/* Broadcom B43 wireless driver IEEE 802.11a PHY driver Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>, Copyright (c) 2005-2007 Stefano Brivio <stefano.brivio@polimi.it> Copyright (c) 2005-2008 Michael Buesch <m@bues.ch> Copyright (c) 2005, 2006 Danny van Dyk <kugelfang@gentoo.org> Copyright (c) 2005, 2006 Andreas Jaggi <andreas.jaggi@waterwave.ch> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <linux/slab.h> #include "b43.h" #include "phy_a.h" #include "phy_common.h" #include "wa.h" #include "tables.h" #include "main.h" /* Get the freq, as it has to be written to the device. */ static inline u16 channel2freq_a(u8 channel) { B43_WARN_ON(channel > 200); return (5000 + 5 * channel); } static inline u16 freq_r3A_value(u16 frequency) { u16 value; if (frequency < 5091) value = 0x0040; else if (frequency < 5321) value = 0x0000; else if (frequency < 5806) value = 0x0080; else value = 0x0040; return value; } #if 0 /* This function converts a TSSI value to dBm in Q5.2 */ static s8 b43_aphy_estimate_power_out(struct b43_wldev *dev, s8 tssi) { struct b43_phy *phy = &dev->phy; struct b43_phy_a *aphy = phy->a; s8 dbm = 0; s32 tmp; tmp = (aphy->tgt_idle_tssi - aphy->cur_idle_tssi + tssi); tmp += 0x80; tmp = clamp_val(tmp, 0x00, 0xFF); dbm = aphy->tssi2dbm[tmp]; //TODO: There's a FIXME on the specs return dbm; } #endif static void b43_radio_set_tx_iq(struct b43_wldev *dev) { static const u8 data_high[5] = { 0x00, 0x40, 0x80, 0x90, 0xD0 }; static const u8 data_low[5] = { 0x00, 0x01, 0x05, 0x06, 0x0A }; u16 tmp = b43_radio_read16(dev, 0x001E); int i, j; for (i = 0; i < 5; i++) { for (j = 0; j < 5; j++) { if (tmp == (data_high[i] << 4 | data_low[j])) { b43_phy_write(dev, 0x0069, (i - j) << 8 | 0x00C0); return; } } } } static void aphy_channel_switch(struct b43_wldev *dev, unsigned int channel) { u16 freq, r8, tmp; freq = channel2freq_a(channel); r8 = b43_radio_read16(dev, 0x0008); b43_write16(dev, 0x03F0, freq); b43_radio_write16(dev, 0x0008, r8); //TODO: write max channel TX power? to Radio 0x2D tmp = b43_radio_read16(dev, 0x002E); tmp &= 0x0080; //TODO: OR tmp with the Power out estimation for this channel? b43_radio_write16(dev, 0x002E, tmp); if (freq >= 4920 && freq <= 5500) { /* * r8 = (((freq * 15 * 0xE1FC780F) >> 32) / 29) & 0x0F; * = (freq * 0.025862069 */ r8 = 3 * freq / 116; /* is equal to r8 = freq * 0.025862 */ } b43_radio_write16(dev, 0x0007, (r8 << 4) | r8); b43_radio_write16(dev, 0x0020, (r8 << 4) | r8); b43_radio_write16(dev, 0x0021, (r8 << 4) | r8); b43_radio_maskset(dev, 0x0022, 0x000F, (r8 << 4)); b43_radio_write16(dev, 0x002A, (r8 << 4)); b43_radio_write16(dev, 0x002B, (r8 << 4)); b43_radio_maskset(dev, 0x0008, 0x00F0, (r8 << 4)); b43_radio_maskset(dev, 0x0029, 0xFF0F, 0x00B0); b43_radio_write16(dev, 0x0035, 0x00AA); b43_radio_write16(dev, 0x0036, 0x0085); b43_radio_maskset(dev, 0x003A, 0xFF20, freq_r3A_value(freq)); b43_radio_mask(dev, 0x003D, 0x00FF); b43_radio_maskset(dev, 0x0081, 0xFF7F, 0x0080); b43_radio_mask(dev, 0x0035, 0xFFEF); b43_radio_maskset(dev, 0x0035, 0xFFEF, 0x0010); b43_radio_set_tx_iq(dev); //TODO: TSSI2dbm workaround //FIXME b43_phy_xmitpower(dev); } static void b43_radio_init2060(struct b43_wldev *dev) { b43_radio_write16(dev, 0x0004, 0x00C0); b43_radio_write16(dev, 0x0005, 0x0008); b43_radio_write16(dev, 0x0009, 0x0040); b43_radio_write16(dev, 0x0005, 0x00AA); b43_radio_write16(dev, 0x0032, 0x008F); b43_radio_write16(dev, 0x0006, 0x008F); b43_radio_write16(dev, 0x0034, 0x008F); b43_radio_write16(dev, 0x002C, 0x0007); b43_radio_write16(dev, 0x0082, 0x0080); b43_radio_write16(dev, 0x0080, 0x0000); b43_radio_write16(dev, 0x003F, 0x00DA); b43_radio_mask(dev, 0x0005, ~0x0008); b43_radio_mask(dev, 0x0081, ~0x0010); b43_radio_mask(dev, 0x0081, ~0x0020); b43_radio_mask(dev, 0x0081, ~0x0020); msleep(1); /* delay 400usec */ b43_radio_maskset(dev, 0x0081, ~0x0020, 0x0010); msleep(1); /* delay 400usec */ b43_radio_maskset(dev, 0x0005, ~0x0008, 0x0008); b43_radio_mask(dev, 0x0085, ~0x0010); b43_radio_mask(dev, 0x0005, ~0x0008); b43_radio_mask(dev, 0x0081, ~0x0040); b43_radio_maskset(dev, 0x0081, ~0x0040, 0x0040); b43_radio_write16(dev, 0x0005, (b43_radio_read16(dev, 0x0081) & ~0x0008) | 0x0008); b43_phy_write(dev, 0x0063, 0xDDC6); b43_phy_write(dev, 0x0069, 0x07BE); b43_phy_write(dev, 0x006A, 0x0000); aphy_channel_switch(dev, dev->phy.ops->get_default_chan(dev)); msleep(1); } static void b43_phy_rssiagc(struct b43_wldev *dev, u8 enable) { int i; if (dev->phy.rev < 3) { if (enable) for (i = 0; i < B43_TAB_RSSIAGC1_SIZE; i++) { b43_ofdmtab_write16(dev, B43_OFDMTAB_LNAHPFGAIN1, i, 0xFFF8); b43_ofdmtab_write16(dev, B43_OFDMTAB_WRSSI, i, 0xFFF8); } else for (i = 0; i < B43_TAB_RSSIAGC1_SIZE; i++) { b43_ofdmtab_write16(dev, B43_OFDMTAB_LNAHPFGAIN1, i, b43_tab_rssiagc1[i]); b43_ofdmtab_write16(dev, B43_OFDMTAB_WRSSI, i, b43_tab_rssiagc1[i]); } } else { if (enable) for (i = 0; i < B43_TAB_RSSIAGC1_SIZE; i++) b43_ofdmtab_write16(dev, B43_OFDMTAB_WRSSI, i, 0x0820); else for (i = 0; i < B43_TAB_RSSIAGC2_SIZE; i++) b43_ofdmtab_write16(dev, B43_OFDMTAB_WRSSI, i, b43_tab_rssiagc2[i]); } } static void b43_phy_ww(struct b43_wldev *dev) { u16 b, curr_s, best_s = 0xFFFF; int i; b43_phy_mask(dev, B43_PHY_CRS0, ~B43_PHY_CRS0_EN); b43_phy_set(dev, B43_PHY_OFDM(0x1B), 0x1000); b43_phy_maskset(dev, B43_PHY_OFDM(0x82), 0xF0FF, 0x0300); b43_radio_set(dev, 0x0009, 0x0080); b43_radio_maskset(dev, 0x0012, 0xFFFC, 0x0002); b43_wa_initgains(dev); b43_phy_write(dev, B43_PHY_OFDM(0xBA), 0x3ED5); b = b43_phy_read(dev, B43_PHY_PWRDOWN); b43_phy_write(dev, B43_PHY_PWRDOWN, (b & 0xFFF8) | 0x0005); b43_radio_set(dev, 0x0004, 0x0004); for (i = 0x10; i <= 0x20; i++) { b43_radio_write16(dev, 0x0013, i); curr_s = b43_phy_read(dev, B43_PHY_OTABLEQ) & 0x00FF; if (!curr_s) { best_s = 0x0000; break; } else if (curr_s >= 0x0080) curr_s = 0x0100 - curr_s; if (curr_s < best_s) best_s = curr_s; } b43_phy_write(dev, B43_PHY_PWRDOWN, b); b43_radio_mask(dev, 0x0004, 0xFFFB); b43_radio_write16(dev, 0x0013, best_s); b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1_R1, 0, 0xFFEC); b43_phy_write(dev, B43_PHY_OFDM(0xB7), 0x1E80); b43_phy_write(dev, B43_PHY_OFDM(0xB6), 0x1C00); b43_phy_write(dev, B43_PHY_OFDM(0xB5), 0x0EC0); b43_phy_write(dev, B43_PHY_OFDM(0xB2), 0x00C0); b43_phy_write(dev, B43_PHY_OFDM(0xB9), 0x1FFF); b43_phy_maskset(dev, B43_PHY_OFDM(0xBB), 0xF000, 0x0053); b43_phy_maskset(dev, B43_PHY_OFDM61, 0xFE1F, 0x0120); b43_phy_maskset(dev, B43_PHY_OFDM(0x13), 0x0FFF, 0x3000); b43_phy_maskset(dev, B43_PHY_OFDM(0x14), 0x0FFF, 0x3000); b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 6, 0x0017); for (i = 0; i < 6; i++) b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, i, 0x000F); b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 0x0D, 0x000E); b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 0x0E, 0x0011); b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 0x0F, 0x0013); b43_phy_write(dev, B43_PHY_OFDM(0x33), 0x5030); b43_phy_set(dev, B43_PHY_CRS0, B43_PHY_CRS0_EN); } static void hardware_pctl_init_aphy(struct b43_wldev *dev) { //TODO } void b43_phy_inita(struct b43_wldev *dev) { struct b43_phy *phy = &dev->phy; /* This lowlevel A-PHY init is also called from G-PHY init. * So we must not access phy->a, if called from G-PHY code. */ B43_WARN_ON((phy->type != B43_PHYTYPE_A) && (phy->type != B43_PHYTYPE_G)); might_sleep(); if (phy->rev >= 6) { if (phy->type == B43_PHYTYPE_A) b43_phy_mask(dev, B43_PHY_OFDM(0x1B), ~0x1000); if (b43_phy_read(dev, B43_PHY_ENCORE) & B43_PHY_ENCORE_EN) b43_phy_set(dev, B43_PHY_ENCORE, 0x0010); else b43_phy_mask(dev, B43_PHY_ENCORE, ~0x1010); } b43_wa_all(dev); if (phy->type == B43_PHYTYPE_A) { if (phy->gmode && (phy->rev < 3)) b43_phy_set(dev, 0x0034, 0x0001); b43_phy_rssiagc(dev, 0); b43_phy_set(dev, B43_PHY_CRS0, B43_PHY_CRS0_EN); b43_radio_init2060(dev); if ((dev->dev->board_vendor == SSB_BOARDVENDOR_BCM) && ((dev->dev->board_type == SSB_BOARD_BU4306) || (dev->dev->board_type == SSB_BOARD_BU4309))) { ; //TODO: A PHY LO } if (phy->rev >= 3) b43_phy_ww(dev); hardware_pctl_init_aphy(dev); //TODO: radar detection } if ((phy->type == B43_PHYTYPE_G) && (dev->dev->bus_sprom->boardflags_lo & B43_BFL_PACTRL)) { b43_phy_maskset(dev, B43_PHY_OFDM(0x6E), 0xE000, 0x3CF); } } /* Initialise the TSSI->dBm lookup table */ static int b43_aphy_init_tssi2dbm_table(struct b43_wldev *dev) { struct b43_phy *phy = &dev->phy; struct b43_phy_a *aphy = phy->a; s16 pab0, pab1, pab2; pab0 = (s16) (dev->dev->bus_sprom->pa1b0); pab1 = (s16) (dev->dev->bus_sprom->pa1b1); pab2 = (s16) (dev->dev->bus_sprom->pa1b2); if (pab0 != 0 && pab1 != 0 && pab2 != 0 && pab0 != -1 && pab1 != -1 && pab2 != -1) { /* The pabX values are set in SPROM. Use them. */ if ((s8) dev->dev->bus_sprom->itssi_a != 0 && (s8) dev->dev->bus_sprom->itssi_a != -1) aphy->tgt_idle_tssi = (s8) (dev->dev->bus_sprom->itssi_a); else aphy->tgt_idle_tssi = 62; aphy->tssi2dbm = b43_generate_dyn_tssi2dbm_tab(dev, pab0, pab1, pab2); if (!aphy->tssi2dbm) return -ENOMEM; } else { /* pabX values not set in SPROM, * but APHY needs a generated table. */ aphy->tssi2dbm = NULL; b43err(dev->wl, "Could not generate tssi2dBm " "table (wrong SPROM info)!\n"); return -ENODEV; } return 0; } static int b43_aphy_op_allocate(struct b43_wldev *dev) { struct b43_phy_a *aphy; int err; aphy = kzalloc(sizeof(*aphy), GFP_KERNEL); if (!aphy) return -ENOMEM; dev->phy.a = aphy; err = b43_aphy_init_tssi2dbm_table(dev); if (err) goto err_free_aphy; return 0; err_free_aphy: kfree(aphy); dev->phy.a = NULL; return err; } static void b43_aphy_op_prepare_structs(struct b43_wldev *dev) { struct b43_phy *phy = &dev->phy; struct b43_phy_a *aphy = phy->a; const void *tssi2dbm; int tgt_idle_tssi; /* tssi2dbm table is constant, so it is initialized at alloc time. * Save a copy of the pointer. */ tssi2dbm = aphy->tssi2dbm; tgt_idle_tssi = aphy->tgt_idle_tssi; /* Zero out the whole PHY structure. */ memset(aphy, 0, sizeof(*aphy)); aphy->tssi2dbm = tssi2dbm; aphy->tgt_idle_tssi = tgt_idle_tssi; //TODO init struct b43_phy_a } static void b43_aphy_op_free(struct b43_wldev *dev) { struct b43_phy *phy = &dev->phy; struct b43_phy_a *aphy = phy->a; kfree(aphy->tssi2dbm); aphy->tssi2dbm = NULL; kfree(aphy); dev->phy.a = NULL; } static int b43_aphy_op_init(struct b43_wldev *dev) { b43_phy_inita(dev); return 0; } static inline u16 adjust_phyreg(struct b43_wldev *dev, u16 offset) { /* OFDM registers are base-registers for the A-PHY. */ if ((offset & B43_PHYROUTE) == B43_PHYROUTE_OFDM_GPHY) { offset &= ~B43_PHYROUTE; offset |= B43_PHYROUTE_BASE; } #if B43_DEBUG if ((offset & B43_PHYROUTE) == B43_PHYROUTE_EXT_GPHY) { /* Ext-G registers are only available on G-PHYs */ b43err(dev->wl, "Invalid EXT-G PHY access at " "0x%04X on A-PHY\n", offset); dump_stack(); } if ((offset & B43_PHYROUTE) == B43_PHYROUTE_N_BMODE) { /* N-BMODE registers are only available on N-PHYs */ b43err(dev->wl, "Invalid N-BMODE PHY access at " "0x%04X on A-PHY\n", offset); dump_stack(); } #endif /* B43_DEBUG */ return offset; } static u16 b43_aphy_op_read(struct b43_wldev *dev, u16 reg) { reg = adjust_phyreg(dev, reg); b43_write16(dev, B43_MMIO_PHY_CONTROL, reg); return b43_read16(dev, B43_MMIO_PHY_DATA); } static void b43_aphy_op_write(struct b43_wldev *dev, u16 reg, u16 value) { reg = adjust_phyreg(dev, reg); b43_write16(dev, B43_MMIO_PHY_CONTROL, reg); b43_write16(dev, B43_MMIO_PHY_DATA, value); } static u16 b43_aphy_op_radio_read(struct b43_wldev *dev, u16 reg) { /* Register 1 is a 32-bit register. */ B43_WARN_ON(reg == 1); /* A-PHY needs 0x40 for read access */ reg |= 0x40; b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg); return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW); } static void b43_aphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value) { /* Register 1 is a 32-bit register. */ B43_WARN_ON(reg == 1); b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg); b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value); } static bool b43_aphy_op_supports_hwpctl(struct b43_wldev *dev) { return (dev->phy.rev >= 5); } static void b43_aphy_op_software_rfkill(struct b43_wldev *dev, bool blocked) { struct b43_phy *phy = &dev->phy; if (!blocked) { if (phy->radio_on) return; b43_radio_write16(dev, 0x0004, 0x00C0); b43_radio_write16(dev, 0x0005, 0x0008); b43_phy_mask(dev, 0x0010, 0xFFF7); b43_phy_mask(dev, 0x0011, 0xFFF7); b43_radio_init2060(dev); } else { b43_radio_write16(dev, 0x0004, 0x00FF); b43_radio_write16(dev, 0x0005, 0x00FB); b43_phy_set(dev, 0x0010, 0x0008); b43_phy_set(dev, 0x0011, 0x0008); } } static int b43_aphy_op_switch_channel(struct b43_wldev *dev, unsigned int new_channel) { if (new_channel > 200) return -EINVAL; aphy_channel_switch(dev, new_channel); return 0; } static unsigned int b43_aphy_op_get_default_chan(struct b43_wldev *dev) { return 36; /* Default to channel 36 */ } static void b43_aphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna) {//TODO struct b43_phy *phy = &dev->phy; u16 tmp; int autodiv = 0; if (antenna == B43_ANTENNA_AUTO0 || antenna == B43_ANTENNA_AUTO1) autodiv = 1; b43_hf_write(dev, b43_hf_read(dev) & ~B43_HF_ANTDIVHELP); b43_phy_maskset(dev, B43_PHY_BBANDCFG, ~B43_PHY_BBANDCFG_RXANT, (autodiv ? B43_ANTENNA_AUTO1 : antenna) << B43_PHY_BBANDCFG_RXANT_SHIFT); if (autodiv) { tmp = b43_phy_read(dev, B43_PHY_ANTDWELL); if (antenna == B43_ANTENNA_AUTO1) tmp &= ~B43_PHY_ANTDWELL_AUTODIV1; else tmp |= B43_PHY_ANTDWELL_AUTODIV1; b43_phy_write(dev, B43_PHY_ANTDWELL, tmp); } if (phy->rev < 3) b43_phy_maskset(dev, B43_PHY_ANTDWELL, 0xFF00, 0x24); else { b43_phy_set(dev, B43_PHY_OFDM61, 0x10); if (phy->rev == 3) { b43_phy_write(dev, B43_PHY_CLIPPWRDOWNT, 0x1D); b43_phy_write(dev, B43_PHY_ADIVRELATED, 8); } else { b43_phy_write(dev, B43_PHY_CLIPPWRDOWNT, 0x3A); b43_phy_maskset(dev, B43_PHY_ADIVRELATED, 0xFF00, 8); } } b43_hf_write(dev, b43_hf_read(dev) | B43_HF_ANTDIVHELP); } static void b43_aphy_op_adjust_txpower(struct b43_wldev *dev) {//TODO } static enum b43_txpwr_result b43_aphy_op_recalc_txpower(struct b43_wldev *dev, bool ignore_tssi) {//TODO return B43_TXPWR_RES_DONE; } static void b43_aphy_op_pwork_15sec(struct b43_wldev *dev) {//TODO } static void b43_aphy_op_pwork_60sec(struct b43_wldev *dev) {//TODO } const struct b43_phy_operations b43_phyops_a = { .allocate = b43_aphy_op_allocate, .free = b43_aphy_op_free, .prepare_structs = b43_aphy_op_prepare_structs, .init = b43_aphy_op_init, .phy_read = b43_aphy_op_read, .phy_write = b43_aphy_op_write, .radio_read = b43_aphy_op_radio_read, .radio_write = b43_aphy_op_radio_write, .supports_hwpctl = b43_aphy_op_supports_hwpctl, .software_rfkill = b43_aphy_op_software_rfkill, .switch_analog = b43_phyop_switch_analog_generic, .switch_channel = b43_aphy_op_switch_channel, .get_default_chan = b43_aphy_op_get_default_chan, .set_rx_antenna = b43_aphy_op_set_rx_antenna, .recalc_txpower = b43_aphy_op_recalc_txpower, .adjust_txpower = b43_aphy_op_adjust_txpower, .pwork_15sec = b43_aphy_op_pwork_15sec, .pwork_60sec = b43_aphy_op_pwork_60sec, };