/* ZD1211 USB-WLAN driver for Linux * * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de> * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see <http://www.gnu.org/licenses/>. */ #include <linux/kernel.h> #include <linux/slab.h> #include "zd_rf.h" #include "zd_usb.h" #include "zd_chip.h" /* This RF programming code is based upon the code found in v2.16.0.0 of the * ZyDAS vendor driver. Unlike other RF's, Ubec publish full technical specs * for this RF on their website, so we're able to understand more than * usual as to what is going on. Thumbs up for Ubec for doing that. */ /* The 3-wire serial interface provides access to 8 write-only registers. * The data format is a 4 bit register address followed by a 20 bit value. */ #define UW2453_REGWRITE(reg, val) ((((reg) & 0xf) << 20) | ((val) & 0xfffff)) /* For channel tuning, we have to configure registers 1 (synthesizer), 2 (synth * fractional divide ratio) and 3 (VCO config). * * We configure the RF to produce an interrupt when the PLL is locked onto * the configured frequency. During initialization, we run through a variety * of different VCO configurations on channel 1 until we detect a PLL lock. * When this happens, we remember which VCO configuration produced the lock * and use it later. Actually, we use the configuration *after* the one that * produced the lock, which seems odd, but it works. * * If we do not see a PLL lock on any standard VCO config, we fall back on an * autocal configuration, which has a fixed (as opposed to per-channel) VCO * config and different synth values from the standard set (divide ratio * is still shared with the standard set). */ /* The per-channel synth values for all standard VCO configurations. These get * written to register 1. */ static const u8 uw2453_std_synth[] = { RF_CHANNEL( 1) = 0x47, RF_CHANNEL( 2) = 0x47, RF_CHANNEL( 3) = 0x67, RF_CHANNEL( 4) = 0x67, RF_CHANNEL( 5) = 0x67, RF_CHANNEL( 6) = 0x67, RF_CHANNEL( 7) = 0x57, RF_CHANNEL( 8) = 0x57, RF_CHANNEL( 9) = 0x57, RF_CHANNEL(10) = 0x57, RF_CHANNEL(11) = 0x77, RF_CHANNEL(12) = 0x77, RF_CHANNEL(13) = 0x77, RF_CHANNEL(14) = 0x4f, }; /* This table stores the synthesizer fractional divide ratio for *all* VCO * configurations (both standard and autocal). These get written to register 2. */ static const u16 uw2453_synth_divide[] = { RF_CHANNEL( 1) = 0x999, RF_CHANNEL( 2) = 0x99b, RF_CHANNEL( 3) = 0x998, RF_CHANNEL( 4) = 0x99a, RF_CHANNEL( 5) = 0x999, RF_CHANNEL( 6) = 0x99b, RF_CHANNEL( 7) = 0x998, RF_CHANNEL( 8) = 0x99a, RF_CHANNEL( 9) = 0x999, RF_CHANNEL(10) = 0x99b, RF_CHANNEL(11) = 0x998, RF_CHANNEL(12) = 0x99a, RF_CHANNEL(13) = 0x999, RF_CHANNEL(14) = 0xccc, }; /* Here is the data for all the standard VCO configurations. We shrink our * table a little by observing that both channels in a consecutive pair share * the same value. We also observe that the high 4 bits ([0:3] in the specs) * are all 'Reserved' and are always set to 0x4 - we chop them off in the data * below. */ #define CHAN_TO_PAIRIDX(a) ((a - 1) / 2) #define RF_CHANPAIR(a,b) [CHAN_TO_PAIRIDX(a)] static const u16 uw2453_std_vco_cfg[][7] = { { /* table 1 */ RF_CHANPAIR( 1, 2) = 0x664d, RF_CHANPAIR( 3, 4) = 0x604d, RF_CHANPAIR( 5, 6) = 0x6675, RF_CHANPAIR( 7, 8) = 0x6475, RF_CHANPAIR( 9, 10) = 0x6655, RF_CHANPAIR(11, 12) = 0x6455, RF_CHANPAIR(13, 14) = 0x6665, }, { /* table 2 */ RF_CHANPAIR( 1, 2) = 0x666d, RF_CHANPAIR( 3, 4) = 0x606d, RF_CHANPAIR( 5, 6) = 0x664d, RF_CHANPAIR( 7, 8) = 0x644d, RF_CHANPAIR( 9, 10) = 0x6675, RF_CHANPAIR(11, 12) = 0x6475, RF_CHANPAIR(13, 14) = 0x6655, }, { /* table 3 */ RF_CHANPAIR( 1, 2) = 0x665d, RF_CHANPAIR( 3, 4) = 0x605d, RF_CHANPAIR( 5, 6) = 0x666d, RF_CHANPAIR( 7, 8) = 0x646d, RF_CHANPAIR( 9, 10) = 0x664d, RF_CHANPAIR(11, 12) = 0x644d, RF_CHANPAIR(13, 14) = 0x6675, }, { /* table 4 */ RF_CHANPAIR( 1, 2) = 0x667d, RF_CHANPAIR( 3, 4) = 0x607d, RF_CHANPAIR( 5, 6) = 0x665d, RF_CHANPAIR( 7, 8) = 0x645d, RF_CHANPAIR( 9, 10) = 0x666d, RF_CHANPAIR(11, 12) = 0x646d, RF_CHANPAIR(13, 14) = 0x664d, }, { /* table 5 */ RF_CHANPAIR( 1, 2) = 0x6643, RF_CHANPAIR( 3, 4) = 0x6043, RF_CHANPAIR( 5, 6) = 0x667d, RF_CHANPAIR( 7, 8) = 0x647d, RF_CHANPAIR( 9, 10) = 0x665d, RF_CHANPAIR(11, 12) = 0x645d, RF_CHANPAIR(13, 14) = 0x666d, }, { /* table 6 */ RF_CHANPAIR( 1, 2) = 0x6663, RF_CHANPAIR( 3, 4) = 0x6063, RF_CHANPAIR( 5, 6) = 0x6643, RF_CHANPAIR( 7, 8) = 0x6443, RF_CHANPAIR( 9, 10) = 0x667d, RF_CHANPAIR(11, 12) = 0x647d, RF_CHANPAIR(13, 14) = 0x665d, }, { /* table 7 */ RF_CHANPAIR( 1, 2) = 0x6653, RF_CHANPAIR( 3, 4) = 0x6053, RF_CHANPAIR( 5, 6) = 0x6663, RF_CHANPAIR( 7, 8) = 0x6463, RF_CHANPAIR( 9, 10) = 0x6643, RF_CHANPAIR(11, 12) = 0x6443, RF_CHANPAIR(13, 14) = 0x667d, }, { /* table 8 */ RF_CHANPAIR( 1, 2) = 0x6673, RF_CHANPAIR( 3, 4) = 0x6073, RF_CHANPAIR( 5, 6) = 0x6653, RF_CHANPAIR( 7, 8) = 0x6453, RF_CHANPAIR( 9, 10) = 0x6663, RF_CHANPAIR(11, 12) = 0x6463, RF_CHANPAIR(13, 14) = 0x6643, }, { /* table 9 */ RF_CHANPAIR( 1, 2) = 0x664b, RF_CHANPAIR( 3, 4) = 0x604b, RF_CHANPAIR( 5, 6) = 0x6673, RF_CHANPAIR( 7, 8) = 0x6473, RF_CHANPAIR( 9, 10) = 0x6653, RF_CHANPAIR(11, 12) = 0x6453, RF_CHANPAIR(13, 14) = 0x6663, }, { /* table 10 */ RF_CHANPAIR( 1, 2) = 0x666b, RF_CHANPAIR( 3, 4) = 0x606b, RF_CHANPAIR( 5, 6) = 0x664b, RF_CHANPAIR( 7, 8) = 0x644b, RF_CHANPAIR( 9, 10) = 0x6673, RF_CHANPAIR(11, 12) = 0x6473, RF_CHANPAIR(13, 14) = 0x6653, }, { /* table 11 */ RF_CHANPAIR( 1, 2) = 0x665b, RF_CHANPAIR( 3, 4) = 0x605b, RF_CHANPAIR( 5, 6) = 0x666b, RF_CHANPAIR( 7, 8) = 0x646b, RF_CHANPAIR( 9, 10) = 0x664b, RF_CHANPAIR(11, 12) = 0x644b, RF_CHANPAIR(13, 14) = 0x6673, }, }; /* The per-channel synth values for autocal. These get written to register 1. */ static const u16 uw2453_autocal_synth[] = { RF_CHANNEL( 1) = 0x6847, RF_CHANNEL( 2) = 0x6847, RF_CHANNEL( 3) = 0x6867, RF_CHANNEL( 4) = 0x6867, RF_CHANNEL( 5) = 0x6867, RF_CHANNEL( 6) = 0x6867, RF_CHANNEL( 7) = 0x6857, RF_CHANNEL( 8) = 0x6857, RF_CHANNEL( 9) = 0x6857, RF_CHANNEL(10) = 0x6857, RF_CHANNEL(11) = 0x6877, RF_CHANNEL(12) = 0x6877, RF_CHANNEL(13) = 0x6877, RF_CHANNEL(14) = 0x684f, }; /* The VCO configuration for autocal (all channels) */ static const u16 UW2453_AUTOCAL_VCO_CFG = 0x6662; /* TX gain settings. The array index corresponds to the TX power integration * values found in the EEPROM. The values get written to register 7. */ static u32 uw2453_txgain[] = { [0x00] = 0x0e313, [0x01] = 0x0fb13, [0x02] = 0x0e093, [0x03] = 0x0f893, [0x04] = 0x0ea93, [0x05] = 0x1f093, [0x06] = 0x1f493, [0x07] = 0x1f693, [0x08] = 0x1f393, [0x09] = 0x1f35b, [0x0a] = 0x1e6db, [0x0b] = 0x1ff3f, [0x0c] = 0x1ffff, [0x0d] = 0x361d7, [0x0e] = 0x37fbf, [0x0f] = 0x3ff8b, [0x10] = 0x3ff33, [0x11] = 0x3fb3f, [0x12] = 0x3ffff, }; /* RF-specific structure */ struct uw2453_priv { /* index into synth/VCO config tables where PLL lock was found * -1 means autocal */ int config; }; #define UW2453_PRIV(rf) ((struct uw2453_priv *) (rf)->priv) static int uw2453_synth_set_channel(struct zd_chip *chip, int channel, bool autocal) { int r; int idx = channel - 1; u32 val; if (autocal) val = UW2453_REGWRITE(1, uw2453_autocal_synth[idx]); else val = UW2453_REGWRITE(1, uw2453_std_synth[idx]); r = zd_rfwrite_locked(chip, val, RF_RV_BITS); if (r) return r; return zd_rfwrite_locked(chip, UW2453_REGWRITE(2, uw2453_synth_divide[idx]), RF_RV_BITS); } static int uw2453_write_vco_cfg(struct zd_chip *chip, u16 value) { /* vendor driver always sets these upper bits even though the specs say * they are reserved */ u32 val = 0x40000 | value; return zd_rfwrite_locked(chip, UW2453_REGWRITE(3, val), RF_RV_BITS); } static int uw2453_init_mode(struct zd_chip *chip) { static const u32 rv[] = { UW2453_REGWRITE(0, 0x25f98), /* enter IDLE mode */ UW2453_REGWRITE(0, 0x25f9a), /* enter CAL_VCO mode */ UW2453_REGWRITE(0, 0x25f94), /* enter RX/TX mode */ UW2453_REGWRITE(0, 0x27fd4), /* power down RSSI circuit */ }; return zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS); } static int uw2453_set_tx_gain_level(struct zd_chip *chip, int channel) { u8 int_value = chip->pwr_int_values[channel - 1]; if (int_value >= ARRAY_SIZE(uw2453_txgain)) { dev_dbg_f(zd_chip_dev(chip), "can't configure TX gain for " "int value %x on channel %d\n", int_value, channel); return 0; } return zd_rfwrite_locked(chip, UW2453_REGWRITE(7, uw2453_txgain[int_value]), RF_RV_BITS); } static int uw2453_init_hw(struct zd_rf *rf) { int i, r; int found_config = -1; u16 intr_status; struct zd_chip *chip = zd_rf_to_chip(rf); static const struct zd_ioreq16 ioreqs[] = { { ZD_CR10, 0x89 }, { ZD_CR15, 0x20 }, { ZD_CR17, 0x28 }, /* 6112 no change */ { ZD_CR23, 0x38 }, { ZD_CR24, 0x20 }, { ZD_CR26, 0x93 }, { ZD_CR27, 0x15 }, { ZD_CR28, 0x3e }, { ZD_CR29, 0x00 }, { ZD_CR33, 0x28 }, { ZD_CR34, 0x30 }, { ZD_CR35, 0x43 }, /* 6112 3e->43 */ { ZD_CR41, 0x24 }, { ZD_CR44, 0x32 }, { ZD_CR46, 0x92 }, /* 6112 96->92 */ { ZD_CR47, 0x1e }, { ZD_CR48, 0x04 }, /* 5602 Roger */ { ZD_CR49, 0xfa }, { ZD_CR79, 0x58 }, { ZD_CR80, 0x30 }, { ZD_CR81, 0x30 }, { ZD_CR87, 0x0a }, { ZD_CR89, 0x04 }, { ZD_CR91, 0x00 }, { ZD_CR92, 0x0a }, { ZD_CR98, 0x8d }, { ZD_CR99, 0x28 }, { ZD_CR100, 0x02 }, { ZD_CR101, 0x09 }, /* 6112 13->1f 6220 1f->13 6407 13->9 */ { ZD_CR102, 0x27 }, { ZD_CR106, 0x1c }, /* 5d07 5112 1f->1c 6220 1c->1f * 6221 1f->1c */ { ZD_CR107, 0x1c }, /* 6220 1c->1a 5221 1a->1c */ { ZD_CR109, 0x13 }, { ZD_CR110, 0x1f }, /* 6112 13->1f 6221 1f->13 6407 13->0x09 */ { ZD_CR111, 0x13 }, { ZD_CR112, 0x1f }, { ZD_CR113, 0x27 }, { ZD_CR114, 0x23 }, /* 6221 27->23 */ { ZD_CR115, 0x24 }, /* 6112 24->1c 6220 1c->24 */ { ZD_CR116, 0x24 }, /* 6220 1c->24 */ { ZD_CR117, 0xfa }, /* 6112 fa->f8 6220 f8->f4 6220 f4->fa */ { ZD_CR118, 0xf0 }, /* 5d07 6112 f0->f2 6220 f2->f0 */ { ZD_CR119, 0x1a }, /* 6112 1a->10 6220 10->14 6220 14->1a */ { ZD_CR120, 0x4f }, { ZD_CR121, 0x1f }, /* 6220 4f->1f */ { ZD_CR122, 0xf0 }, { ZD_CR123, 0x57 }, { ZD_CR125, 0xad }, { ZD_CR126, 0x6c }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 }, /* 6302 12->11 */ { ZD_CR129, 0x12 }, /* 6301 10->0f */ { ZD_CR130, 0x10 }, { ZD_CR137, 0x50 }, { ZD_CR138, 0xa8 }, { ZD_CR144, 0xac }, { ZD_CR146, 0x20 }, { ZD_CR252, 0xff }, { ZD_CR253, 0xff }, }; static const u32 rv[] = { UW2453_REGWRITE(4, 0x2b), /* configure receiver gain */ UW2453_REGWRITE(5, 0x19e4f), /* configure transmitter gain */ UW2453_REGWRITE(6, 0xf81ad), /* enable RX/TX filter tuning */ UW2453_REGWRITE(7, 0x3fffe), /* disable TX gain in test mode */ /* enter CAL_FIL mode, TX gain set by registers, RX gain set by pins, * RSSI circuit powered down, reduced RSSI range */ UW2453_REGWRITE(0, 0x25f9c), /* 5d01 cal_fil */ /* synthesizer configuration for channel 1 */ UW2453_REGWRITE(1, 0x47), UW2453_REGWRITE(2, 0x999), /* disable manual VCO band selection */ UW2453_REGWRITE(3, 0x7602), /* enable manual VCO band selection, configure current level */ UW2453_REGWRITE(3, 0x46063), }; r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); if (r) return r; r = zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS); if (r) return r; r = uw2453_init_mode(chip); if (r) return r; /* Try all standard VCO configuration settings on channel 1 */ for (i = 0; i < ARRAY_SIZE(uw2453_std_vco_cfg) - 1; i++) { /* Configure synthesizer for channel 1 */ r = uw2453_synth_set_channel(chip, 1, false); if (r) return r; /* Write VCO config */ r = uw2453_write_vco_cfg(chip, uw2453_std_vco_cfg[i][0]); if (r) return r; /* ack interrupt event */ r = zd_iowrite16_locked(chip, 0x0f, UW2453_INTR_REG); if (r) return r; /* check interrupt status */ r = zd_ioread16_locked(chip, &intr_status, UW2453_INTR_REG); if (r) return r; if (!(intr_status & 0xf)) { dev_dbg_f(zd_chip_dev(chip), "PLL locked on configuration %d\n", i); found_config = i; break; } } if (found_config == -1) { /* autocal */ dev_dbg_f(zd_chip_dev(chip), "PLL did not lock, using autocal\n"); r = uw2453_synth_set_channel(chip, 1, true); if (r) return r; r = uw2453_write_vco_cfg(chip, UW2453_AUTOCAL_VCO_CFG); if (r) return r; } /* To match the vendor driver behaviour, we use the configuration after * the one that produced a lock. */ UW2453_PRIV(rf)->config = found_config + 1; return zd_iowrite16_locked(chip, 0x06, ZD_CR203); } static int uw2453_set_channel(struct zd_rf *rf, u8 channel) { int r; u16 vco_cfg; int config = UW2453_PRIV(rf)->config; bool autocal = (config == -1); struct zd_chip *chip = zd_rf_to_chip(rf); static const struct zd_ioreq16 ioreqs[] = { { ZD_CR80, 0x30 }, { ZD_CR81, 0x30 }, { ZD_CR79, 0x58 }, { ZD_CR12, 0xf0 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x58 }, }; r = uw2453_synth_set_channel(chip, channel, autocal); if (r) return r; if (autocal) vco_cfg = UW2453_AUTOCAL_VCO_CFG; else vco_cfg = uw2453_std_vco_cfg[config][CHAN_TO_PAIRIDX(channel)]; r = uw2453_write_vco_cfg(chip, vco_cfg); if (r) return r; r = uw2453_init_mode(chip); if (r) return r; r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); if (r) return r; r = uw2453_set_tx_gain_level(chip, channel); if (r) return r; return zd_iowrite16_locked(chip, 0x06, ZD_CR203); } static int uw2453_switch_radio_on(struct zd_rf *rf) { int r; struct zd_chip *chip = zd_rf_to_chip(rf); struct zd_ioreq16 ioreqs[] = { { ZD_CR11, 0x00 }, { ZD_CR251, 0x3f }, }; /* enter RXTX mode */ r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f94), RF_RV_BITS); if (r) return r; if (zd_chip_is_zd1211b(chip)) ioreqs[1].value = 0x7f; return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); } static int uw2453_switch_radio_off(struct zd_rf *rf) { int r; struct zd_chip *chip = zd_rf_to_chip(rf); static const struct zd_ioreq16 ioreqs[] = { { ZD_CR11, 0x04 }, { ZD_CR251, 0x2f }, }; /* enter IDLE mode */ /* FIXME: shouldn't we go to SLEEP? sent email to zydas */ r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f90), RF_RV_BITS); if (r) return r; return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); } static void uw2453_clear(struct zd_rf *rf) { kfree(rf->priv); } int zd_rf_init_uw2453(struct zd_rf *rf) { rf->init_hw = uw2453_init_hw; rf->set_channel = uw2453_set_channel; rf->switch_radio_on = uw2453_switch_radio_on; rf->switch_radio_off = uw2453_switch_radio_off; rf->patch_6m_band_edge = zd_rf_generic_patch_6m; rf->clear = uw2453_clear; /* we have our own TX integration code */ rf->update_channel_int = 0; rf->priv = kmalloc(sizeof(struct uw2453_priv), GFP_KERNEL); if (rf->priv == NULL) return -ENOMEM; return 0; }