/* Broadcom B43 wireless driver IEEE 802.11n HT-PHY support Copyright (c) 2011 Rafał Miłecki <zajec5@gmail.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <linux/slab.h> #include "b43.h" #include "phy_ht.h" #include "tables_phy_ht.h" #include "radio_2059.h" #include "main.h" /* Force values to keep compatibility with wl */ enum ht_rssi_type { HT_RSSI_W1 = 0, HT_RSSI_W2 = 1, HT_RSSI_NB = 2, HT_RSSI_IQ = 3, HT_RSSI_TSSI_2G = 4, HT_RSSI_TSSI_5G = 5, HT_RSSI_TBD = 6, }; /************************************************** * Radio 2059. **************************************************/ static void b43_radio_2059_channel_setup(struct b43_wldev *dev, const struct b43_phy_ht_channeltab_e_radio2059 *e) { static const u16 routing[] = { R2059_C1, R2059_C2, R2059_C3, }; u16 r; int core; b43_radio_write(dev, 0x16, e->radio_syn16); b43_radio_write(dev, 0x17, e->radio_syn17); b43_radio_write(dev, 0x22, e->radio_syn22); b43_radio_write(dev, 0x25, e->radio_syn25); b43_radio_write(dev, 0x27, e->radio_syn27); b43_radio_write(dev, 0x28, e->radio_syn28); b43_radio_write(dev, 0x29, e->radio_syn29); b43_radio_write(dev, 0x2c, e->radio_syn2c); b43_radio_write(dev, 0x2d, e->radio_syn2d); b43_radio_write(dev, 0x37, e->radio_syn37); b43_radio_write(dev, 0x41, e->radio_syn41); b43_radio_write(dev, 0x43, e->radio_syn43); b43_radio_write(dev, 0x47, e->radio_syn47); for (core = 0; core < 3; core++) { r = routing[core]; b43_radio_write(dev, r | 0x4a, e->radio_rxtx4a); b43_radio_write(dev, r | 0x58, e->radio_rxtx58); b43_radio_write(dev, r | 0x5a, e->radio_rxtx5a); b43_radio_write(dev, r | 0x6a, e->radio_rxtx6a); b43_radio_write(dev, r | 0x6d, e->radio_rxtx6d); b43_radio_write(dev, r | 0x6e, e->radio_rxtx6e); b43_radio_write(dev, r | 0x92, e->radio_rxtx92); b43_radio_write(dev, r | 0x98, e->radio_rxtx98); } udelay(50); /* Calibration */ b43_radio_mask(dev, 0x2b, ~0x1); b43_radio_mask(dev, 0x2e, ~0x4); b43_radio_set(dev, 0x2e, 0x4); b43_radio_set(dev, 0x2b, 0x1); udelay(300); } static void b43_radio_2059_init(struct b43_wldev *dev) { const u16 routing[] = { R2059_C1, R2059_C2, R2059_C3 }; const u16 radio_values[3][2] = { { 0x61, 0xE9 }, { 0x69, 0xD5 }, { 0x73, 0x99 }, }; u16 i, j; b43_radio_write(dev, R2059_ALL | 0x51, 0x0070); b43_radio_write(dev, R2059_ALL | 0x5a, 0x0003); for (i = 0; i < ARRAY_SIZE(routing); i++) b43_radio_set(dev, routing[i] | 0x146, 0x3); b43_radio_set(dev, 0x2e, 0x0078); b43_radio_set(dev, 0xc0, 0x0080); msleep(2); b43_radio_mask(dev, 0x2e, ~0x0078); b43_radio_mask(dev, 0xc0, ~0x0080); if (1) { /* FIXME */ b43_radio_set(dev, R2059_C3 | 0x4, 0x1); udelay(10); b43_radio_set(dev, R2059_C3 | 0x0BF, 0x1); b43_radio_maskset(dev, R2059_C3 | 0x19B, 0x3, 0x2); b43_radio_set(dev, R2059_C3 | 0x4, 0x2); udelay(100); b43_radio_mask(dev, R2059_C3 | 0x4, ~0x2); for (i = 0; i < 10000; i++) { if (b43_radio_read(dev, R2059_C3 | 0x145) & 1) { i = 0; break; } udelay(100); } if (i) b43err(dev->wl, "radio 0x945 timeout\n"); b43_radio_mask(dev, R2059_C3 | 0x4, ~0x1); b43_radio_set(dev, 0xa, 0x60); for (i = 0; i < 3; i++) { b43_radio_write(dev, 0x17F, radio_values[i][0]); b43_radio_write(dev, 0x13D, 0x6E); b43_radio_write(dev, 0x13E, radio_values[i][1]); b43_radio_write(dev, 0x13C, 0x55); for (j = 0; j < 10000; j++) { if (b43_radio_read(dev, 0x140) & 2) { j = 0; break; } udelay(500); } if (j) b43err(dev->wl, "radio 0x140 timeout\n"); b43_radio_write(dev, 0x13C, 0x15); } b43_radio_mask(dev, 0x17F, ~0x1); } b43_radio_mask(dev, 0x11, ~0x0008); } /************************************************** * RF **************************************************/ static void b43_phy_ht_force_rf_sequence(struct b43_wldev *dev, u16 rf_seq) { u8 i; u16 save_seq_mode = b43_phy_read(dev, B43_PHY_HT_RF_SEQ_MODE); b43_phy_set(dev, B43_PHY_HT_RF_SEQ_MODE, 0x3); b43_phy_set(dev, B43_PHY_HT_RF_SEQ_TRIG, rf_seq); for (i = 0; i < 200; i++) { if (!(b43_phy_read(dev, B43_PHY_HT_RF_SEQ_STATUS) & rf_seq)) { i = 0; break; } msleep(1); } if (i) b43err(dev->wl, "Forcing RF sequence timeout\n"); b43_phy_write(dev, B43_PHY_HT_RF_SEQ_MODE, save_seq_mode); } static void b43_phy_ht_pa_override(struct b43_wldev *dev, bool enable) { struct b43_phy_ht *htphy = dev->phy.ht; static const u16 regs[3] = { B43_PHY_HT_RF_CTL_INT_C1, B43_PHY_HT_RF_CTL_INT_C2, B43_PHY_HT_RF_CTL_INT_C3 }; int i; if (enable) { for (i = 0; i < 3; i++) b43_phy_write(dev, regs[i], htphy->rf_ctl_int_save[i]); } else { for (i = 0; i < 3; i++) htphy->rf_ctl_int_save[i] = b43_phy_read(dev, regs[i]); /* TODO: Does 5GHz band use different value (not 0x0400)? */ for (i = 0; i < 3; i++) b43_phy_write(dev, regs[i], 0x0400); } } /************************************************** * Various PHY ops **************************************************/ static u16 b43_phy_ht_classifier(struct b43_wldev *dev, u16 mask, u16 val) { u16 tmp; u16 allowed = B43_PHY_HT_CLASS_CTL_CCK_EN | B43_PHY_HT_CLASS_CTL_OFDM_EN | B43_PHY_HT_CLASS_CTL_WAITED_EN; tmp = b43_phy_read(dev, B43_PHY_HT_CLASS_CTL); tmp &= allowed; tmp &= ~mask; tmp |= (val & mask); b43_phy_maskset(dev, B43_PHY_HT_CLASS_CTL, ~allowed, tmp); return tmp; } static void b43_phy_ht_reset_cca(struct b43_wldev *dev) { u16 bbcfg; b43_phy_force_clock(dev, true); bbcfg = b43_phy_read(dev, B43_PHY_HT_BBCFG); b43_phy_write(dev, B43_PHY_HT_BBCFG, bbcfg | B43_PHY_HT_BBCFG_RSTCCA); udelay(1); b43_phy_write(dev, B43_PHY_HT_BBCFG, bbcfg & ~B43_PHY_HT_BBCFG_RSTCCA); b43_phy_force_clock(dev, false); b43_phy_ht_force_rf_sequence(dev, B43_PHY_HT_RF_SEQ_TRIG_RST2RX); } static void b43_phy_ht_zero_extg(struct b43_wldev *dev) { u8 i, j; u16 base[] = { 0x40, 0x60, 0x80 }; for (i = 0; i < ARRAY_SIZE(base); i++) { for (j = 0; j < 4; j++) b43_phy_write(dev, B43_PHY_EXTG(base[i] + j), 0); } for (i = 0; i < ARRAY_SIZE(base); i++) b43_phy_write(dev, B43_PHY_EXTG(base[i] + 0xc), 0); } /* Some unknown AFE (Analog Frondned) op */ static void b43_phy_ht_afe_unk1(struct b43_wldev *dev) { u8 i; static const u16 ctl_regs[3][2] = { { B43_PHY_HT_AFE_C1_OVER, B43_PHY_HT_AFE_C1 }, { B43_PHY_HT_AFE_C2_OVER, B43_PHY_HT_AFE_C2 }, { B43_PHY_HT_AFE_C3_OVER, B43_PHY_HT_AFE_C3}, }; for (i = 0; i < 3; i++) { /* TODO: verify masks&sets */ b43_phy_set(dev, ctl_regs[i][1], 0x4); b43_phy_set(dev, ctl_regs[i][0], 0x4); b43_phy_mask(dev, ctl_regs[i][1], ~0x1); b43_phy_set(dev, ctl_regs[i][0], 0x1); b43_httab_write(dev, B43_HTTAB16(8, 5 + (i * 0x10)), 0); b43_phy_mask(dev, ctl_regs[i][0], ~0x4); } } static void b43_phy_ht_read_clip_detection(struct b43_wldev *dev, u16 *clip_st) { clip_st[0] = b43_phy_read(dev, B43_PHY_HT_C1_CLIP1THRES); clip_st[1] = b43_phy_read(dev, B43_PHY_HT_C2_CLIP1THRES); clip_st[2] = b43_phy_read(dev, B43_PHY_HT_C3_CLIP1THRES); } static void b43_phy_ht_bphy_init(struct b43_wldev *dev) { unsigned int i; u16 val; val = 0x1E1F; for (i = 0; i < 16; i++) { b43_phy_write(dev, B43_PHY_N_BMODE(0x88 + i), val); val -= 0x202; } val = 0x3E3F; for (i = 0; i < 16; i++) { b43_phy_write(dev, B43_PHY_N_BMODE(0x98 + i), val); val -= 0x202; } b43_phy_write(dev, B43_PHY_N_BMODE(0x38), 0x668); } /************************************************** * Samples **************************************************/ static void b43_phy_ht_stop_playback(struct b43_wldev *dev) { struct b43_phy_ht *phy_ht = dev->phy.ht; u16 tmp; int i; tmp = b43_phy_read(dev, B43_PHY_HT_SAMP_STAT); if (tmp & 0x1) b43_phy_set(dev, B43_PHY_HT_SAMP_CMD, B43_PHY_HT_SAMP_CMD_STOP); else if (tmp & 0x2) b43_phy_mask(dev, B43_PHY_HT_IQLOCAL_CMDGCTL, 0x7FFF); b43_phy_mask(dev, B43_PHY_HT_SAMP_CMD, ~0x0004); for (i = 0; i < 3; i++) { if (phy_ht->bb_mult_save[i] >= 0) { b43_httab_write(dev, B43_HTTAB16(13, 0x63 + i * 4), phy_ht->bb_mult_save[i]); b43_httab_write(dev, B43_HTTAB16(13, 0x67 + i * 4), phy_ht->bb_mult_save[i]); } } } static u16 b43_phy_ht_load_samples(struct b43_wldev *dev) { int i; u16 len = 20 << 3; b43_phy_write(dev, B43_PHY_HT_TABLE_ADDR, 0x4400); for (i = 0; i < len; i++) { b43_phy_write(dev, B43_PHY_HT_TABLE_DATAHI, 0); b43_phy_write(dev, B43_PHY_HT_TABLE_DATALO, 0); } return len; } static void b43_phy_ht_run_samples(struct b43_wldev *dev, u16 samps, u16 loops, u16 wait) { struct b43_phy_ht *phy_ht = dev->phy.ht; u16 save_seq_mode; int i; for (i = 0; i < 3; i++) { if (phy_ht->bb_mult_save[i] < 0) phy_ht->bb_mult_save[i] = b43_httab_read(dev, B43_HTTAB16(13, 0x63 + i * 4)); } b43_phy_write(dev, B43_PHY_HT_SAMP_DEP_CNT, samps - 1); if (loops != 0xFFFF) loops--; b43_phy_write(dev, B43_PHY_HT_SAMP_LOOP_CNT, loops); b43_phy_write(dev, B43_PHY_HT_SAMP_WAIT_CNT, wait); save_seq_mode = b43_phy_read(dev, B43_PHY_HT_RF_SEQ_MODE); b43_phy_set(dev, B43_PHY_HT_RF_SEQ_MODE, B43_PHY_HT_RF_SEQ_MODE_CA_OVER); /* TODO: find out mask bits! Do we need more function arguments? */ b43_phy_mask(dev, B43_PHY_HT_SAMP_CMD, ~0); b43_phy_mask(dev, B43_PHY_HT_SAMP_CMD, ~0); b43_phy_mask(dev, B43_PHY_HT_IQLOCAL_CMDGCTL, ~0); b43_phy_set(dev, B43_PHY_HT_SAMP_CMD, 0x1); for (i = 0; i < 100; i++) { if (!(b43_phy_read(dev, B43_PHY_HT_RF_SEQ_STATUS) & 1)) { i = 0; break; } udelay(10); } if (i) b43err(dev->wl, "run samples timeout\n"); b43_phy_write(dev, B43_PHY_HT_RF_SEQ_MODE, save_seq_mode); } static void b43_phy_ht_tx_tone(struct b43_wldev *dev) { u16 samp; samp = b43_phy_ht_load_samples(dev); b43_phy_ht_run_samples(dev, samp, 0xFFFF, 0); } /************************************************** * RSSI **************************************************/ static void b43_phy_ht_rssi_select(struct b43_wldev *dev, u8 core_sel, enum ht_rssi_type rssi_type) { static const u16 ctl_regs[3][2] = { { B43_PHY_HT_AFE_C1, B43_PHY_HT_AFE_C1_OVER, }, { B43_PHY_HT_AFE_C2, B43_PHY_HT_AFE_C2_OVER, }, { B43_PHY_HT_AFE_C3, B43_PHY_HT_AFE_C3_OVER, }, }; static const u16 radio_r[] = { R2059_C1, R2059_C2, R2059_C3, }; int core; if (core_sel == 0) { b43err(dev->wl, "RSSI selection for core off not implemented yet\n"); } else { for (core = 0; core < 3; core++) { /* Check if caller requested a one specific core */ if ((core_sel == 1 && core != 0) || (core_sel == 2 && core != 1) || (core_sel == 3 && core != 2)) continue; switch (rssi_type) { case HT_RSSI_TSSI_2G: b43_phy_set(dev, ctl_regs[core][0], 0x3 << 8); b43_phy_set(dev, ctl_regs[core][0], 0x3 << 10); b43_phy_set(dev, ctl_regs[core][1], 0x1 << 9); b43_phy_set(dev, ctl_regs[core][1], 0x1 << 10); b43_radio_set(dev, R2059_C3 | 0xbf, 0x1); b43_radio_write(dev, radio_r[core] | 0x159, 0x11); break; default: b43err(dev->wl, "RSSI selection for type %d not implemented yet\n", rssi_type); } } } } static void b43_phy_ht_poll_rssi(struct b43_wldev *dev, enum ht_rssi_type type, s32 *buf, u8 nsamp) { u16 phy_regs_values[12]; static const u16 phy_regs_to_save[] = { B43_PHY_HT_AFE_C1, B43_PHY_HT_AFE_C1_OVER, 0x848, 0x841, B43_PHY_HT_AFE_C2, B43_PHY_HT_AFE_C2_OVER, 0x868, 0x861, B43_PHY_HT_AFE_C3, B43_PHY_HT_AFE_C3_OVER, 0x888, 0x881, }; u16 tmp[3]; int i; for (i = 0; i < 12; i++) phy_regs_values[i] = b43_phy_read(dev, phy_regs_to_save[i]); b43_phy_ht_rssi_select(dev, 5, type); for (i = 0; i < 6; i++) buf[i] = 0; for (i = 0; i < nsamp; i++) { tmp[0] = b43_phy_read(dev, B43_PHY_HT_RSSI_C1); tmp[1] = b43_phy_read(dev, B43_PHY_HT_RSSI_C2); tmp[2] = b43_phy_read(dev, B43_PHY_HT_RSSI_C3); buf[0] += ((s8)((tmp[0] & 0x3F) << 2)) >> 2; buf[1] += ((s8)(((tmp[0] >> 8) & 0x3F) << 2)) >> 2; buf[2] += ((s8)((tmp[1] & 0x3F) << 2)) >> 2; buf[3] += ((s8)(((tmp[1] >> 8) & 0x3F) << 2)) >> 2; buf[4] += ((s8)((tmp[2] & 0x3F) << 2)) >> 2; buf[5] += ((s8)(((tmp[2] >> 8) & 0x3F) << 2)) >> 2; } for (i = 0; i < 12; i++) b43_phy_write(dev, phy_regs_to_save[i], phy_regs_values[i]); } /************************************************** * Tx/Rx **************************************************/ static void b43_phy_ht_tx_power_fix(struct b43_wldev *dev) { int i; for (i = 0; i < 3; i++) { u16 mask; u32 tmp = b43_httab_read(dev, B43_HTTAB32(26, 0xE8)); if (0) /* FIXME */ mask = 0x2 << (i * 4); else mask = 0; b43_phy_mask(dev, B43_PHY_EXTG(0x108), mask); b43_httab_write(dev, B43_HTTAB16(7, 0x110 + i), tmp >> 16); b43_httab_write(dev, B43_HTTAB8(13, 0x63 + (i * 4)), tmp & 0xFF); b43_httab_write(dev, B43_HTTAB8(13, 0x73 + (i * 4)), tmp & 0xFF); } } static void b43_phy_ht_tx_power_ctl(struct b43_wldev *dev, bool enable) { struct b43_phy_ht *phy_ht = dev->phy.ht; u16 en_bits = B43_PHY_HT_TXPCTL_CMD_C1_COEFF | B43_PHY_HT_TXPCTL_CMD_C1_HWPCTLEN | B43_PHY_HT_TXPCTL_CMD_C1_PCTLEN; static const u16 cmd_regs[3] = { B43_PHY_HT_TXPCTL_CMD_C1, B43_PHY_HT_TXPCTL_CMD_C2, B43_PHY_HT_TXPCTL_CMD_C3 }; static const u16 status_regs[3] = { B43_PHY_HT_TX_PCTL_STATUS_C1, B43_PHY_HT_TX_PCTL_STATUS_C2, B43_PHY_HT_TX_PCTL_STATUS_C3 }; int i; if (!enable) { if (b43_phy_read(dev, B43_PHY_HT_TXPCTL_CMD_C1) & en_bits) { /* We disable enabled TX pwr ctl, save it's state */ for (i = 0; i < 3; i++) phy_ht->tx_pwr_idx[i] = b43_phy_read(dev, status_regs[i]); } b43_phy_mask(dev, B43_PHY_HT_TXPCTL_CMD_C1, ~en_bits); } else { b43_phy_set(dev, B43_PHY_HT_TXPCTL_CMD_C1, en_bits); if (b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ) { for (i = 0; i < 3; i++) b43_phy_write(dev, cmd_regs[i], 0x32); } for (i = 0; i < 3; i++) if (phy_ht->tx_pwr_idx[i] <= B43_PHY_HT_TXPCTL_CMD_C1_INIT) b43_phy_write(dev, cmd_regs[i], phy_ht->tx_pwr_idx[i]); } phy_ht->tx_pwr_ctl = enable; } static void b43_phy_ht_tx_power_ctl_idle_tssi(struct b43_wldev *dev) { struct b43_phy_ht *phy_ht = dev->phy.ht; static const u16 base[] = { 0x840, 0x860, 0x880 }; u16 save_regs[3][3]; s32 rssi_buf[6]; int core; for (core = 0; core < 3; core++) { save_regs[core][1] = b43_phy_read(dev, base[core] + 6); save_regs[core][2] = b43_phy_read(dev, base[core] + 7); save_regs[core][0] = b43_phy_read(dev, base[core] + 0); b43_phy_write(dev, base[core] + 6, 0); b43_phy_mask(dev, base[core] + 7, ~0xF); /* 0xF? Or just 0x6? */ b43_phy_set(dev, base[core] + 0, 0x0400); b43_phy_set(dev, base[core] + 0, 0x1000); } b43_phy_ht_tx_tone(dev); udelay(20); b43_phy_ht_poll_rssi(dev, HT_RSSI_TSSI_2G, rssi_buf, 1); b43_phy_ht_stop_playback(dev); b43_phy_ht_reset_cca(dev); phy_ht->idle_tssi[0] = rssi_buf[0] & 0xff; phy_ht->idle_tssi[1] = rssi_buf[2] & 0xff; phy_ht->idle_tssi[2] = rssi_buf[4] & 0xff; for (core = 0; core < 3; core++) { b43_phy_write(dev, base[core] + 0, save_regs[core][0]); b43_phy_write(dev, base[core] + 6, save_regs[core][1]); b43_phy_write(dev, base[core] + 7, save_regs[core][2]); } } static void b43_phy_ht_tssi_setup(struct b43_wldev *dev) { static const u16 routing[] = { R2059_C1, R2059_C2, R2059_C3, }; int core; /* 0x159 is probably TX_SSI_MUX or TSSIG (by comparing to N-PHY) */ for (core = 0; core < 3; core++) { b43_radio_set(dev, 0x8bf, 0x1); b43_radio_write(dev, routing[core] | 0x0159, 0x0011); } } static void b43_phy_ht_tx_power_ctl_setup(struct b43_wldev *dev) { struct b43_phy_ht *phy_ht = dev->phy.ht; struct ssb_sprom *sprom = dev->dev->bus_sprom; u8 *idle = phy_ht->idle_tssi; u8 target[3]; s16 a1[3], b0[3], b1[3]; u16 freq = dev->phy.channel_freq; int i, c; if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) { for (c = 0; c < 3; c++) { target[c] = sprom->core_pwr_info[c].maxpwr_2g; a1[c] = sprom->core_pwr_info[c].pa_2g[0]; b0[c] = sprom->core_pwr_info[c].pa_2g[1]; b1[c] = sprom->core_pwr_info[c].pa_2g[2]; } } else if (freq >= 4900 && freq < 5100) { for (c = 0; c < 3; c++) { target[c] = sprom->core_pwr_info[c].maxpwr_5gl; a1[c] = sprom->core_pwr_info[c].pa_5gl[0]; b0[c] = sprom->core_pwr_info[c].pa_5gl[1]; b1[c] = sprom->core_pwr_info[c].pa_5gl[2]; } } else if (freq >= 5100 && freq < 5500) { for (c = 0; c < 3; c++) { target[c] = sprom->core_pwr_info[c].maxpwr_5g; a1[c] = sprom->core_pwr_info[c].pa_5g[0]; b0[c] = sprom->core_pwr_info[c].pa_5g[1]; b1[c] = sprom->core_pwr_info[c].pa_5g[2]; } } else if (freq >= 5500) { for (c = 0; c < 3; c++) { target[c] = sprom->core_pwr_info[c].maxpwr_5gh; a1[c] = sprom->core_pwr_info[c].pa_5gh[0]; b0[c] = sprom->core_pwr_info[c].pa_5gh[1]; b1[c] = sprom->core_pwr_info[c].pa_5gh[2]; } } else { target[0] = target[1] = target[2] = 52; a1[0] = a1[1] = a1[2] = -424; b0[0] = b0[1] = b0[2] = 5612; b1[0] = b1[1] = b1[2] = -1393; } b43_phy_set(dev, B43_PHY_HT_TSSIMODE, B43_PHY_HT_TSSIMODE_EN); b43_phy_mask(dev, B43_PHY_HT_TXPCTL_CMD_C1, ~B43_PHY_HT_TXPCTL_CMD_C1_PCTLEN & 0xFFFF); /* TODO: Does it depend on sprom->fem.ghz2.tssipos? */ b43_phy_set(dev, B43_PHY_HT_TXPCTL_IDLE_TSSI, 0x4000); b43_phy_maskset(dev, B43_PHY_HT_TXPCTL_CMD_C1, ~B43_PHY_HT_TXPCTL_CMD_C1_INIT, 0x19); b43_phy_maskset(dev, B43_PHY_HT_TXPCTL_CMD_C2, ~B43_PHY_HT_TXPCTL_CMD_C2_INIT, 0x19); b43_phy_maskset(dev, B43_PHY_HT_TXPCTL_CMD_C3, ~B43_PHY_HT_TXPCTL_CMD_C3_INIT, 0x19); b43_phy_set(dev, B43_PHY_HT_TXPCTL_IDLE_TSSI, B43_PHY_HT_TXPCTL_IDLE_TSSI_BINF); b43_phy_maskset(dev, B43_PHY_HT_TXPCTL_IDLE_TSSI, ~B43_PHY_HT_TXPCTL_IDLE_TSSI_C1, idle[0] << B43_PHY_HT_TXPCTL_IDLE_TSSI_C1_SHIFT); b43_phy_maskset(dev, B43_PHY_HT_TXPCTL_IDLE_TSSI, ~B43_PHY_HT_TXPCTL_IDLE_TSSI_C2, idle[1] << B43_PHY_HT_TXPCTL_IDLE_TSSI_C2_SHIFT); b43_phy_maskset(dev, B43_PHY_HT_TXPCTL_IDLE_TSSI2, ~B43_PHY_HT_TXPCTL_IDLE_TSSI2_C3, idle[2] << B43_PHY_HT_TXPCTL_IDLE_TSSI2_C3_SHIFT); b43_phy_maskset(dev, B43_PHY_HT_TXPCTL_N, ~B43_PHY_HT_TXPCTL_N_TSSID, 0xf0); b43_phy_maskset(dev, B43_PHY_HT_TXPCTL_N, ~B43_PHY_HT_TXPCTL_N_NPTIL2, 0x3 << B43_PHY_HT_TXPCTL_N_NPTIL2_SHIFT); #if 0 /* TODO: what to mask/set? */ b43_phy_maskset(dev, B43_PHY_HT_TXPCTL_CMD_C1, 0x800, 0) b43_phy_maskset(dev, B43_PHY_HT_TXPCTL_CMD_C1, 0x400, 0) #endif b43_phy_maskset(dev, B43_PHY_HT_TXPCTL_TARG_PWR, ~B43_PHY_HT_TXPCTL_TARG_PWR_C1, target[0] << B43_PHY_HT_TXPCTL_TARG_PWR_C1_SHIFT); b43_phy_maskset(dev, B43_PHY_HT_TXPCTL_TARG_PWR, ~B43_PHY_HT_TXPCTL_TARG_PWR_C2 & 0xFFFF, target[1] << B43_PHY_HT_TXPCTL_TARG_PWR_C2_SHIFT); b43_phy_maskset(dev, B43_PHY_HT_TXPCTL_TARG_PWR2, ~B43_PHY_HT_TXPCTL_TARG_PWR2_C3, target[2] << B43_PHY_HT_TXPCTL_TARG_PWR2_C3_SHIFT); for (c = 0; c < 3; c++) { s32 num, den, pwr; u32 regval[64]; for (i = 0; i < 64; i++) { num = 8 * (16 * b0[c] + b1[c] * i); den = 32768 + a1[c] * i; pwr = max((4 * num + den / 2) / den, -8); regval[i] = pwr; } b43_httab_write_bulk(dev, B43_HTTAB16(26 + c, 0), 64, regval); } } /************************************************** * Channel switching ops. **************************************************/ static void b43_phy_ht_spur_avoid(struct b43_wldev *dev, struct ieee80211_channel *new_channel) { struct bcma_device *core = dev->dev->bdev; int spuravoid = 0; u16 tmp; /* Check for 13 and 14 is just a guess, we don't have enough logs. */ if (new_channel->hw_value == 13 || new_channel->hw_value == 14) spuravoid = 1; bcma_core_pll_ctl(core, B43_BCMA_CLKCTLST_PHY_PLL_REQ, 0, false); bcma_pmu_spuravoid_pllupdate(&core->bus->drv_cc, spuravoid); bcma_core_pll_ctl(core, B43_BCMA_CLKCTLST_80211_PLL_REQ | B43_BCMA_CLKCTLST_PHY_PLL_REQ, B43_BCMA_CLKCTLST_80211_PLL_ST | B43_BCMA_CLKCTLST_PHY_PLL_ST, false); /* Values has been taken from wlc_bmac_switch_macfreq comments */ switch (spuravoid) { case 2: /* 126MHz */ tmp = 0x2082; break; case 1: /* 123MHz */ tmp = 0x5341; break; default: /* 120MHz */ tmp = 0x8889; } b43_write16(dev, B43_MMIO_TSF_CLK_FRAC_LOW, tmp); b43_write16(dev, B43_MMIO_TSF_CLK_FRAC_HIGH, 0x8); /* TODO: reset PLL */ if (spuravoid) b43_phy_set(dev, B43_PHY_HT_BBCFG, B43_PHY_HT_BBCFG_RSTRX); else b43_phy_mask(dev, B43_PHY_HT_BBCFG, ~B43_PHY_HT_BBCFG_RSTRX & 0xFFFF); b43_phy_ht_reset_cca(dev); } static void b43_phy_ht_channel_setup(struct b43_wldev *dev, const struct b43_phy_ht_channeltab_e_phy *e, struct ieee80211_channel *new_channel) { bool old_band_5ghz; old_band_5ghz = b43_phy_read(dev, B43_PHY_HT_BANDCTL) & 0; /* FIXME */ if (new_channel->band == IEEE80211_BAND_5GHZ && !old_band_5ghz) { /* TODO */ } else if (new_channel->band == IEEE80211_BAND_2GHZ && old_band_5ghz) { /* TODO */ } b43_phy_write(dev, B43_PHY_HT_BW1, e->bw1); b43_phy_write(dev, B43_PHY_HT_BW2, e->bw2); b43_phy_write(dev, B43_PHY_HT_BW3, e->bw3); b43_phy_write(dev, B43_PHY_HT_BW4, e->bw4); b43_phy_write(dev, B43_PHY_HT_BW5, e->bw5); b43_phy_write(dev, B43_PHY_HT_BW6, e->bw6); if (new_channel->hw_value == 14) { b43_phy_ht_classifier(dev, B43_PHY_HT_CLASS_CTL_OFDM_EN, 0); b43_phy_set(dev, B43_PHY_HT_TEST, 0x0800); } else { b43_phy_ht_classifier(dev, B43_PHY_HT_CLASS_CTL_OFDM_EN, B43_PHY_HT_CLASS_CTL_OFDM_EN); if (new_channel->band == IEEE80211_BAND_2GHZ) b43_phy_mask(dev, B43_PHY_HT_TEST, ~0x840); } if (1) /* TODO: On N it's for early devices only, what about HT? */ b43_phy_ht_tx_power_fix(dev); b43_phy_ht_spur_avoid(dev, new_channel); b43_phy_write(dev, 0x017e, 0x3830); } static int b43_phy_ht_set_channel(struct b43_wldev *dev, struct ieee80211_channel *channel, enum nl80211_channel_type channel_type) { struct b43_phy *phy = &dev->phy; const struct b43_phy_ht_channeltab_e_radio2059 *chent_r2059 = NULL; if (phy->radio_ver == 0x2059) { chent_r2059 = b43_phy_ht_get_channeltab_e_r2059(dev, channel->center_freq); if (!chent_r2059) return -ESRCH; } else { return -ESRCH; } /* TODO: In case of N-PHY some bandwidth switching goes here */ if (phy->radio_ver == 0x2059) { b43_radio_2059_channel_setup(dev, chent_r2059); b43_phy_ht_channel_setup(dev, &(chent_r2059->phy_regs), channel); } else { return -ESRCH; } return 0; } /************************************************** * Basic PHY ops. **************************************************/ static int b43_phy_ht_op_allocate(struct b43_wldev *dev) { struct b43_phy_ht *phy_ht; phy_ht = kzalloc(sizeof(*phy_ht), GFP_KERNEL); if (!phy_ht) return -ENOMEM; dev->phy.ht = phy_ht; return 0; } static void b43_phy_ht_op_prepare_structs(struct b43_wldev *dev) { struct b43_phy *phy = &dev->phy; struct b43_phy_ht *phy_ht = phy->ht; int i; memset(phy_ht, 0, sizeof(*phy_ht)); phy_ht->tx_pwr_ctl = true; for (i = 0; i < 3; i++) phy_ht->tx_pwr_idx[i] = B43_PHY_HT_TXPCTL_CMD_C1_INIT + 1; for (i = 0; i < 3; i++) phy_ht->bb_mult_save[i] = -1; } static int b43_phy_ht_op_init(struct b43_wldev *dev) { struct b43_phy_ht *phy_ht = dev->phy.ht; u16 tmp; u16 clip_state[3]; bool saved_tx_pwr_ctl; if (dev->dev->bus_type != B43_BUS_BCMA) { b43err(dev->wl, "HT-PHY is supported only on BCMA bus!\n"); return -EOPNOTSUPP; } b43_phy_ht_tables_init(dev); b43_phy_mask(dev, 0x0be, ~0x2); b43_phy_set(dev, 0x23f, 0x7ff); b43_phy_set(dev, 0x240, 0x7ff); b43_phy_set(dev, 0x241, 0x7ff); b43_phy_ht_zero_extg(dev); b43_phy_mask(dev, B43_PHY_EXTG(0), ~0x3); b43_phy_write(dev, B43_PHY_HT_AFE_C1_OVER, 0); b43_phy_write(dev, B43_PHY_HT_AFE_C2_OVER, 0); b43_phy_write(dev, B43_PHY_HT_AFE_C3_OVER, 0); b43_phy_write(dev, B43_PHY_EXTG(0x103), 0x20); b43_phy_write(dev, B43_PHY_EXTG(0x101), 0x20); b43_phy_write(dev, 0x20d, 0xb8); b43_phy_write(dev, B43_PHY_EXTG(0x14f), 0xc8); b43_phy_write(dev, 0x70, 0x50); b43_phy_write(dev, 0x1ff, 0x30); if (0) /* TODO: condition */ ; /* TODO: PHY op on reg 0x217 */ if (b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ) b43_phy_ht_classifier(dev, B43_PHY_HT_CLASS_CTL_CCK_EN, 0); else b43_phy_ht_classifier(dev, B43_PHY_HT_CLASS_CTL_CCK_EN, B43_PHY_HT_CLASS_CTL_CCK_EN); b43_phy_set(dev, 0xb1, 0x91); b43_phy_write(dev, 0x32f, 0x0003); b43_phy_write(dev, 0x077, 0x0010); b43_phy_write(dev, 0x0b4, 0x0258); b43_phy_mask(dev, 0x17e, ~0x4000); b43_phy_write(dev, 0x0b9, 0x0072); b43_httab_write_few(dev, B43_HTTAB16(7, 0x14e), 2, 0x010f, 0x010f); b43_httab_write_few(dev, B43_HTTAB16(7, 0x15e), 2, 0x010f, 0x010f); b43_httab_write_few(dev, B43_HTTAB16(7, 0x16e), 2, 0x010f, 0x010f); b43_phy_ht_afe_unk1(dev); b43_httab_write_few(dev, B43_HTTAB16(7, 0x130), 9, 0x777, 0x111, 0x111, 0x777, 0x111, 0x111, 0x777, 0x111, 0x111); b43_httab_write(dev, B43_HTTAB16(7, 0x120), 0x0777); b43_httab_write(dev, B43_HTTAB16(7, 0x124), 0x0777); b43_httab_write(dev, B43_HTTAB16(8, 0x00), 0x02); b43_httab_write(dev, B43_HTTAB16(8, 0x10), 0x02); b43_httab_write(dev, B43_HTTAB16(8, 0x20), 0x02); b43_httab_write_few(dev, B43_HTTAB16(8, 0x08), 4, 0x8e, 0x96, 0x96, 0x96); b43_httab_write_few(dev, B43_HTTAB16(8, 0x18), 4, 0x8f, 0x9f, 0x9f, 0x9f); b43_httab_write_few(dev, B43_HTTAB16(8, 0x28), 4, 0x8f, 0x9f, 0x9f, 0x9f); b43_httab_write_few(dev, B43_HTTAB16(8, 0x0c), 4, 0x2, 0x2, 0x2, 0x2); b43_httab_write_few(dev, B43_HTTAB16(8, 0x1c), 4, 0x2, 0x2, 0x2, 0x2); b43_httab_write_few(dev, B43_HTTAB16(8, 0x2c), 4, 0x2, 0x2, 0x2, 0x2); b43_phy_maskset(dev, 0x0280, 0xff00, 0x3e); b43_phy_maskset(dev, 0x0283, 0xff00, 0x3e); b43_phy_maskset(dev, B43_PHY_OFDM(0x0141), 0xff00, 0x46); b43_phy_maskset(dev, 0x0283, 0xff00, 0x40); b43_httab_write_few(dev, B43_HTTAB16(00, 0x8), 4, 0x09, 0x0e, 0x13, 0x18); b43_httab_write_few(dev, B43_HTTAB16(01, 0x8), 4, 0x09, 0x0e, 0x13, 0x18); /* TODO: Did wl mean 2 instead of 40? */ b43_httab_write_few(dev, B43_HTTAB16(40, 0x8), 4, 0x09, 0x0e, 0x13, 0x18); b43_phy_maskset(dev, B43_PHY_OFDM(0x24), 0x3f, 0xd); b43_phy_maskset(dev, B43_PHY_OFDM(0x64), 0x3f, 0xd); b43_phy_maskset(dev, B43_PHY_OFDM(0xa4), 0x3f, 0xd); b43_phy_set(dev, B43_PHY_EXTG(0x060), 0x1); b43_phy_set(dev, B43_PHY_EXTG(0x064), 0x1); b43_phy_set(dev, B43_PHY_EXTG(0x080), 0x1); b43_phy_set(dev, B43_PHY_EXTG(0x084), 0x1); /* Copy some tables entries */ tmp = b43_httab_read(dev, B43_HTTAB16(7, 0x144)); b43_httab_write(dev, B43_HTTAB16(7, 0x14a), tmp); tmp = b43_httab_read(dev, B43_HTTAB16(7, 0x154)); b43_httab_write(dev, B43_HTTAB16(7, 0x15a), tmp); tmp = b43_httab_read(dev, B43_HTTAB16(7, 0x164)); b43_httab_write(dev, B43_HTTAB16(7, 0x16a), tmp); /* Reset CCA */ b43_phy_force_clock(dev, true); tmp = b43_phy_read(dev, B43_PHY_HT_BBCFG); b43_phy_write(dev, B43_PHY_HT_BBCFG, tmp | B43_PHY_HT_BBCFG_RSTCCA); b43_phy_write(dev, B43_PHY_HT_BBCFG, tmp & ~B43_PHY_HT_BBCFG_RSTCCA); b43_phy_force_clock(dev, false); b43_mac_phy_clock_set(dev, true); b43_phy_ht_pa_override(dev, false); b43_phy_ht_force_rf_sequence(dev, B43_PHY_HT_RF_SEQ_TRIG_RX2TX); b43_phy_ht_force_rf_sequence(dev, B43_PHY_HT_RF_SEQ_TRIG_RST2RX); b43_phy_ht_pa_override(dev, true); /* TODO: Should we restore it? Or store it in global PHY info? */ b43_phy_ht_classifier(dev, 0, 0); b43_phy_ht_read_clip_detection(dev, clip_state); if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) b43_phy_ht_bphy_init(dev); b43_httab_write_bulk(dev, B43_HTTAB32(0x1a, 0xc0), B43_HTTAB_1A_C0_LATE_SIZE, b43_httab_0x1a_0xc0_late); saved_tx_pwr_ctl = phy_ht->tx_pwr_ctl; b43_phy_ht_tx_power_fix(dev); b43_phy_ht_tx_power_ctl(dev, false); b43_phy_ht_tx_power_ctl_idle_tssi(dev); b43_phy_ht_tx_power_ctl_setup(dev); b43_phy_ht_tssi_setup(dev); b43_phy_ht_tx_power_ctl(dev, saved_tx_pwr_ctl); return 0; } static void b43_phy_ht_op_free(struct b43_wldev *dev) { struct b43_phy *phy = &dev->phy; struct b43_phy_ht *phy_ht = phy->ht; kfree(phy_ht); phy->ht = NULL; } /* http://bcm-v4.sipsolutions.net/802.11/Radio/Switch%20Radio */ static void b43_phy_ht_op_software_rfkill(struct b43_wldev *dev, bool blocked) { if (b43_read32(dev, B43_MMIO_MACCTL) & B43_MACCTL_ENABLED) b43err(dev->wl, "MAC not suspended\n"); /* In the following PHY ops we copy wl's dummy behaviour. * TODO: Find out if reads (currently hidden in masks/masksets) are * needed and replace following ops with just writes or w&r. * Note: B43_PHY_HT_RF_CTL1 register is tricky, wrong operation can * cause delayed (!) machine lock up. */ if (blocked) { b43_phy_mask(dev, B43_PHY_HT_RF_CTL1, 0); } else { b43_phy_mask(dev, B43_PHY_HT_RF_CTL1, 0); b43_phy_maskset(dev, B43_PHY_HT_RF_CTL1, 0, 0x1); b43_phy_mask(dev, B43_PHY_HT_RF_CTL1, 0); b43_phy_maskset(dev, B43_PHY_HT_RF_CTL1, 0, 0x2); if (dev->phy.radio_ver == 0x2059) b43_radio_2059_init(dev); else B43_WARN_ON(1); b43_switch_channel(dev, dev->phy.channel); } } static void b43_phy_ht_op_switch_analog(struct b43_wldev *dev, bool on) { if (on) { b43_phy_write(dev, B43_PHY_HT_AFE_C1, 0x00cd); b43_phy_write(dev, B43_PHY_HT_AFE_C1_OVER, 0x0000); b43_phy_write(dev, B43_PHY_HT_AFE_C2, 0x00cd); b43_phy_write(dev, B43_PHY_HT_AFE_C2_OVER, 0x0000); b43_phy_write(dev, B43_PHY_HT_AFE_C3, 0x00cd); b43_phy_write(dev, B43_PHY_HT_AFE_C3_OVER, 0x0000); } else { b43_phy_write(dev, B43_PHY_HT_AFE_C1_OVER, 0x07ff); b43_phy_write(dev, B43_PHY_HT_AFE_C1, 0x00fd); b43_phy_write(dev, B43_PHY_HT_AFE_C2_OVER, 0x07ff); b43_phy_write(dev, B43_PHY_HT_AFE_C2, 0x00fd); b43_phy_write(dev, B43_PHY_HT_AFE_C3_OVER, 0x07ff); b43_phy_write(dev, B43_PHY_HT_AFE_C3, 0x00fd); } } static int b43_phy_ht_op_switch_channel(struct b43_wldev *dev, unsigned int new_channel) { struct ieee80211_channel *channel = dev->wl->hw->conf.chandef.chan; enum nl80211_channel_type channel_type = cfg80211_get_chandef_type(&dev->wl->hw->conf.chandef); if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) { if ((new_channel < 1) || (new_channel > 14)) return -EINVAL; } else { return -EINVAL; } return b43_phy_ht_set_channel(dev, channel, channel_type); } static unsigned int b43_phy_ht_op_get_default_chan(struct b43_wldev *dev) { if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) return 11; return 36; } /************************************************** * R/W ops. **************************************************/ static u16 b43_phy_ht_op_read(struct b43_wldev *dev, u16 reg) { b43_write16(dev, B43_MMIO_PHY_CONTROL, reg); return b43_read16(dev, B43_MMIO_PHY_DATA); } static void b43_phy_ht_op_write(struct b43_wldev *dev, u16 reg, u16 value) { b43_write16(dev, B43_MMIO_PHY_CONTROL, reg); b43_write16(dev, B43_MMIO_PHY_DATA, value); } static void b43_phy_ht_op_maskset(struct b43_wldev *dev, u16 reg, u16 mask, u16 set) { b43_write16(dev, B43_MMIO_PHY_CONTROL, reg); b43_write16(dev, B43_MMIO_PHY_DATA, (b43_read16(dev, B43_MMIO_PHY_DATA) & mask) | set); } static u16 b43_phy_ht_op_radio_read(struct b43_wldev *dev, u16 reg) { /* HT-PHY needs 0x200 for read access */ reg |= 0x200; b43_write16(dev, B43_MMIO_RADIO24_CONTROL, reg); return b43_read16(dev, B43_MMIO_RADIO24_DATA); } static void b43_phy_ht_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value) { b43_write16(dev, B43_MMIO_RADIO24_CONTROL, reg); b43_write16(dev, B43_MMIO_RADIO24_DATA, value); } static enum b43_txpwr_result b43_phy_ht_op_recalc_txpower(struct b43_wldev *dev, bool ignore_tssi) { return B43_TXPWR_RES_DONE; } static void b43_phy_ht_op_adjust_txpower(struct b43_wldev *dev) { } /************************************************** * PHY ops struct. **************************************************/ const struct b43_phy_operations b43_phyops_ht = { .allocate = b43_phy_ht_op_allocate, .free = b43_phy_ht_op_free, .prepare_structs = b43_phy_ht_op_prepare_structs, .init = b43_phy_ht_op_init, .phy_read = b43_phy_ht_op_read, .phy_write = b43_phy_ht_op_write, .phy_maskset = b43_phy_ht_op_maskset, .radio_read = b43_phy_ht_op_radio_read, .radio_write = b43_phy_ht_op_radio_write, .software_rfkill = b43_phy_ht_op_software_rfkill, .switch_analog = b43_phy_ht_op_switch_analog, .switch_channel = b43_phy_ht_op_switch_channel, .get_default_chan = b43_phy_ht_op_get_default_chan, .recalc_txpower = b43_phy_ht_op_recalc_txpower, .adjust_txpower = b43_phy_ht_op_adjust_txpower, };