/* Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> <http://rt2x00.serialmonkey.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see <http://www.gnu.org/licenses/>. */ /* Module: rt2x00 Abstract: rt2x00 global information. */ #ifndef RT2X00_H #define RT2X00_H #include <linux/bitops.h> #include <linux/interrupt.h> #include <linux/skbuff.h> #include <linux/workqueue.h> #include <linux/firmware.h> #include <linux/leds.h> #include <linux/mutex.h> #include <linux/etherdevice.h> #include <linux/input-polldev.h> #include <linux/kfifo.h> #include <linux/hrtimer.h> #include <linux/average.h> #include <net/mac80211.h> #include "rt2x00debug.h" #include "rt2x00dump.h" #include "rt2x00leds.h" #include "rt2x00reg.h" #include "rt2x00queue.h" /* * Module information. */ #define DRV_VERSION "2.3.0" #define DRV_PROJECT "http://rt2x00.serialmonkey.com" /* Debug definitions. * Debug output has to be enabled during compile time. */ #ifdef CONFIG_RT2X00_DEBUG #define DEBUG #endif /* CONFIG_RT2X00_DEBUG */ /* Utility printing macros * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized */ #define rt2x00_probe_err(fmt, ...) \ printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \ __func__, ##__VA_ARGS__) #define rt2x00_err(dev, fmt, ...) \ wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt, \ __func__, ##__VA_ARGS__) #define rt2x00_warn(dev, fmt, ...) \ wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt, \ __func__, ##__VA_ARGS__) #define rt2x00_info(dev, fmt, ...) \ wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \ __func__, ##__VA_ARGS__) /* Various debug levels */ #define rt2x00_dbg(dev, fmt, ...) \ wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \ __func__, ##__VA_ARGS__) #define rt2x00_eeprom_dbg(dev, fmt, ...) \ wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \ __func__, ##__VA_ARGS__) /* * Duration calculations * The rate variable passed is: 100kbs. * To convert from bytes to bits we multiply size with 8, * then the size is multiplied with 10 to make the * real rate -> rate argument correction. */ #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate)) #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate)) /* * Determine the number of L2 padding bytes required between the header and * the payload. */ #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3) /* * Determine the alignment requirement, * to make sure the 802.11 payload is padded to a 4-byte boundrary * we must determine the address of the payload and calculate the * amount of bytes needed to move the data. */ #define ALIGN_SIZE(__skb, __header) \ ( ((unsigned long)((__skb)->data + (__header))) & 3 ) /* * Constants for extra TX headroom for alignment purposes. */ #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */ #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */ /* * Standard timing and size defines. * These values should follow the ieee80211 specifications. */ #define ACK_SIZE 14 #define IEEE80211_HEADER 24 #define PLCP 48 #define BEACON 100 #define PREAMBLE 144 #define SHORT_PREAMBLE 72 #define SLOT_TIME 20 #define SHORT_SLOT_TIME 9 #define SIFS 10 #define PIFS ( SIFS + SLOT_TIME ) #define SHORT_PIFS ( SIFS + SHORT_SLOT_TIME ) #define DIFS ( PIFS + SLOT_TIME ) #define SHORT_DIFS ( SHORT_PIFS + SHORT_SLOT_TIME ) #define EIFS ( SIFS + DIFS + \ GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) ) #define SHORT_EIFS ( SIFS + SHORT_DIFS + \ GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) ) enum rt2x00_chip_intf { RT2X00_CHIP_INTF_PCI, RT2X00_CHIP_INTF_PCIE, RT2X00_CHIP_INTF_USB, RT2X00_CHIP_INTF_SOC, }; /* * Chipset identification * The chipset on the device is composed of a RT and RF chip. * The chipset combination is important for determining device capabilities. */ struct rt2x00_chip { u16 rt; #define RT2460 0x2460 #define RT2560 0x2560 #define RT2570 0x2570 #define RT2661 0x2661 #define RT2573 0x2573 #define RT2860 0x2860 /* 2.4GHz */ #define RT2872 0x2872 /* WSOC */ #define RT2883 0x2883 /* WSOC */ #define RT3070 0x3070 #define RT3071 0x3071 #define RT3090 0x3090 /* 2.4GHz PCIe */ #define RT3290 0x3290 #define RT3352 0x3352 /* WSOC */ #define RT3390 0x3390 #define RT3572 0x3572 #define RT3593 0x3593 #define RT3883 0x3883 /* WSOC */ #define RT5390 0x5390 /* 2.4GHz */ #define RT5392 0x5392 /* 2.4GHz */ #define RT5592 0x5592 u16 rf; u16 rev; enum rt2x00_chip_intf intf; }; /* * RF register values that belong to a particular channel. */ struct rf_channel { int channel; u32 rf1; u32 rf2; u32 rf3; u32 rf4; }; /* * Channel information structure */ struct channel_info { unsigned int flags; #define GEOGRAPHY_ALLOWED 0x00000001 short max_power; short default_power1; short default_power2; short default_power3; }; /* * Antenna setup values. */ struct antenna_setup { enum antenna rx; enum antenna tx; u8 rx_chain_num; u8 tx_chain_num; }; /* * Quality statistics about the currently active link. */ struct link_qual { /* * Statistics required for Link tuning by driver * The rssi value is provided by rt2x00lib during the * link_tuner() callback function. * The false_cca field is filled during the link_stats() * callback function and could be used during the * link_tuner() callback function. */ int rssi; int false_cca; /* * VGC levels * Hardware driver will tune the VGC level during each call * to the link_tuner() callback function. This vgc_level is * is determined based on the link quality statistics like * average RSSI and the false CCA count. * * In some cases the drivers need to differentiate between * the currently "desired" VGC level and the level configured * in the hardware. The latter is important to reduce the * number of BBP register reads to reduce register access * overhead. For this reason we store both values here. */ u8 vgc_level; u8 vgc_level_reg; /* * Statistics required for Signal quality calculation. * These fields might be changed during the link_stats() * callback function. */ int rx_success; int rx_failed; int tx_success; int tx_failed; }; /* * Antenna settings about the currently active link. */ struct link_ant { /* * Antenna flags */ unsigned int flags; #define ANTENNA_RX_DIVERSITY 0x00000001 #define ANTENNA_TX_DIVERSITY 0x00000002 #define ANTENNA_MODE_SAMPLE 0x00000004 /* * Currently active TX/RX antenna setup. * When software diversity is used, this will indicate * which antenna is actually used at this time. */ struct antenna_setup active; /* * RSSI history information for the antenna. * Used to determine when to switch antenna * when using software diversity. */ int rssi_history; /* * Current RSSI average of the currently active antenna. * Similar to the avg_rssi in the link_qual structure * this value is updated by using the walking average. */ struct ewma rssi_ant; }; /* * To optimize the quality of the link we need to store * the quality of received frames and periodically * optimize the link. */ struct link { /* * Link tuner counter * The number of times the link has been tuned * since the radio has been switched on. */ u32 count; /* * Quality measurement values. */ struct link_qual qual; /* * TX/RX antenna setup. */ struct link_ant ant; /* * Currently active average RSSI value */ struct ewma avg_rssi; /* * Work structure for scheduling periodic link tuning. */ struct delayed_work work; /* * Work structure for scheduling periodic watchdog monitoring. * This work must be scheduled on the kernel workqueue, while * all other work structures must be queued on the mac80211 * workqueue. This guarantees that the watchdog can schedule * other work structures and wait for their completion in order * to bring the device/driver back into the desired state. */ struct delayed_work watchdog_work; /* * Work structure for scheduling periodic AGC adjustments. */ struct delayed_work agc_work; /* * Work structure for scheduling periodic VCO calibration. */ struct delayed_work vco_work; }; enum rt2x00_delayed_flags { DELAYED_UPDATE_BEACON, }; /* * Interface structure * Per interface configuration details, this structure * is allocated as the private data for ieee80211_vif. */ struct rt2x00_intf { /* * beacon->skb must be protected with the mutex. */ struct mutex beacon_skb_mutex; /* * Entry in the beacon queue which belongs to * this interface. Each interface has its own * dedicated beacon entry. */ struct queue_entry *beacon; bool enable_beacon; /* * Actions that needed rescheduling. */ unsigned long delayed_flags; /* * Software sequence counter, this is only required * for hardware which doesn't support hardware * sequence counting. */ atomic_t seqno; }; static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif) { return (struct rt2x00_intf *)vif->drv_priv; } /** * struct hw_mode_spec: Hardware specifications structure * * Details about the supported modes, rates and channels * of a particular chipset. This is used by rt2x00lib * to build the ieee80211_hw_mode array for mac80211. * * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz). * @supported_rates: Rate types which are supported (CCK, OFDM). * @num_channels: Number of supported channels. This is used as array size * for @tx_power_a, @tx_power_bg and @channels. * @channels: Device/chipset specific channel values (See &struct rf_channel). * @channels_info: Additional information for channels (See &struct channel_info). * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap). */ struct hw_mode_spec { unsigned int supported_bands; #define SUPPORT_BAND_2GHZ 0x00000001 #define SUPPORT_BAND_5GHZ 0x00000002 unsigned int supported_rates; #define SUPPORT_RATE_CCK 0x00000001 #define SUPPORT_RATE_OFDM 0x00000002 unsigned int num_channels; const struct rf_channel *channels; const struct channel_info *channels_info; struct ieee80211_sta_ht_cap ht; }; /* * Configuration structure wrapper around the * mac80211 configuration structure. * When mac80211 configures the driver, rt2x00lib * can precalculate values which are equal for all * rt2x00 drivers. Those values can be stored in here. */ struct rt2x00lib_conf { struct ieee80211_conf *conf; struct rf_channel rf; struct channel_info channel; }; /* * Configuration structure for erp settings. */ struct rt2x00lib_erp { int short_preamble; int cts_protection; u32 basic_rates; int slot_time; short sifs; short pifs; short difs; short eifs; u16 beacon_int; u16 ht_opmode; }; /* * Configuration structure for hardware encryption. */ struct rt2x00lib_crypto { enum cipher cipher; enum set_key_cmd cmd; const u8 *address; u32 bssidx; u8 key[16]; u8 tx_mic[8]; u8 rx_mic[8]; int wcid; }; /* * Configuration structure wrapper around the * rt2x00 interface configuration handler. */ struct rt2x00intf_conf { /* * Interface type */ enum nl80211_iftype type; /* * TSF sync value, this is dependent on the operation type. */ enum tsf_sync sync; /* * The MAC and BSSID addresses are simple array of bytes, * these arrays are little endian, so when sending the addresses * to the drivers, copy the it into a endian-signed variable. * * Note that all devices (except rt2500usb) have 32 bits * register word sizes. This means that whatever variable we * pass _must_ be a multiple of 32 bits. Otherwise the device * might not accept what we are sending to it. * This will also make it easier for the driver to write * the data to the device. */ __le32 mac[2]; __le32 bssid[2]; }; /* * Private structure for storing STA details * wcid: Wireless Client ID */ struct rt2x00_sta { int wcid; }; static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta) { return (struct rt2x00_sta *)sta->drv_priv; } /* * rt2x00lib callback functions. */ struct rt2x00lib_ops { /* * Interrupt handlers. */ irq_handler_t irq_handler; /* * TX status tasklet handler. */ void (*txstatus_tasklet) (unsigned long data); void (*pretbtt_tasklet) (unsigned long data); void (*tbtt_tasklet) (unsigned long data); void (*rxdone_tasklet) (unsigned long data); void (*autowake_tasklet) (unsigned long data); /* * Device init handlers. */ int (*probe_hw) (struct rt2x00_dev *rt2x00dev); char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev); int (*check_firmware) (struct rt2x00_dev *rt2x00dev, const u8 *data, const size_t len); int (*load_firmware) (struct rt2x00_dev *rt2x00dev, const u8 *data, const size_t len); /* * Device initialization/deinitialization handlers. */ int (*initialize) (struct rt2x00_dev *rt2x00dev); void (*uninitialize) (struct rt2x00_dev *rt2x00dev); /* * queue initialization handlers */ bool (*get_entry_state) (struct queue_entry *entry); void (*clear_entry) (struct queue_entry *entry); /* * Radio control handlers. */ int (*set_device_state) (struct rt2x00_dev *rt2x00dev, enum dev_state state); int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev); void (*link_stats) (struct rt2x00_dev *rt2x00dev, struct link_qual *qual); void (*reset_tuner) (struct rt2x00_dev *rt2x00dev, struct link_qual *qual); void (*link_tuner) (struct rt2x00_dev *rt2x00dev, struct link_qual *qual, const u32 count); void (*gain_calibration) (struct rt2x00_dev *rt2x00dev); void (*vco_calibration) (struct rt2x00_dev *rt2x00dev); /* * Data queue handlers. */ void (*watchdog) (struct rt2x00_dev *rt2x00dev); void (*start_queue) (struct data_queue *queue); void (*kick_queue) (struct data_queue *queue); void (*stop_queue) (struct data_queue *queue); void (*flush_queue) (struct data_queue *queue, bool drop); void (*tx_dma_done) (struct queue_entry *entry); /* * TX control handlers */ void (*write_tx_desc) (struct queue_entry *entry, struct txentry_desc *txdesc); void (*write_tx_data) (struct queue_entry *entry, struct txentry_desc *txdesc); void (*write_beacon) (struct queue_entry *entry, struct txentry_desc *txdesc); void (*clear_beacon) (struct queue_entry *entry); int (*get_tx_data_len) (struct queue_entry *entry); /* * RX control handlers */ void (*fill_rxdone) (struct queue_entry *entry, struct rxdone_entry_desc *rxdesc); /* * Configuration handlers. */ int (*config_shared_key) (struct rt2x00_dev *rt2x00dev, struct rt2x00lib_crypto *crypto, struct ieee80211_key_conf *key); int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev, struct rt2x00lib_crypto *crypto, struct ieee80211_key_conf *key); void (*config_filter) (struct rt2x00_dev *rt2x00dev, const unsigned int filter_flags); void (*config_intf) (struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf, struct rt2x00intf_conf *conf, const unsigned int flags); #define CONFIG_UPDATE_TYPE ( 1 << 1 ) #define CONFIG_UPDATE_MAC ( 1 << 2 ) #define CONFIG_UPDATE_BSSID ( 1 << 3 ) void (*config_erp) (struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp, u32 changed); void (*config_ant) (struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant); void (*config) (struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf, const unsigned int changed_flags); int (*sta_add) (struct rt2x00_dev *rt2x00dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta); int (*sta_remove) (struct rt2x00_dev *rt2x00dev, int wcid); }; /* * rt2x00 driver callback operation structure. */ struct rt2x00_ops { const char *name; const unsigned int drv_data_size; const unsigned int max_ap_intf; const unsigned int eeprom_size; const unsigned int rf_size; const unsigned int tx_queues; void (*queue_init)(struct data_queue *queue); const struct rt2x00lib_ops *lib; const void *drv; const struct ieee80211_ops *hw; #ifdef CONFIG_RT2X00_LIB_DEBUGFS const struct rt2x00debug *debugfs; #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ }; /* * rt2x00 state flags */ enum rt2x00_state_flags { /* * Device flags */ DEVICE_STATE_PRESENT, DEVICE_STATE_REGISTERED_HW, DEVICE_STATE_INITIALIZED, DEVICE_STATE_STARTED, DEVICE_STATE_ENABLED_RADIO, DEVICE_STATE_SCANNING, /* * Driver configuration */ CONFIG_CHANNEL_HT40, CONFIG_POWERSAVING, CONFIG_HT_DISABLED, CONFIG_QOS_DISABLED, /* * Mark we currently are sequentially reading TX_STA_FIFO register * FIXME: this is for only rt2800usb, should go to private data */ TX_STATUS_READING, }; /* * rt2x00 capability flags */ enum rt2x00_capability_flags { /* * Requirements */ REQUIRE_FIRMWARE, REQUIRE_BEACON_GUARD, REQUIRE_ATIM_QUEUE, REQUIRE_DMA, REQUIRE_COPY_IV, REQUIRE_L2PAD, REQUIRE_TXSTATUS_FIFO, REQUIRE_TASKLET_CONTEXT, REQUIRE_SW_SEQNO, REQUIRE_HT_TX_DESC, REQUIRE_PS_AUTOWAKE, /* * Capabilities */ CAPABILITY_HW_BUTTON, CAPABILITY_HW_CRYPTO, CAPABILITY_POWER_LIMIT, CAPABILITY_CONTROL_FILTERS, CAPABILITY_CONTROL_FILTER_PSPOLL, CAPABILITY_PRE_TBTT_INTERRUPT, CAPABILITY_LINK_TUNING, CAPABILITY_FRAME_TYPE, CAPABILITY_RF_SEQUENCE, CAPABILITY_EXTERNAL_LNA_A, CAPABILITY_EXTERNAL_LNA_BG, CAPABILITY_DOUBLE_ANTENNA, CAPABILITY_BT_COEXIST, CAPABILITY_VCO_RECALIBRATION, }; /* * Interface combinations */ enum { IF_COMB_AP = 0, NUM_IF_COMB, }; /* * rt2x00 device structure. */ struct rt2x00_dev { /* * Device structure. * The structure stored in here depends on the * system bus (PCI or USB). * When accessing this variable, the rt2x00dev_{pci,usb} * macros should be used for correct typecasting. */ struct device *dev; /* * Callback functions. */ const struct rt2x00_ops *ops; /* * Driver data. */ void *drv_data; /* * IEEE80211 control structure. */ struct ieee80211_hw *hw; struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS]; enum ieee80211_band curr_band; int curr_freq; /* * If enabled, the debugfs interface structures * required for deregistration of debugfs. */ #ifdef CONFIG_RT2X00_LIB_DEBUGFS struct rt2x00debug_intf *debugfs_intf; #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ /* * LED structure for changing the LED status * by mac8011 or the kernel. */ #ifdef CONFIG_RT2X00_LIB_LEDS struct rt2x00_led led_radio; struct rt2x00_led led_assoc; struct rt2x00_led led_qual; u16 led_mcu_reg; #endif /* CONFIG_RT2X00_LIB_LEDS */ /* * Device state flags. * In these flags the current status is stored. * Access to these flags should occur atomically. */ unsigned long flags; /* * Device capabiltiy flags. * In these flags the device/driver capabilities are stored. * Access to these flags should occur non-atomically. */ unsigned long cap_flags; /* * Device information, Bus IRQ and name (PCI, SoC) */ int irq; const char *name; /* * Chipset identification. */ struct rt2x00_chip chip; /* * hw capability specifications. */ struct hw_mode_spec spec; /* * This is the default TX/RX antenna setup as indicated * by the device's EEPROM. */ struct antenna_setup default_ant; /* * Register pointers * csr.base: CSR base register address. (PCI) * csr.cache: CSR cache for usb_control_msg. (USB) */ union csr { void __iomem *base; void *cache; } csr; /* * Mutex to protect register accesses. * For PCI and USB devices it protects against concurrent indirect * register access (BBP, RF, MCU) since accessing those * registers require multiple calls to the CSR registers. * For USB devices it also protects the csr_cache since that * field is used for normal CSR access and it cannot support * multiple callers simultaneously. */ struct mutex csr_mutex; /* * Current packet filter configuration for the device. * This contains all currently active FIF_* flags send * to us by mac80211 during configure_filter(). */ unsigned int packet_filter; /* * Interface details: * - Open ap interface count. * - Open sta interface count. * - Association count. * - Beaconing enabled count. */ unsigned int intf_ap_count; unsigned int intf_sta_count; unsigned int intf_associated; unsigned int intf_beaconing; /* * Interface combinations */ struct ieee80211_iface_limit if_limits_ap; struct ieee80211_iface_combination if_combinations[NUM_IF_COMB]; /* * Link quality */ struct link link; /* * EEPROM data. */ __le16 *eeprom; /* * Active RF register values. * These are stored here so we don't need * to read the rf registers and can directly * use this value instead. * This field should be accessed by using * rt2x00_rf_read() and rt2x00_rf_write(). */ u32 *rf; /* * LNA gain */ short lna_gain; /* * Current TX power value. */ u16 tx_power; /* * Current retry values. */ u8 short_retry; u8 long_retry; /* * Rssi <-> Dbm offset */ u8 rssi_offset; /* * Frequency offset. */ u8 freq_offset; /* * Association id. */ u16 aid; /* * Beacon interval. */ u16 beacon_int; /** * Timestamp of last received beacon */ unsigned long last_beacon; /* * Low level statistics which will have * to be kept up to date while device is running. */ struct ieee80211_low_level_stats low_level_stats; /** * Work queue for all work which should not be placed * on the mac80211 workqueue (because of dependencies * between various work structures). */ struct workqueue_struct *workqueue; /* * Scheduled work. * NOTE: intf_work will use ieee80211_iterate_active_interfaces() * which means it cannot be placed on the hw->workqueue * due to RTNL locking requirements. */ struct work_struct intf_work; /** * Scheduled work for TX/RX done handling (USB devices) */ struct work_struct rxdone_work; struct work_struct txdone_work; /* * Powersaving work */ struct delayed_work autowakeup_work; struct work_struct sleep_work; /* * Data queue arrays for RX, TX, Beacon and ATIM. */ unsigned int data_queues; struct data_queue *rx; struct data_queue *tx; struct data_queue *bcn; struct data_queue *atim; /* * Firmware image. */ const struct firmware *fw; /* * FIFO for storing tx status reports between isr and tasklet. */ DECLARE_KFIFO_PTR(txstatus_fifo, u32); /* * Timer to ensure tx status reports are read (rt2800usb). */ struct hrtimer txstatus_timer; /* * Tasklet for processing tx status reports (rt2800pci). */ struct tasklet_struct txstatus_tasklet; struct tasklet_struct pretbtt_tasklet; struct tasklet_struct tbtt_tasklet; struct tasklet_struct rxdone_tasklet; struct tasklet_struct autowake_tasklet; /* * Used for VCO periodic calibration. */ int rf_channel; /* * Protect the interrupt mask register. */ spinlock_t irqmask_lock; /* * List of BlockAckReq TX entries that need driver BlockAck processing. */ struct list_head bar_list; spinlock_t bar_list_lock; /* Extra TX headroom required for alignment purposes. */ unsigned int extra_tx_headroom; }; struct rt2x00_bar_list_entry { struct list_head list; struct rcu_head head; struct queue_entry *entry; int block_acked; /* Relevant parts of the IEEE80211 BAR header */ __u8 ra[6]; __u8 ta[6]; __le16 control; __le16 start_seq_num; }; /* * Register defines. * Some registers require multiple attempts before success, * in those cases REGISTER_BUSY_COUNT attempts should be * taken with a REGISTER_BUSY_DELAY interval. */ #define REGISTER_BUSY_COUNT 100 #define REGISTER_BUSY_DELAY 100 /* * Generic RF access. * The RF is being accessed by word index. */ static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev, const unsigned int word, u32 *data) { BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); *data = rt2x00dev->rf[word - 1]; } static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev, const unsigned int word, u32 data) { BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); rt2x00dev->rf[word - 1] = data; } /* * Generic EEPROM access. The EEPROM is being accessed by word or byte index. */ static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev, const unsigned int word) { return (void *)&rt2x00dev->eeprom[word]; } static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev, const unsigned int word, u16 *data) { *data = le16_to_cpu(rt2x00dev->eeprom[word]); } static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev, const unsigned int word, u16 data) { rt2x00dev->eeprom[word] = cpu_to_le16(data); } static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev, const unsigned int byte) { return *(((u8 *)rt2x00dev->eeprom) + byte); } /* * Chipset handlers */ static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev, const u16 rt, const u16 rf, const u16 rev) { rt2x00dev->chip.rt = rt; rt2x00dev->chip.rf = rf; rt2x00dev->chip.rev = rev; rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n", rt2x00dev->chip.rt, rt2x00dev->chip.rf, rt2x00dev->chip.rev); } static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev, const u16 rt, const u16 rev) { rt2x00dev->chip.rt = rt; rt2x00dev->chip.rev = rev; rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n", rt2x00dev->chip.rt, rt2x00dev->chip.rev); } static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) { rt2x00dev->chip.rf = rf; rt2x00_info(rt2x00dev, "RF chipset %04x detected\n", rt2x00dev->chip.rf); } static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt) { return (rt2x00dev->chip.rt == rt); } static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) { return (rt2x00dev->chip.rf == rf); } static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev) { return rt2x00dev->chip.rev; } static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev, const u16 rt, const u16 rev) { return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev); } static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev, const u16 rt, const u16 rev) { return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev); } static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev, const u16 rt, const u16 rev) { return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev); } static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev, enum rt2x00_chip_intf intf) { rt2x00dev->chip.intf = intf; } static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev, enum rt2x00_chip_intf intf) { return (rt2x00dev->chip.intf == intf); } static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev) { return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) || rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); } static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev) { return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); } static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev) { return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB); } static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev) { return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC); } /* Helpers for capability flags */ static inline bool rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev, enum rt2x00_capability_flags cap_flag) { return test_bit(cap_flag, &rt2x00dev->cap_flags); } static inline bool rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev) { return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO); } static inline bool rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev) { return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT); } static inline bool rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev) { return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS); } static inline bool rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev) { return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL); } static inline bool rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev) { return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT); } static inline bool rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev) { return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING); } static inline bool rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev) { return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE); } static inline bool rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev) { return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE); } static inline bool rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev) { return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A); } static inline bool rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev) { return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG); } static inline bool rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev) { return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA); } static inline bool rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev) { return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST); } static inline bool rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev) { return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION); } /** * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes. * @entry: Pointer to &struct queue_entry * * Returns -ENOMEM if mapping fail, 0 otherwise. */ int rt2x00queue_map_txskb(struct queue_entry *entry); /** * rt2x00queue_unmap_skb - Unmap a skb from DMA. * @entry: Pointer to &struct queue_entry */ void rt2x00queue_unmap_skb(struct queue_entry *entry); /** * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer * @rt2x00dev: Pointer to &struct rt2x00_dev. * @queue: rt2x00 queue index (see &enum data_queue_qid). * * Returns NULL for non tx queues. */ static inline struct data_queue * rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev, const enum data_queue_qid queue) { if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx) return &rt2x00dev->tx[queue]; if (queue == QID_ATIM) return rt2x00dev->atim; return NULL; } /** * rt2x00queue_get_entry - Get queue entry where the given index points to. * @queue: Pointer to &struct data_queue from where we obtain the entry. * @index: Index identifier for obtaining the correct index. */ struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, enum queue_index index); /** * rt2x00queue_pause_queue - Pause a data queue * @queue: Pointer to &struct data_queue. * * This function will pause the data queue locally, preventing * new frames to be added to the queue (while the hardware is * still allowed to run). */ void rt2x00queue_pause_queue(struct data_queue *queue); /** * rt2x00queue_unpause_queue - unpause a data queue * @queue: Pointer to &struct data_queue. * * This function will unpause the data queue locally, allowing * new frames to be added to the queue again. */ void rt2x00queue_unpause_queue(struct data_queue *queue); /** * rt2x00queue_start_queue - Start a data queue * @queue: Pointer to &struct data_queue. * * This function will start handling all pending frames in the queue. */ void rt2x00queue_start_queue(struct data_queue *queue); /** * rt2x00queue_stop_queue - Halt a data queue * @queue: Pointer to &struct data_queue. * * This function will stop all pending frames in the queue. */ void rt2x00queue_stop_queue(struct data_queue *queue); /** * rt2x00queue_flush_queue - Flush a data queue * @queue: Pointer to &struct data_queue. * @drop: True to drop all pending frames. * * This function will flush the queue. After this call * the queue is guaranteed to be empty. */ void rt2x00queue_flush_queue(struct data_queue *queue, bool drop); /** * rt2x00queue_start_queues - Start all data queues * @rt2x00dev: Pointer to &struct rt2x00_dev. * * This function will loop through all available queues to start them */ void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev); /** * rt2x00queue_stop_queues - Halt all data queues * @rt2x00dev: Pointer to &struct rt2x00_dev. * * This function will loop through all available queues to stop * any pending frames. */ void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev); /** * rt2x00queue_flush_queues - Flush all data queues * @rt2x00dev: Pointer to &struct rt2x00_dev. * @drop: True to drop all pending frames. * * This function will loop through all available queues to flush * any pending frames. */ void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop); /* * Debugfs handlers. */ /** * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs. * @rt2x00dev: Pointer to &struct rt2x00_dev. * @type: The type of frame that is being dumped. * @skb: The skb containing the frame to be dumped. */ #ifdef CONFIG_RT2X00_LIB_DEBUGFS void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, enum rt2x00_dump_type type, struct sk_buff *skb); #else static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, enum rt2x00_dump_type type, struct sk_buff *skb) { } #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ /* * Utility functions. */ u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, struct ieee80211_vif *vif); /* * Interrupt context handlers. */ void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev); void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev); void rt2x00lib_dmastart(struct queue_entry *entry); void rt2x00lib_dmadone(struct queue_entry *entry); void rt2x00lib_txdone(struct queue_entry *entry, struct txdone_entry_desc *txdesc); void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status); void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp); /* * mac80211 handlers. */ void rt2x00mac_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb); int rt2x00mac_start(struct ieee80211_hw *hw); void rt2x00mac_stop(struct ieee80211_hw *hw); int rt2x00mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif); void rt2x00mac_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif); int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed); void rt2x00mac_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast); int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, bool set); #ifdef CONFIG_RT2X00_LIB_CRYPTO int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key); #else #define rt2x00mac_set_key NULL #endif /* CONFIG_RT2X00_LIB_CRYPTO */ int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta); int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta); void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw); void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw); int rt2x00mac_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats); void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf, u32 changes); int rt2x00mac_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue, const struct ieee80211_tx_queue_params *params); void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw); void rt2x00mac_flush(struct ieee80211_hw *hw, u32 queues, bool drop); int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); void rt2x00mac_get_ringparam(struct ieee80211_hw *hw, u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw); /* * Driver allocation handlers. */ int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev); void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev); #ifdef CONFIG_PM int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state); int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev); #endif /* CONFIG_PM */ #endif /* RT2X00_H */