpu_turbo, ips, 1); ips->__cpu_turbo_on = false; } /** * ips_gpu_busy - is GPU busy? * @ips: IPS driver struct * * Check GPU for load to see whether we should increase its thermal budget. * We need to call into the i915 driver in this case. * * RETURNS: * True if the GPU could use more power, false otherwise. */ static bool ips_gpu_busy(struct ips_driver *ips) { if (!ips_gpu_turbo_enabled(ips)) return false; return ips->gpu_busy(); } /** * ips_gpu_raise - raise GPU power clamp * @ips: IPS driver struct * * Raise the GPU frequency/power if possible. We need to call into the * i915 driver in this case. */ static void ips_gpu_raise(struct ips_driver *ips) { if (!ips_gpu_turbo_enabled(ips)) return; if (!ips->gpu_raise()) ips->gpu_turbo_enabled = false; return; } /** * ips_gpu_lower - lower GPU power clamp * @ips: IPS driver struct * * Lower GPU frequency/power if possible. Need to call i915. */ static void ips_gpu_lower(struct ips_driver *ips) { if (!ips_gpu_turbo_enabled(ips)) return; if (!ips->gpu_lower()) ips->gpu_turbo_enabled = false; return; } /** * ips_enable_gpu_turbo - notify the gfx driver turbo is available * @ips: IPS driver struct * * Call into the graphics driver indicating that it can safely use * turbo mode. */ static void ips_enable_gpu_turbo(struct ips_driver *ips) { if (ips->__gpu_turbo_on) return; ips->__gpu_turbo_on = true; } /** * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode * @ips: IPS driver struct * * Request that the graphics driver disable turbo mode. */ static void ips_disable_gpu_turbo(struct ips_driver *ips) { /* Avoid calling i915 if turbo is already disabled */ if (!ips->__gpu_turbo_on) return; if (!ips->gpu_turbo_disable()) dev_err(&ips->dev->dev, "failed to disable graphis turbo\n"); else ips->__gpu_turbo_on = false; } /** * mcp_exceeded - check whether we're outside our thermal & power limits * @ips: IPS driver struct * * Check whether the MCP is over its thermal or power budget. */ static bool mcp_exceeded(struct ips_driver *ips) { unsigned long flags; bool ret = false; u32 temp_limit; u32 avg_power; spin_lock_irqsave(&ips->turbo_status_lock, flags); temp_limit = ips->mcp_temp_limit * 100; if (ips->mcp_avg_temp > temp_limit) ret = true; avg_power = ips->cpu_avg_power + ips->mch_avg_power; if (avg_power > ips->mcp_power_limit) ret = true; spin_unlock_irqrestore(&ips->turbo_status_lock, flags); return ret; } /** * cpu_exceeded - check whether a CPU core is outside its limits * @ips: IPS driver struct * @cpu: CPU number to check * * Check a given CPU's average temp or power is over its limit. */ static bool cpu_exceeded(struct ips_driver *ips, int cpu) { unsigned long flags; int avg; bool ret = false; spin_lock_irqsave(&ips->turbo_status_lock, flags); avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp; if (avg > (ips->limits->core_temp_limit * 100)) ret = true; if (ips->cpu_avg_power > ips->core_power_limit * 100) ret = true; spin_unlock_irqrestore(&ips->turbo_status_lock, flags); if (ret) dev_info(&ips->dev->dev, "CPU power or thermal limit exceeded\n"); return ret; } /** * mch_exceeded - check whether the GPU is over budget * @ips: IPS driver struct * * Check the MCH temp & power against their maximums. */ static bool mch_exceeded(struct ips_driver *ips) { unsigned long flags; bool ret = false; spin_lock_irqsave(&ips->turbo_status_lock, flags); if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100)) ret = true; if (ips->mch_avg_power > ips->mch_power_limit) ret = true; spin_unlock_irqrestore(&ips->turbo_status_lock, flags); return ret; } /** * verify_limits - verify BIOS provided limits * @ips: IPS structure * * BIOS can optionally provide non-default limits for power and temp. Check * them here and use the defaults if the BIOS values are not provided or * are otherwise unusable. */ static void verify_limits(struct ips_driver *ips) { if (ips->mcp_power_limit < ips->limits->mcp_power_limit || ips->mcp_power_limit > 35000) ips->mcp_power_limit = ips->limits->mcp_power_limit; if (ips->mcp_temp_limit < ips->limits->core_temp_limit || ips->mcp_temp_limit < ips->limits->mch_temp_limit || ips->mcp_temp_limit > 150) ips->mcp_temp_limit = min(ips->limits->core_temp_limit, ips->limits->mch_temp_limit); } /** * update_turbo_limits - get various limits & settings from regs * @ips: IPS driver struct * * Update the IPS power & temp limits, along with turbo enable flags, * based on latest register contents. * * Used at init time and for runtime BIOS support, which requires polling * the regs for updates (as a result of AC->DC transition for example). * * LOCKING: * Caller must hold turbo_status_lock (outside of init) */ static void update_turbo_limits(struct ips_driver *ips) { u32 hts = thm_readl(THM_HTS); ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS); /* * Disable turbo for now, until we can figure out why the power figures * are wrong */ ips->cpu_turbo_enabled = false; if (ips->gpu_busy) ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS); ips->core_power_limit = thm_readw(THM_MPCPC); ips->mch_power_limit = thm_readw(THM_MMGPC); ips->mcp_temp_limit = thm_readw(THM_PTL); ips->mcp_power_limit = thm_readw(THM_MPPC); verify_limits(ips); /* Ignore BIOS CPU vs GPU pref */ } /** * ips_adjust - adjust power clamp based on thermal state * @data: ips driver structure * * Wake up every 5s or so and check whether we should adjust the power clamp. * Check CPU and GPU load to determine which needs adjustment. There are * several things to consider here: * - do we need to adjust up or down? * - is CPU busy? * - is GPU busy? * - is CPU in turbo? * - is GPU in turbo? * - is CPU or GPU preferred? (CPU is default) * * So, given the above, we do the following: * - up (TDP available) * - CPU not busy, GPU not busy - nothing * - CPU busy, GPU not busy - adjust CPU up * - CPU not busy, GPU busy - adjust GPU up * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from * non-preferred unit if necessary * - down (at TDP limit) * - adjust both CPU and GPU down if possible * cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu- cpu < gpu < cpu+gpu+ cpu+ gpu+ nothing cpu < gpu >= cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu- cpu >= gpu < cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu- cpu >= gpu >= cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu- * */ static int ips_adjust(void *data) { struct ips_driver *ips = data; unsigned long flags; dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n"); /* * Adjust CPU and GPU clamps every 5s if needed. Doing it more * often isn't recommended due to ME interaction. */ do { bool cpu_busy = ips_cpu_busy(ips); bool gpu_busy = ips_gpu_busy(ips); spin_lock_irqsave(&ips->turbo_status_lock, flags); if (ips->poll_turbo_status) update_turbo_limits(ips); spin_unlock_irqrestore(&ips->turbo_status_lock, flags); /* Update turbo status if necessary */ if (ips->cpu_turbo_enabled) ips_enable_cpu_turbo(ips); else ips_disable_cpu_turbo(ips); if (ips->gpu_turbo_enabled) ips_enable_gpu_turbo(ips); else ips_disable_gpu_turbo(ips); /* We're outside our comfort zone, crank them down */ if (mcp_exceeded(ips)) { ips_cpu_lower(ips); ips_gpu_lower(ips); goto sleep; } if (!cpu_exceeded(ips, 0) && cpu_busy) ips_cpu_raise(ips); else ips_cpu_lower(ips); if (!mch_exceeded(ips) && gpu_busy) ips_gpu_raise(ips); else ips_gpu_lower(ips); sleep: schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD)); } while (!kthread_should_stop()); dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n"); return 0; } /* * Helpers for reading out temp/power values and calculating their * averages for the decision making and monitoring functions. */ static u16 calc_avg_temp(struct ips_driver *ips, u16 *array) { u64 total = 0; int i; u16 avg; for (i = 0; i < IPS_SAMPLE_COUNT; i++) total += (u64)(array[i] * 100); do_div(total, IPS_SAMPLE_COUNT); avg = (u16)total; return avg; } static u16 read_mgtv(struct ips_driver *ips) { u16 ret; u64 slope, offset; u64 val; val = thm_readq(THM_MGTV); val = (val & TV_MASK) >> TV_SHIFT; slope = offset = thm_readw(THM_MGTA); slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT; offset = offset & MGTA_OFFSET_MASK; ret = ((val * slope + 0x40) >> 7) + offset; return 0; /* MCH temp reporting buggy */ } static u16 read_ptv(struct ips_driver *ips) { u16 val, slope, offset; slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT; offset = ips->pta_val & PTA_OFFSET_MASK; val = thm_readw(THM_PTV) & PTV_MASK; return val; } static u16 read_ctv(struct ips_driver *ips, int cpu) { int reg = cpu ? THM_CTV2 : THM_CTV1; u16 val; val = thm_readw(reg); if (!(val & CTV_TEMP_ERROR)) val = (val) >> 6; /* discard fractional component */ else val = 0; return val; } static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period) { u32 val; u32 ret; /* * CEC is in joules/65535. Take difference over time to * get watts. */ val = thm_readl(THM_CEC); /* period is in ms and we want mW */ ret = (((val - *last) * 1000) / period); ret = (ret * 1000) / 65535; *last = val; return 0; } static const u16 temp_decay_factor = 2; static u16 update_average_temp(u16 avg, u16 val) { u16 ret; /* Multiply by 100 for extra precision */ ret = (val * 100 / temp_decay_factor) + (((temp_decay_factor - 1) * avg) / temp_decay_factor); return ret; } static const u16 power_decay_factor = 2; static u16 update_average_power(u32 avg, u32 val) { u32 ret; ret = (val / power_decay_factor) + (((power_decay_factor - 1) * avg) / power_decay_factor); return ret; } static u32 calc_avg_power(struct ips_driver *ips, u32 *array) { u64 total = 0; u32 avg; int i; for (i = 0; i < IPS_SAMPLE_COUNT; i++) total += array[i]; do_div(total, IPS_SAMPLE_COUNT); avg = (u32)total; return avg; } static void monitor_timeout(unsigned long arg) { wake_up_process((struct task_struct *)arg); } /** * ips_monitor - temp/power monitoring thread * @data: ips driver structure * * This is the main function for the IPS driver. It monitors power and * tempurature in the MCP and adjusts CPU and GPU power clams accordingly. * * We keep a 5s moving average of power consumption and tempurature. Using * that data, along with CPU vs GPU preference, we adjust the power clamps * up or down. */ static int ips_monitor(void *data) { struct ips_driver *ips = data; struct timer_list timer; unsigned long seqno_timestamp, expire, last_msecs, last_sample_period; int i; u32 *cpu_samples, *mchp_samples, old_cpu_power; u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples; u8 cur_seqno, last_seqno; mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL); cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL); mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL); if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples || !cpu_samples || !mchp_samples) { dev_err(&ips->dev->dev, "failed to allocate sample array, ips disabled\n"); kfree(mcp_samples); kfree(ctv1_samples); kfree(ctv2_samples); kfree(mch_samples); kfree(cpu_samples); kfree(mchp_samples); return -ENOMEM; } last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> ITV_ME_SEQNO_SHIFT; seqno_timestamp = get_jiffies_64(); old_cpu_power = thm_readl(THM_CEC); schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); /* Collect an initial average */ for (i = 0; i < IPS_SAMPLE_COUNT; i++) { u32 mchp, cpu_power; u16 val; mcp_samples[i] = read_ptv(ips); val = read_ctv(ips, 0); ctv1_samples[i] = val; val = read_ctv(ips, 1); ctv2_samples[i] = val; val = read_mgtv(ips); mch_samples[i] = val; cpu_power = get_cpu_power(ips, &old_cpu_power, IPS_SAMPLE_PERIOD); cpu_samples[i] = cpu_power; if (ips->read_mch_val) { mchp = ips->read_mch_val(); mchp_samples[i] = mchp; } schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); if (kthread_should_stop()) break; } ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples); ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples); ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples); ips->mch_avg_temp = calc_avg_temp(ips, mch_samples); ips->cpu_avg_power = calc_avg_power(ips, cpu_samples); ips->mch_avg_power = calc_avg_power(ips, mchp_samples); kfree(mcp_samples); kfree(ctv1_samples); kfree(ctv2_samples); kfree(mch_samples); kfree(cpu_samples); kfree(mchp_samples); /* Start the adjustment thread now that we have data */ wake_up_process(ips->adjust); /* * Ok, now we have an initial avg. From here on out, we track the * running avg using a decaying average calculation. This allows * us to reduce the sample frequency if the CPU and GPU are idle. */ old_cpu_power = thm_readl(THM_CEC); schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); last_sample_period = IPS_SAMPLE_PERIOD; setup_deferrable_timer_on_stack(&timer, monitor_timeout, (unsigned long)current); do { u32 cpu_val, mch_val; u16 val; /* MCP itself */ val = read_ptv(ips); ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val); /* Processor 0 */ val = read_ctv(ips, 0); ips->ctv1_avg_temp = update_average_temp(ips->ctv1_avg_temp, val); /* Power */ cpu_val = get_cpu_power(ips, &old_cpu_power, last_sample_period); ips->cpu_avg_power = update_average_power(ips->cpu_avg_power, cpu_val); if (ips->second_cpu) { /* Processor 1 */ val = read_ctv(ips, 1); ips->ctv2_avg_temp = update_average_temp(ips->ctv2_avg_temp, val); } /* MCH */ val = read_mgtv(ips); ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val); /* Power */ if (ips->read_mch_val) { mch_val = ips->read_mch_val(); ips->mch_avg_power = update_average_power(ips->mch_avg_power, mch_val); } /* * Make sure ME is updating thermal regs. * Note: * If it's been more than a second since the last update, * the ME is probably hung. */ cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> ITV_ME_SEQNO_SHIFT; if (cur_seqno == last_seqno && time_after(jiffies, seqno_timestamp + HZ)) { dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n"); } else { seqno_timestamp = get_jiffies_64(); last_seqno = cur_seqno; } last_msecs = jiffies_to_msecs(jiffies); expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD); __set_current_state(TASK_INTERRUPTIBLE); mod_timer(&timer, expire); schedule(); /* Calculate actual sample period for power averaging */ last_sample_period = jiffies_to_msecs(jiffies) - last_msecs; if (!last_sample_period) last_sample_period = 1; } while (!kthread_should_stop()); del_timer_sync(&timer); destroy_timer_on_stack(&timer); dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n"); return 0; } #if 0 #define THM_DUMPW(reg) \ { \ u16 val = thm_readw(reg); \ dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \ } #define THM_DUMPL(reg) \ { \ u32 val = thm_readl(reg); \ dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \ } #define THM_DUMPQ(reg) \ { \ u64 val = thm_readq(reg); \ dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \ } static void dump_thermal_info(struct ips_driver *ips) { u16 ptl; ptl = thm_readw(THM_PTL); dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl); THM_DUMPW(THM_CTA); THM_DUMPW(THM_TRC); THM_DUMPW(THM_CTV1); THM_DUMPL(THM_STS); THM_DUMPW(THM_PTV); THM_DUMPQ(THM_MGTV); } #endif /** * ips_irq_handler - handle temperature triggers and other IPS events * @irq: irq number * @arg: unused * * Handle temperature limit trigger events, generally by lowering the clamps. * If we're at a critical limit, we clamp back to the lowest possible value * to prevent emergency shutdown. */ static irqreturn_t ips_irq_handler(int irq, void *arg) { struct ips_driver *ips = arg; u8 tses = thm_readb(THM_TSES); u8 tes = thm_readb(THM_TES); if (!tses && !tes) return IRQ_NONE; dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses); dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes); /* STS update from EC? */ if (tes & 1) { u32 sts, tc1; sts = thm_readl(THM_STS); tc1 = thm_readl(THM_TC1); if (sts & STS_NVV) { spin_lock(&ips->turbo_status_lock); ips->core_power_limit = (sts & STS_PCPL_MASK) >> STS_PCPL_SHIFT; ips->mch_power_limit = (sts & STS_GPL_MASK) >> STS_GPL_SHIFT; /* ignore EC CPU vs GPU pref */ ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS); /* * Disable turbo for now, until we can figure * out why the power figures are wrong */ ips->cpu_turbo_enabled = false; if (ips->gpu_busy) ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS); ips->mcp_temp_limit = (sts & STS_PTL_MASK) >> STS_PTL_SHIFT; ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >> STS_PPL_SHIFT; verify_limits(ips); spin_unlock(&ips->turbo_status_lock); thm_writeb(THM_SEC, SEC_ACK); } thm_writeb(THM_TES, tes); } /* Thermal trip */ if (tses) { dev_warn(&ips->dev->dev, "thermal trip occurred, tses: 0x%04x\n", tses); thm_writeb(THM_TSES, tses); } return IRQ_HANDLED; } #ifndef CONFIG_DEBUG_FS static void ips_debugfs_init(struct ips_driver *ips) { return; } static void ips_debugfs_cleanup(struct ips_driver *ips) { return; } #else /* Expose current state and limits in debugfs if possible */ struct ips_debugfs_node { struct ips_driver *ips; char *name; int (*show)(struct seq_file *m, void *data); }; static int show_cpu_temp(struct seq_file *m, void *data) { struct ips_driver *ips = m->private; seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100, ips->ctv1_avg_temp % 100); return 0; } static int show_cpu_power(struct seq_file *m, void *data) { struct ips_driver *ips = m->private; seq_printf(m, "%dmW\n", ips->cpu_avg_power); return 0; } static int show_cpu_clamp(struct seq_file *m, void *data) { u64 turbo_override; int tdp, tdc; rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); tdp = (int)(turbo_override & TURBO_TDP_MASK); tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT); /* Convert to .1W/A units */ tdp = tdp * 10 / 8; tdc = tdc * 10 / 8; /* Watts Amperes */ seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10, tdc / 10, tdc % 10); return 0; } static int show_mch_temp(struct seq_file *m, void *data) { struct ips_driver *ips = m->private; seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100, ips->mch_avg_temp % 100); return 0; } static int show_mch_power(struct seq_file *m, void *data) { struct ips_driver *ips = m->private; seq_printf(m, "%dmW\n", ips->mch_avg_power); return 0; } static struct ips_debugfs_node ips_debug_files[] = { { NULL, "cpu_temp", show_cpu_temp }, { NULL, "cpu_power", show_cpu_power }, { NULL, "cpu_clamp", show_cpu_clamp }, { NULL, "mch_temp", show_mch_temp }, { NULL, "mch_power", show_mch_power }, }; static int ips_debugfs_open(struct inode *inode, struct file *file) { struct ips_debugfs_node *node = inode->i_private; return single_open(file, node->show, node->ips); } static const struct file_operations ips_debugfs_ops = { .owner = THIS_MODULE, .open = ips_debugfs_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void ips_debugfs_cleanup(struct ips_driver *ips) { if (ips->debug_root) debugfs_remove_recursive(ips->debug_root); return; } static void ips_debugfs_init(struct ips_driver *ips) { int i; ips->debug_root = debugfs_create_dir("ips", NULL); if (!ips->debug_root) { dev_err(&ips->dev->dev, "failed to create debugfs entries: %ld\n", PTR_ERR(ips->debug_root)); return; } for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) { struct dentry *ent; struct ips_debugfs_node *node = &ips_debug_files[i]; node->ips = ips; ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO, ips->debug_root, node, &ips_debugfs_ops); if (!ent) { dev_err(&ips->dev->dev, "failed to create debug file: %ld\n", PTR_ERR(ent)); goto err_cleanup; } } return; err_cleanup: ips_debugfs_cleanup(ips); return; } #endif /* CONFIG_DEBUG_FS */ /** * ips_detect_cpu - detect whether CPU supports IPS * * Walk our list and see if we're on a supported CPU. If we find one, * return the limits for it. */ static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips) { u64 turbo_power, misc_en; struct ips_mcp_limits *limits = NULL; u16 tdp; if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) { dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n"); goto out; } rdmsrl(IA32_MISC_ENABLE, misc_en); /* * If the turbo enable bit isn't set, we shouldn't try to enable/disable * turbo manually or we'll get an illegal MSR access, even though * turbo will still be available. */ if (misc_en & IA32_MISC_TURBO_EN) ips->turbo_toggle_allowed = true; else ips->turbo_toggle_allowed = false; if (strstr(boot_cpu_data.x86_model_id, "CPU M")) limits = &ips_sv_limits; else if (strstr(boot_cpu_data.x86_model_id, "CPU L")) limits = &ips_lv_limits; else if (strstr(boot_cpu_data.x86_model_id, "CPU U")) limits = &ips_ulv_limits; else { dev_info(&ips->dev->dev, "No CPUID match found.\n"); goto out; } rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power); tdp = turbo_power & TURBO_TDP_MASK; /* Sanity check TDP against CPU */ if (limits->core_power_limit != (tdp / 8) * 1000) { dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n", tdp / 8, limits->core_power_limit / 1000); limits->core_power_limit = (tdp / 8) * 1000; } out: return limits; } /** * ips_get_i915_syms - try to get GPU control methods from i915 driver * @ips: IPS driver * * The i915 driver exports several interfaces to allow the IPS driver to * monitor and control graphics turbo mode. If we can find them, we can * enable graphics turbo, otherwise we must disable it to avoid exceeding * thermal and power limits in the MCP. */ static bool ips_get_i915_syms(struct ips_driver *ips) { ips->read_mch_val = symbol_get(i915_read_mch_val); if (!ips->read_mch_val) goto out_err; ips->gpu_raise = symbol_get(i915_gpu_raise); if (!ips->gpu_raise) goto out_put_mch; ips->gpu_lower = symbol_get(i915_gpu_lower); if (!ips->gpu_lower) goto out_put_raise; ips->gpu_busy = symbol_get(i915_gpu_busy); if (!ips->gpu_busy) goto out_put_lower; ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable); if (!ips->gpu_turbo_disable) goto out_put_busy; return true; out_put_busy: symbol_put(i915_gpu_busy); out_put_lower: symbol_put(i915_gpu_lower); out_put_raise: symbol_put(i915_gpu_raise); out_put_mch: symbol_put(i915_read_mch_val); out_err: return false; } static bool ips_gpu_turbo_enabled(struct ips_driver *ips) { if (!ips->gpu_busy && late_i915_load) { if (ips_get_i915_syms(ips)) { dev_info(&ips->dev->dev, "i915 driver attached, reenabling gpu turbo\n"); ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS); } } return ips->gpu_turbo_enabled; } void ips_link_to_i915_driver(void) { /* We can't cleanly get at the various ips_driver structs from * this caller (the i915 driver), so just set a flag saying * that it's time to try getting the symbols again. */ late_i915_load = true; } EXPORT_SYMBOL_GPL(ips_link_to_i915_driver); static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = { { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), }, { 0, } }; MODULE_DEVICE_TABLE(pci, ips_id_table); static int ips_blacklist_callback(const struct dmi_system_id *id) { pr_info("Blacklisted intel_ips for %s\n", id->ident); return 1; } static const struct dmi_system_id ips_blacklist[] = { { .callback = ips_blacklist_callback, .ident = "HP ProBook", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"), }, }, { } /* terminating entry */ }; static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id) { u64 platform_info; struct ips_driver *ips; u32 hts; int ret = 0; u16 htshi, trc, trc_required_mask; u8 tse; if (dmi_check_system(ips_blacklist)) return -ENODEV; ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL); if (!ips) return -ENOMEM; pci_set_drvdata(dev, ips); ips->dev = dev; ips->limits = ips_detect_cpu(ips); if (!ips->limits) { dev_info(&dev->dev, "IPS not supported on this CPU\n"); ret = -ENXIO; goto error_free; } spin_lock_init(&ips->turbo_status_lock); ret = pci_enable_device(dev); if (ret) { dev_err(&dev->dev, "can't enable PCI device, aborting\n"); goto error_free; } if (!pci_resource_start(dev, 0)) { dev_err(&dev->dev, "TBAR not assigned, aborting\n"); ret = -ENXIO; goto error_free; } ret = pci_request_regions(dev, "ips thermal sensor"); if (ret) { dev_err(&dev->dev, "thermal resource busy, aborting\n"); goto error_free; } ips->regmap = ioremap(pci_resource_start(dev, 0), pci_resource_len(dev, 0)); if (!ips->regmap) { dev_err(&dev->dev, "failed to map thermal regs, aborting\n"); ret = -EBUSY; goto error_release; } tse = thm_readb(THM_TSE); if (tse != TSE_EN) { dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse); ret = -ENXIO; goto error_unmap; } trc = thm_readw(THM_TRC); trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN; if ((trc & trc_required_mask) != trc_required_mask) { dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n"); ret = -ENXIO; goto error_unmap; } if (trc & TRC_CORE2_EN) ips->second_cpu = true; update_turbo_limits(ips); dev_dbg(&dev->dev, "max cpu power clamp: %dW\n", ips->mcp_power_limit / 10); dev_dbg(&dev->dev, "max core power clamp: %dW\n", ips->core_power_limit / 10); /* BIOS may update limits at runtime */ if (thm_readl(THM_PSC) & PSP_PBRT) ips->poll_turbo_status = true; if (!ips_get_i915_syms(ips)) { dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n"); ips->gpu_turbo_enabled = false; } else { dev_dbg(&dev->dev, "graphics turbo enabled\n"); ips->gpu_turbo_enabled = true; } /* * Check PLATFORM_INFO MSR to make sure this chip is * turbo capable. */ rdmsrl(PLATFORM_INFO, platform_info); if (!(platform_info & PLATFORM_TDP)) { dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n"); ret = -ENODEV; goto error_unmap; } /* * IRQ handler for ME interaction * Note: don't use MSI here as the PCH has bugs. */ pci_disable_msi(dev); ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips", ips); if (ret) { dev_err(&dev->dev, "request irq failed, aborting\n"); goto error_unmap; } /* Enable aux, hot & critical interrupts */ thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI | TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI); thm_writeb(THM_TEN, TEN_UPDATE_EN); /* Collect adjustment values */ ips->cta_val = thm_readw(THM_CTA); ips->pta_val = thm_readw(THM_PTA); ips->mgta_val = thm_readw(THM_MGTA); /* Save turbo limits & ratios */ rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); ips_disable_cpu_turbo(ips); ips->cpu_turbo_enabled = false; /* Create thermal adjust thread */ ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust"); if (IS_ERR(ips->adjust)) { dev_err(&dev->dev, "failed to create thermal adjust thread, aborting\n"); ret = -ENOMEM; goto error_free_irq; } /* * Set up the work queue and monitor thread. The monitor thread * will wake up ips_adjust thread. */ ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor"); if (IS_ERR(ips->monitor)) { dev_err(&dev->dev, "failed to create thermal monitor thread, aborting\n"); ret = -ENOMEM; goto error_thread_cleanup; } hts = (ips->core_power_limit << HTS_PCPL_SHIFT) | (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV; htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT; thm_writew(THM_HTSHI, htshi); thm_writel(THM_HTS, hts); ips_debugfs_init(ips); dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n", ips->mcp_temp_limit); return ret; error_thread_cleanup: kthread_stop(ips->adjust); error_free_irq: free_irq(ips->dev->irq, ips); error_unmap: iounmap(ips->regmap); error_release: pci_release_regions(dev); error_free: kfree(ips); return ret; } static void ips_remove(struct pci_dev *dev) { struct ips_driver *ips = pci_get_drvdata(dev); u64 turbo_override; if (!ips) return; ips_debugfs_cleanup(ips); /* Release i915 driver */ if (ips->read_mch_val) symbol_put(i915_read_mch_val); if (ips->gpu_raise) symbol_put(i915_gpu_raise); if (ips->gpu_lower) symbol_put(i915_gpu_lower); if (ips->gpu_busy) symbol_put(i915_gpu_busy); if (ips->gpu_turbo_disable) symbol_put(i915_gpu_turbo_disable); rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN); wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); free_irq(ips->dev->irq, ips); if (ips->adjust) kthread_stop(ips->adjust); if (ips->monitor) kthread_stop(ips->monitor); iounmap(ips->regmap); pci_release_regions(dev); kfree(ips); dev_dbg(&dev->dev, "IPS driver removed\n"); } static void ips_shutdown(struct pci_dev *dev) { } static struct pci_driver ips_pci_driver = { .name = "intel ips", .id_table = ips_id_table, .probe = ips_probe, .remove = ips_remove, .shutdown = ips_shutdown, }; module_pci_driver(ips_pci_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>"); MODULE_DESCRIPTION("Intelligent Power Sharing Driver");