/* * Copyright (c) 2008-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/export.h> #include "hw.h" #include "hw-ops.h" #include "ar9003_phy.h" #include "ar9003_mci.h" static void ar9003_mci_reset_req_wakeup(struct ath_hw *ah) { REG_RMW_FIELD(ah, AR_MCI_COMMAND2, AR_MCI_COMMAND2_RESET_REQ_WAKEUP, 1); udelay(1); REG_RMW_FIELD(ah, AR_MCI_COMMAND2, AR_MCI_COMMAND2_RESET_REQ_WAKEUP, 0); } static int ar9003_mci_wait_for_interrupt(struct ath_hw *ah, u32 address, u32 bit_position, int time_out) { struct ath_common *common = ath9k_hw_common(ah); while (time_out) { if (!(REG_READ(ah, address) & bit_position)) { udelay(10); time_out -= 10; if (time_out < 0) break; else continue; } REG_WRITE(ah, address, bit_position); if (address != AR_MCI_INTERRUPT_RX_MSG_RAW) break; if (bit_position & AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE) ar9003_mci_reset_req_wakeup(ah); if (bit_position & (AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING | AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING)) REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE); REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_RX_MSG); break; } if (time_out <= 0) { ath_dbg(common, MCI, "MCI Wait for Reg 0x%08x = 0x%08x timeout\n", address, bit_position); ath_dbg(common, MCI, "MCI INT_RAW = 0x%08x, RX_MSG_RAW = 0x%08x\n", REG_READ(ah, AR_MCI_INTERRUPT_RAW), REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW)); time_out = 0; } return time_out; } static void ar9003_mci_remote_reset(struct ath_hw *ah, bool wait_done) { u32 payload[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffff00}; ar9003_mci_send_message(ah, MCI_REMOTE_RESET, 0, payload, 16, wait_done, false); udelay(5); } static void ar9003_mci_send_lna_transfer(struct ath_hw *ah, bool wait_done) { u32 payload = 0x00000000; ar9003_mci_send_message(ah, MCI_LNA_TRANS, 0, &payload, 1, wait_done, false); } static void ar9003_mci_send_req_wake(struct ath_hw *ah, bool wait_done) { ar9003_mci_send_message(ah, MCI_REQ_WAKE, MCI_FLAG_DISABLE_TIMESTAMP, NULL, 0, wait_done, false); udelay(5); } static void ar9003_mci_send_sys_waking(struct ath_hw *ah, bool wait_done) { ar9003_mci_send_message(ah, MCI_SYS_WAKING, MCI_FLAG_DISABLE_TIMESTAMP, NULL, 0, wait_done, false); } static void ar9003_mci_send_lna_take(struct ath_hw *ah, bool wait_done) { u32 payload = 0x70000000; ar9003_mci_send_message(ah, MCI_LNA_TAKE, 0, &payload, 1, wait_done, false); } static void ar9003_mci_send_sys_sleeping(struct ath_hw *ah, bool wait_done) { ar9003_mci_send_message(ah, MCI_SYS_SLEEPING, MCI_FLAG_DISABLE_TIMESTAMP, NULL, 0, wait_done, false); } static void ar9003_mci_send_coex_version_query(struct ath_hw *ah, bool wait_done) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 payload[4] = {0, 0, 0, 0}; if (mci->bt_version_known || (mci->bt_state == MCI_BT_SLEEP)) return; MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT, MCI_GPM_COEX_VERSION_QUERY); ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true); } static void ar9003_mci_send_coex_version_response(struct ath_hw *ah, bool wait_done) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 payload[4] = {0, 0, 0, 0}; MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT, MCI_GPM_COEX_VERSION_RESPONSE); *(((u8 *)payload) + MCI_GPM_COEX_B_MAJOR_VERSION) = mci->wlan_ver_major; *(((u8 *)payload) + MCI_GPM_COEX_B_MINOR_VERSION) = mci->wlan_ver_minor; ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true); } static void ar9003_mci_send_coex_wlan_channels(struct ath_hw *ah, bool wait_done) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 *payload = &mci->wlan_channels[0]; if (!mci->wlan_channels_update || (mci->bt_state == MCI_BT_SLEEP)) return; MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT, MCI_GPM_COEX_WLAN_CHANNELS); ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true); MCI_GPM_SET_TYPE_OPCODE(payload, 0xff, 0xff); } static void ar9003_mci_send_coex_bt_status_query(struct ath_hw *ah, bool wait_done, u8 query_type) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 payload[4] = {0, 0, 0, 0}; bool query_btinfo; if (mci->bt_state == MCI_BT_SLEEP) return; query_btinfo = !!(query_type & (MCI_GPM_COEX_QUERY_BT_ALL_INFO | MCI_GPM_COEX_QUERY_BT_TOPOLOGY)); MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT, MCI_GPM_COEX_STATUS_QUERY); *(((u8 *)payload) + MCI_GPM_COEX_B_BT_BITMAP) = query_type; /* * If bt_status_query message is not sent successfully, * then need_flush_btinfo should be set again. */ if (!ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true)) { if (query_btinfo) mci->need_flush_btinfo = true; } if (query_btinfo) mci->query_bt = false; } static void ar9003_mci_send_coex_halt_bt_gpm(struct ath_hw *ah, bool halt, bool wait_done) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 payload[4] = {0, 0, 0, 0}; MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT, MCI_GPM_COEX_HALT_BT_GPM); if (halt) { mci->query_bt = true; /* Send next unhalt no matter halt sent or not */ mci->unhalt_bt_gpm = true; mci->need_flush_btinfo = true; *(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) = MCI_GPM_COEX_BT_GPM_HALT; } else *(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) = MCI_GPM_COEX_BT_GPM_UNHALT; ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true); } static void ar9003_mci_prep_interface(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 saved_mci_int_en; u32 mci_timeout = 150; mci->bt_state = MCI_BT_SLEEP; saved_mci_int_en = REG_READ(ah, AR_MCI_INTERRUPT_EN); REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0); REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW)); REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, REG_READ(ah, AR_MCI_INTERRUPT_RAW)); ar9003_mci_remote_reset(ah, true); ar9003_mci_send_req_wake(ah, true); if (!ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING, 500)) goto clear_redunt; mci->bt_state = MCI_BT_AWAKE; /* * we don't need to send more remote_reset at this moment. * If BT receive first remote_reset, then BT HW will * be cleaned up and will be able to receive req_wake * and BT HW will respond sys_waking. * In this case, WLAN will receive BT's HW sys_waking. * Otherwise, if BT SW missed initial remote_reset, * that remote_reset will still clean up BT MCI RX, * and the req_wake will wake BT up, * and BT SW will respond this req_wake with a remote_reset and * sys_waking. In this case, WLAN will receive BT's SW * sys_waking. In either case, BT's RX is cleaned up. So we * don't need to reply BT's remote_reset now, if any. * Similarly, if in any case, WLAN can receive BT's sys_waking, * that means WLAN's RX is also fine. */ ar9003_mci_send_sys_waking(ah, true); udelay(10); /* * Set BT priority interrupt value to be 0xff to * avoid having too many BT PRIORITY interrupts. */ REG_WRITE(ah, AR_MCI_BT_PRI0, 0xFFFFFFFF); REG_WRITE(ah, AR_MCI_BT_PRI1, 0xFFFFFFFF); REG_WRITE(ah, AR_MCI_BT_PRI2, 0xFFFFFFFF); REG_WRITE(ah, AR_MCI_BT_PRI3, 0xFFFFFFFF); REG_WRITE(ah, AR_MCI_BT_PRI, 0X000000FF); /* * A contention reset will be received after send out * sys_waking. Also BT priority interrupt bits will be set. * Clear those bits before the next step. */ REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_CONT_RST); REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_BT_PRI); if (mci->is_2g) { ar9003_mci_send_lna_transfer(ah, true); udelay(5); } if ((mci->is_2g && !mci->update_2g5g)) { if (ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_LNA_INFO, mci_timeout)) ath_dbg(common, MCI, "MCI WLAN has control over the LNA & BT obeys it\n"); else ath_dbg(common, MCI, "MCI BT didn't respond to LNA_TRANS\n"); } clear_redunt: /* Clear the extra redundant SYS_WAKING from BT */ if ((mci->bt_state == MCI_BT_AWAKE) && (REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING)) && (REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING) == 0)) { REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING); REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE); } REG_WRITE(ah, AR_MCI_INTERRUPT_EN, saved_mci_int_en); } void ar9003_mci_set_full_sleep(struct ath_hw *ah) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; if (ar9003_mci_state(ah, MCI_STATE_ENABLE) && (mci->bt_state != MCI_BT_SLEEP) && !mci->halted_bt_gpm) { ar9003_mci_send_coex_halt_bt_gpm(ah, true, true); } mci->ready = false; } static void ar9003_mci_disable_interrupt(struct ath_hw *ah) { REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0); REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0); } static void ar9003_mci_enable_interrupt(struct ath_hw *ah) { REG_WRITE(ah, AR_MCI_INTERRUPT_EN, AR_MCI_INTERRUPT_DEFAULT); REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, AR_MCI_INTERRUPT_RX_MSG_DEFAULT); } static bool ar9003_mci_check_int(struct ath_hw *ah, u32 ints) { u32 intr; intr = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW); return ((intr & ints) == ints); } void ar9003_mci_get_interrupt(struct ath_hw *ah, u32 *raw_intr, u32 *rx_msg_intr) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; *raw_intr = mci->raw_intr; *rx_msg_intr = mci->rx_msg_intr; /* Clean int bits after the values are read. */ mci->raw_intr = 0; mci->rx_msg_intr = 0; } EXPORT_SYMBOL(ar9003_mci_get_interrupt); void ar9003_mci_get_isr(struct ath_hw *ah, enum ath9k_int *masked) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 raw_intr, rx_msg_intr; rx_msg_intr = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW); raw_intr = REG_READ(ah, AR_MCI_INTERRUPT_RAW); if ((raw_intr == 0xdeadbeef) || (rx_msg_intr == 0xdeadbeef)) { ath_dbg(common, MCI, "MCI gets 0xdeadbeef during int processing\n"); } else { mci->rx_msg_intr |= rx_msg_intr; mci->raw_intr |= raw_intr; *masked |= ATH9K_INT_MCI; if (rx_msg_intr & AR_MCI_INTERRUPT_RX_MSG_CONT_INFO) mci->cont_status = REG_READ(ah, AR_MCI_CONT_STATUS); REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, rx_msg_intr); REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, raw_intr); } } static void ar9003_mci_2g5g_changed(struct ath_hw *ah, bool is_2g) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; if (!mci->update_2g5g && (mci->is_2g != is_2g)) mci->update_2g5g = true; mci->is_2g = is_2g; } static bool ar9003_mci_is_gpm_valid(struct ath_hw *ah, u32 msg_index) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 *payload; u32 recv_type, offset; if (msg_index == MCI_GPM_INVALID) return false; offset = msg_index << 4; payload = (u32 *)(mci->gpm_buf + offset); recv_type = MCI_GPM_TYPE(payload); if (recv_type == MCI_GPM_RSVD_PATTERN) return false; return true; } static void ar9003_mci_observation_set_up(struct ath_hw *ah) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; if (mci->config & ATH_MCI_CONFIG_MCI_OBS_MCI) { ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_DATA); ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_CLK); ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA); ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK); } else if (mci->config & ATH_MCI_CONFIG_MCI_OBS_TXRX) { ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_WL_IN_TX); ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_WL_IN_RX); ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX); ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX); ath9k_hw_cfg_output(ah, 5, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); } else if (mci->config & ATH_MCI_CONFIG_MCI_OBS_BT) { ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX); ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX); ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA); ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK); } else return; REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL, AR_GLB_DS_JTAG_DISABLE, 1); REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL, AR_GLB_WLAN_UART_INTF_EN, 0); REG_SET_BIT(ah, AR_GLB_GPIO_CONTROL, ATH_MCI_CONFIG_MCI_OBS_GPIO); REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_GPIO_OBS_SEL, 0); REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_MAC_BB_OBS_SEL, 1); REG_WRITE(ah, AR_OBS, 0x4b); REG_RMW_FIELD(ah, AR_DIAG_SW, AR_DIAG_OBS_PT_SEL1, 0x03); REG_RMW_FIELD(ah, AR_DIAG_SW, AR_DIAG_OBS_PT_SEL2, 0x01); REG_RMW_FIELD(ah, AR_MACMISC, AR_MACMISC_MISC_OBS_BUS_LSB, 0x02); REG_RMW_FIELD(ah, AR_MACMISC, AR_MACMISC_MISC_OBS_BUS_MSB, 0x03); REG_RMW_FIELD(ah, AR_PHY_TEST_CTL_STATUS, AR_PHY_TEST_CTL_DEBUGPORT_SEL, 0x07); } static bool ar9003_mci_send_coex_bt_flags(struct ath_hw *ah, bool wait_done, u8 opcode, u32 bt_flags) { u32 pld[4] = {0, 0, 0, 0}; MCI_GPM_SET_TYPE_OPCODE(pld, MCI_GPM_COEX_AGENT, MCI_GPM_COEX_BT_UPDATE_FLAGS); *(((u8 *)pld) + MCI_GPM_COEX_B_BT_FLAGS_OP) = opcode; *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 0) = bt_flags & 0xFF; *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 1) = (bt_flags >> 8) & 0xFF; *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 2) = (bt_flags >> 16) & 0xFF; *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 3) = (bt_flags >> 24) & 0xFF; return ar9003_mci_send_message(ah, MCI_GPM, 0, pld, 16, wait_done, true); } static void ar9003_mci_sync_bt_state(struct ath_hw *ah) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 cur_bt_state; cur_bt_state = ar9003_mci_state(ah, MCI_STATE_REMOTE_SLEEP); if (mci->bt_state != cur_bt_state) mci->bt_state = cur_bt_state; if (mci->bt_state != MCI_BT_SLEEP) { ar9003_mci_send_coex_version_query(ah, true); ar9003_mci_send_coex_wlan_channels(ah, true); if (mci->unhalt_bt_gpm == true) ar9003_mci_send_coex_halt_bt_gpm(ah, false, true); } } void ar9003_mci_check_bt(struct ath_hw *ah) { struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci; if (!mci_hw->ready) return; /* * check BT state again to make * sure it's not changed. */ ar9003_mci_sync_bt_state(ah); ar9003_mci_2g5g_switch(ah, true); if ((mci_hw->bt_state == MCI_BT_AWAKE) && (mci_hw->query_bt == true)) { mci_hw->need_flush_btinfo = true; } } static void ar9003_mci_process_gpm_extra(struct ath_hw *ah, u8 gpm_type, u8 gpm_opcode, u32 *p_gpm) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u8 *p_data = (u8 *) p_gpm; if (gpm_type != MCI_GPM_COEX_AGENT) return; switch (gpm_opcode) { case MCI_GPM_COEX_VERSION_QUERY: ath_dbg(common, MCI, "MCI Recv GPM COEX Version Query\n"); ar9003_mci_send_coex_version_response(ah, true); break; case MCI_GPM_COEX_VERSION_RESPONSE: ath_dbg(common, MCI, "MCI Recv GPM COEX Version Response\n"); mci->bt_ver_major = *(p_data + MCI_GPM_COEX_B_MAJOR_VERSION); mci->bt_ver_minor = *(p_data + MCI_GPM_COEX_B_MINOR_VERSION); mci->bt_version_known = true; ath_dbg(common, MCI, "MCI BT Coex version: %d.%d\n", mci->bt_ver_major, mci->bt_ver_minor); break; case MCI_GPM_COEX_STATUS_QUERY: ath_dbg(common, MCI, "MCI Recv GPM COEX Status Query = 0x%02X\n", *(p_data + MCI_GPM_COEX_B_WLAN_BITMAP)); mci->wlan_channels_update = true; ar9003_mci_send_coex_wlan_channels(ah, true); break; case MCI_GPM_COEX_BT_PROFILE_INFO: mci->query_bt = true; ath_dbg(common, MCI, "MCI Recv GPM COEX BT_Profile_Info\n"); break; case MCI_GPM_COEX_BT_STATUS_UPDATE: mci->query_bt = true; ath_dbg(common, MCI, "MCI Recv GPM COEX BT_Status_Update SEQ=%d (drop&query)\n", *(p_gpm + 3)); break; default: break; } } static u32 ar9003_mci_wait_for_gpm(struct ath_hw *ah, u8 gpm_type, u8 gpm_opcode, int time_out) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 *p_gpm = NULL, mismatch = 0, more_data; u32 offset; u8 recv_type = 0, recv_opcode = 0; bool b_is_bt_cal_done = (gpm_type == MCI_GPM_BT_CAL_DONE); more_data = time_out ? MCI_GPM_NOMORE : MCI_GPM_MORE; while (time_out > 0) { if (p_gpm) { MCI_GPM_RECYCLE(p_gpm); p_gpm = NULL; } if (more_data != MCI_GPM_MORE) time_out = ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_GPM, time_out); if (!time_out) break; offset = ar9003_mci_get_next_gpm_offset(ah, false, &more_data); if (offset == MCI_GPM_INVALID) continue; p_gpm = (u32 *) (mci->gpm_buf + offset); recv_type = MCI_GPM_TYPE(p_gpm); recv_opcode = MCI_GPM_OPCODE(p_gpm); if (MCI_GPM_IS_CAL_TYPE(recv_type)) { if (recv_type == gpm_type) { if ((gpm_type == MCI_GPM_BT_CAL_DONE) && !b_is_bt_cal_done) { gpm_type = MCI_GPM_BT_CAL_GRANT; continue; } break; } } else if ((recv_type == gpm_type) && (recv_opcode == gpm_opcode)) break; /* * check if it's cal_grant * * When we're waiting for cal_grant in reset routine, * it's possible that BT sends out cal_request at the * same time. Since BT's calibration doesn't happen * that often, we'll let BT completes calibration then * we continue to wait for cal_grant from BT. * Orginal: Wait BT_CAL_GRANT. * New: Receive BT_CAL_REQ -> send WLAN_CAL_GRANT->wait * BT_CAL_DONE -> Wait BT_CAL_GRANT. */ if ((gpm_type == MCI_GPM_BT_CAL_GRANT) && (recv_type == MCI_GPM_BT_CAL_REQ)) { u32 payload[4] = {0, 0, 0, 0}; gpm_type = MCI_GPM_BT_CAL_DONE; MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_GRANT); ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, false, false); continue; } else { ath_dbg(common, MCI, "MCI GPM subtype not match 0x%x\n", *(p_gpm + 1)); mismatch++; ar9003_mci_process_gpm_extra(ah, recv_type, recv_opcode, p_gpm); } } if (p_gpm) { MCI_GPM_RECYCLE(p_gpm); p_gpm = NULL; } if (time_out <= 0) time_out = 0; while (more_data == MCI_GPM_MORE) { offset = ar9003_mci_get_next_gpm_offset(ah, false, &more_data); if (offset == MCI_GPM_INVALID) break; p_gpm = (u32 *) (mci->gpm_buf + offset); recv_type = MCI_GPM_TYPE(p_gpm); recv_opcode = MCI_GPM_OPCODE(p_gpm); if (!MCI_GPM_IS_CAL_TYPE(recv_type)) ar9003_mci_process_gpm_extra(ah, recv_type, recv_opcode, p_gpm); MCI_GPM_RECYCLE(p_gpm); } return time_out; } bool ar9003_mci_start_reset(struct ath_hw *ah, struct ath9k_channel *chan) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci; u32 payload[4] = {0, 0, 0, 0}; ar9003_mci_2g5g_changed(ah, IS_CHAN_2GHZ(chan)); if (mci_hw->bt_state != MCI_BT_CAL_START) return false; mci_hw->bt_state = MCI_BT_CAL; /* * MCI FIX: disable mci interrupt here. This is to avoid * SW_MSG_DONE or RX_MSG bits to trigger MCI_INT and * lead to mci_intr reentry. */ ar9003_mci_disable_interrupt(ah); MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_GRANT); ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, true, false); /* Wait BT calibration to be completed for 25ms */ if (ar9003_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_DONE, 0, 25000)) ath_dbg(common, MCI, "MCI BT_CAL_DONE received\n"); else ath_dbg(common, MCI, "MCI BT_CAL_DONE not received\n"); mci_hw->bt_state = MCI_BT_AWAKE; /* MCI FIX: enable mci interrupt here */ ar9003_mci_enable_interrupt(ah); return true; } int ar9003_mci_end_reset(struct ath_hw *ah, struct ath9k_channel *chan, struct ath9k_hw_cal_data *caldata) { struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci; if (!mci_hw->ready) return 0; if (!IS_CHAN_2GHZ(chan) || (mci_hw->bt_state != MCI_BT_SLEEP)) goto exit; if (!ar9003_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET) && !ar9003_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)) goto exit; /* * BT is sleeping. Check if BT wakes up during * WLAN calibration. If BT wakes up during * WLAN calibration, need to go through all * message exchanges again and recal. */ REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, (AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET | AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)); ar9003_mci_remote_reset(ah, true); ar9003_mci_send_sys_waking(ah, true); udelay(1); if (IS_CHAN_2GHZ(chan)) ar9003_mci_send_lna_transfer(ah, true); mci_hw->bt_state = MCI_BT_AWAKE; REG_CLR_BIT(ah, AR_PHY_TIMING4, 1 << AR_PHY_TIMING_CONTROL4_DO_GAIN_DC_IQ_CAL_SHIFT); if (caldata) { clear_bit(TXIQCAL_DONE, &caldata->cal_flags); clear_bit(TXCLCAL_DONE, &caldata->cal_flags); clear_bit(RTT_DONE, &caldata->cal_flags); } if (!ath9k_hw_init_cal(ah, chan)) return -EIO; REG_SET_BIT(ah, AR_PHY_TIMING4, 1 << AR_PHY_TIMING_CONTROL4_DO_GAIN_DC_IQ_CAL_SHIFT); exit: ar9003_mci_enable_interrupt(ah); return 0; } static void ar9003_mci_mute_bt(struct ath_hw *ah) { /* disable all MCI messages */ REG_WRITE(ah, AR_MCI_MSG_ATTRIBUTES_TABLE, 0xffff0000); REG_SET_BIT(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE); /* wait pending HW messages to flush out */ udelay(10); /* * Send LNA_TAKE and SYS_SLEEPING when * 1. reset not after resuming from full sleep * 2. before reset MCI RX, to quiet BT and avoid MCI RX misalignment */ ar9003_mci_send_lna_take(ah, true); udelay(5); ar9003_mci_send_sys_sleeping(ah, true); } static void ar9003_mci_osla_setup(struct ath_hw *ah, bool enable) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 thresh; if (!enable) { REG_CLR_BIT(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN); return; } REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2, AR_MCI_SCHD_TABLE_2_HW_BASED, 1); REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2, AR_MCI_SCHD_TABLE_2_MEM_BASED, 1); if (AR_SREV_9565(ah)) REG_RMW_FIELD(ah, AR_MCI_MISC, AR_MCI_MISC_HW_FIX_EN, 1); if (!(mci->config & ATH_MCI_CONFIG_DISABLE_AGGR_THRESH)) { thresh = MS(mci->config, ATH_MCI_CONFIG_AGGR_THRESH); REG_RMW_FIELD(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_AGGR_THRESH, thresh); REG_RMW_FIELD(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_TIME_TO_NEXT_BT_THRESH_EN, 1); } else REG_RMW_FIELD(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_TIME_TO_NEXT_BT_THRESH_EN, 0); REG_RMW_FIELD(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN, 1); } int ar9003_mci_reset(struct ath_hw *ah, bool en_int, bool is_2g, bool is_full_sleep) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 regval, i; ath_dbg(common, MCI, "MCI Reset (full_sleep = %d, is_2g = %d)\n", is_full_sleep, is_2g); if (!mci->gpm_addr && !mci->sched_addr) { ath_err(common, "MCI GPM and schedule buffers are not allocated\n"); return -ENOMEM; } if (REG_READ(ah, AR_BTCOEX_CTRL) == 0xdeadbeef) { ath_err(common, "BTCOEX control register is dead\n"); return -EINVAL; } /* Program MCI DMA related registers */ REG_WRITE(ah, AR_MCI_GPM_0, mci->gpm_addr); REG_WRITE(ah, AR_MCI_GPM_1, mci->gpm_len); REG_WRITE(ah, AR_MCI_SCHD_TABLE_0, mci->sched_addr); /* * To avoid MCI state machine be affected by incoming remote MCI msgs, * MCI mode will be enabled later, right before reset the MCI TX and RX. */ regval = SM(1, AR_BTCOEX_CTRL_AR9462_MODE) | SM(1, AR_BTCOEX_CTRL_WBTIMER_EN) | SM(1, AR_BTCOEX_CTRL_PA_SHARED) | SM(1, AR_BTCOEX_CTRL_LNA_SHARED) | SM(0, AR_BTCOEX_CTRL_1_CHAIN_ACK) | SM(0, AR_BTCOEX_CTRL_1_CHAIN_BCN) | SM(0, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN); if (AR_SREV_9565(ah)) { regval |= SM(1, AR_BTCOEX_CTRL_NUM_ANTENNAS) | SM(1, AR_BTCOEX_CTRL_RX_CHAIN_MASK); REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_TX_CHAIN_MASK, 0x1); } else { regval |= SM(2, AR_BTCOEX_CTRL_NUM_ANTENNAS) | SM(3, AR_BTCOEX_CTRL_RX_CHAIN_MASK); } REG_WRITE(ah, AR_BTCOEX_CTRL, regval); if (is_2g && !(mci->config & ATH_MCI_CONFIG_DISABLE_OSLA)) ar9003_mci_osla_setup(ah, true); else ar9003_mci_osla_setup(ah, false); REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE); REG_RMW_FIELD(ah, AR_BTCOEX_CTRL3, AR_BTCOEX_CTRL3_CONT_INFO_TIMEOUT, 20); REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_RX_DEWEIGHT, 0); REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0); /* Set the time out to 3.125ms (5 BT slots) */ REG_RMW_FIELD(ah, AR_BTCOEX_WL_LNA, AR_BTCOEX_WL_LNA_TIMEOUT, 0x3D090); /* concurrent tx priority */ if (mci->config & ATH_MCI_CONFIG_CONCUR_TX) { REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_DESC_BASED_TXPWR_ENABLE, 0); REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_TXPWR_THRESH, 0x7f); REG_RMW_FIELD(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_REDUCE_TXPWR, 0); for (i = 0; i < 8; i++) REG_WRITE(ah, AR_BTCOEX_MAX_TXPWR(i), 0x7f7f7f7f); } regval = MS(mci->config, ATH_MCI_CONFIG_CLK_DIV); REG_RMW_FIELD(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_CLK_DIV, regval); REG_SET_BIT(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_MCI_MODE_EN); /* Resetting the Rx and Tx paths of MCI */ regval = REG_READ(ah, AR_MCI_COMMAND2); regval |= SM(1, AR_MCI_COMMAND2_RESET_TX); REG_WRITE(ah, AR_MCI_COMMAND2, regval); udelay(1); regval &= ~SM(1, AR_MCI_COMMAND2_RESET_TX); REG_WRITE(ah, AR_MCI_COMMAND2, regval); if (is_full_sleep) { ar9003_mci_mute_bt(ah); udelay(100); } /* Check pending GPM msg before MCI Reset Rx */ ar9003_mci_check_gpm_offset(ah); regval |= SM(1, AR_MCI_COMMAND2_RESET_RX); REG_WRITE(ah, AR_MCI_COMMAND2, regval); udelay(1); regval &= ~SM(1, AR_MCI_COMMAND2_RESET_RX); REG_WRITE(ah, AR_MCI_COMMAND2, regval); ar9003_mci_get_next_gpm_offset(ah, true, NULL); REG_WRITE(ah, AR_MCI_MSG_ATTRIBUTES_TABLE, (SM(0xe801, AR_MCI_MSG_ATTRIBUTES_TABLE_INVALID_HDR) | SM(0x0000, AR_MCI_MSG_ATTRIBUTES_TABLE_CHECKSUM))); REG_CLR_BIT(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE); ar9003_mci_observation_set_up(ah); mci->ready = true; ar9003_mci_prep_interface(ah); if (AR_SREV_9565(ah)) REG_RMW_FIELD(ah, AR_MCI_DBG_CNT_CTRL, AR_MCI_DBG_CNT_CTRL_ENABLE, 0); if (en_int) ar9003_mci_enable_interrupt(ah); return 0; } void ar9003_mci_stop_bt(struct ath_hw *ah, bool save_fullsleep) { struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci; ar9003_mci_disable_interrupt(ah); if (mci_hw->ready && !save_fullsleep) { ar9003_mci_mute_bt(ah); udelay(20); REG_WRITE(ah, AR_BTCOEX_CTRL, 0); } mci_hw->bt_state = MCI_BT_SLEEP; mci_hw->ready = false; } static void ar9003_mci_send_2g5g_status(struct ath_hw *ah, bool wait_done) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 new_flags, to_set, to_clear; if (!mci->update_2g5g || (mci->bt_state == MCI_BT_SLEEP)) return; if (mci->is_2g) { new_flags = MCI_2G_FLAGS; to_clear = MCI_2G_FLAGS_CLEAR_MASK; to_set = MCI_2G_FLAGS_SET_MASK; } else { new_flags = MCI_5G_FLAGS; to_clear = MCI_5G_FLAGS_CLEAR_MASK; to_set = MCI_5G_FLAGS_SET_MASK; } if (to_clear) ar9003_mci_send_coex_bt_flags(ah, wait_done, MCI_GPM_COEX_BT_FLAGS_CLEAR, to_clear); if (to_set) ar9003_mci_send_coex_bt_flags(ah, wait_done, MCI_GPM_COEX_BT_FLAGS_SET, to_set); } static void ar9003_mci_queue_unsent_gpm(struct ath_hw *ah, u8 header, u32 *payload, bool queue) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u8 type, opcode; /* check if the message is to be queued */ if (header != MCI_GPM) return; type = MCI_GPM_TYPE(payload); opcode = MCI_GPM_OPCODE(payload); if (type != MCI_GPM_COEX_AGENT) return; switch (opcode) { case MCI_GPM_COEX_BT_UPDATE_FLAGS: if (*(((u8 *)payload) + MCI_GPM_COEX_B_BT_FLAGS_OP) == MCI_GPM_COEX_BT_FLAGS_READ) break; mci->update_2g5g = queue; break; case MCI_GPM_COEX_WLAN_CHANNELS: mci->wlan_channels_update = queue; break; case MCI_GPM_COEX_HALT_BT_GPM: if (*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) == MCI_GPM_COEX_BT_GPM_UNHALT) { mci->unhalt_bt_gpm = queue; if (!queue) mci->halted_bt_gpm = false; } if (*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) == MCI_GPM_COEX_BT_GPM_HALT) { mci->halted_bt_gpm = !queue; } break; default: break; } } void ar9003_mci_2g5g_switch(struct ath_hw *ah, bool force) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; if (!mci->update_2g5g && !force) return; if (mci->is_2g) { ar9003_mci_send_2g5g_status(ah, true); ar9003_mci_send_lna_transfer(ah, true); udelay(5); REG_CLR_BIT(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE); REG_CLR_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL); if (!(mci->config & ATH_MCI_CONFIG_DISABLE_OSLA)) ar9003_mci_osla_setup(ah, true); if (AR_SREV_9462(ah)) REG_WRITE(ah, AR_SELFGEN_MASK, 0x02); } else { ar9003_mci_send_lna_take(ah, true); udelay(5); REG_SET_BIT(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE); REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL); ar9003_mci_osla_setup(ah, false); ar9003_mci_send_2g5g_status(ah, true); } } bool ar9003_mci_send_message(struct ath_hw *ah, u8 header, u32 flag, u32 *payload, u8 len, bool wait_done, bool check_bt) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; bool msg_sent = false; u32 regval; u32 saved_mci_int_en; int i; saved_mci_int_en = REG_READ(ah, AR_MCI_INTERRUPT_EN); regval = REG_READ(ah, AR_BTCOEX_CTRL); if ((regval == 0xdeadbeef) || !(regval & AR_BTCOEX_CTRL_MCI_MODE_EN)) { ath_dbg(common, MCI, "MCI Not sending 0x%x. MCI is not enabled. full_sleep = %d\n", header, (ah->power_mode == ATH9K_PM_FULL_SLEEP) ? 1 : 0); ar9003_mci_queue_unsent_gpm(ah, header, payload, true); return false; } else if (check_bt && (mci->bt_state == MCI_BT_SLEEP)) { ath_dbg(common, MCI, "MCI Don't send message 0x%x. BT is in sleep state\n", header); ar9003_mci_queue_unsent_gpm(ah, header, payload, true); return false; } if (wait_done) REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0); /* Need to clear SW_MSG_DONE raw bit before wait */ REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, (AR_MCI_INTERRUPT_SW_MSG_DONE | AR_MCI_INTERRUPT_MSG_FAIL_MASK)); if (payload) { for (i = 0; (i * 4) < len; i++) REG_WRITE(ah, (AR_MCI_TX_PAYLOAD0 + i * 4), *(payload + i)); } REG_WRITE(ah, AR_MCI_COMMAND0, (SM((flag & MCI_FLAG_DISABLE_TIMESTAMP), AR_MCI_COMMAND0_DISABLE_TIMESTAMP) | SM(len, AR_MCI_COMMAND0_LEN) | SM(header, AR_MCI_COMMAND0_HEADER))); if (wait_done && !(ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RAW, AR_MCI_INTERRUPT_SW_MSG_DONE, 500))) ar9003_mci_queue_unsent_gpm(ah, header, payload, true); else { ar9003_mci_queue_unsent_gpm(ah, header, payload, false); msg_sent = true; } if (wait_done) REG_WRITE(ah, AR_MCI_INTERRUPT_EN, saved_mci_int_en); return msg_sent; } EXPORT_SYMBOL(ar9003_mci_send_message); void ar9003_mci_init_cal_req(struct ath_hw *ah, bool *is_reusable) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci; u32 pld[4] = {0, 0, 0, 0}; if ((mci_hw->bt_state != MCI_BT_AWAKE) || (mci_hw->config & ATH_MCI_CONFIG_DISABLE_MCI_CAL)) return; MCI_GPM_SET_CAL_TYPE(pld, MCI_GPM_WLAN_CAL_REQ); pld[MCI_GPM_WLAN_CAL_W_SEQUENCE] = mci_hw->wlan_cal_seq++; ar9003_mci_send_message(ah, MCI_GPM, 0, pld, 16, true, false); if (ar9003_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_GRANT, 0, 50000)) { ath_dbg(common, MCI, "MCI BT_CAL_GRANT received\n"); } else { *is_reusable = false; ath_dbg(common, MCI, "MCI BT_CAL_GRANT not received\n"); } } void ar9003_mci_init_cal_done(struct ath_hw *ah) { struct ath9k_hw_mci *mci_hw = &ah->btcoex_hw.mci; u32 pld[4] = {0, 0, 0, 0}; if ((mci_hw->bt_state != MCI_BT_AWAKE) || (mci_hw->config & ATH_MCI_CONFIG_DISABLE_MCI_CAL)) return; MCI_GPM_SET_CAL_TYPE(pld, MCI_GPM_WLAN_CAL_DONE); pld[MCI_GPM_WLAN_CAL_W_SEQUENCE] = mci_hw->wlan_cal_done++; ar9003_mci_send_message(ah, MCI_GPM, 0, pld, 16, true, false); } int ar9003_mci_setup(struct ath_hw *ah, u32 gpm_addr, void *gpm_buf, u16 len, u32 sched_addr) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; mci->gpm_addr = gpm_addr; mci->gpm_buf = gpm_buf; mci->gpm_len = len; mci->sched_addr = sched_addr; return ar9003_mci_reset(ah, true, true, true); } EXPORT_SYMBOL(ar9003_mci_setup); void ar9003_mci_cleanup(struct ath_hw *ah) { /* Turn off MCI and Jupiter mode. */ REG_WRITE(ah, AR_BTCOEX_CTRL, 0x00); ar9003_mci_disable_interrupt(ah); } EXPORT_SYMBOL(ar9003_mci_cleanup); u32 ar9003_mci_state(struct ath_hw *ah, u32 state_type) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 value = 0, tsf; u8 query_type; switch (state_type) { case MCI_STATE_ENABLE: if (mci->ready) { value = REG_READ(ah, AR_BTCOEX_CTRL); if ((value == 0xdeadbeef) || (value == 0xffffffff)) value = 0; } value &= AR_BTCOEX_CTRL_MCI_MODE_EN; break; case MCI_STATE_LAST_SCHD_MSG_OFFSET: value = MS(REG_READ(ah, AR_MCI_RX_STATUS), AR_MCI_RX_LAST_SCHD_MSG_INDEX); /* Make it in bytes */ value <<= 4; break; case MCI_STATE_REMOTE_SLEEP: value = MS(REG_READ(ah, AR_MCI_RX_STATUS), AR_MCI_RX_REMOTE_SLEEP) ? MCI_BT_SLEEP : MCI_BT_AWAKE; break; case MCI_STATE_SET_BT_AWAKE: mci->bt_state = MCI_BT_AWAKE; ar9003_mci_send_coex_version_query(ah, true); ar9003_mci_send_coex_wlan_channels(ah, true); if (mci->unhalt_bt_gpm) ar9003_mci_send_coex_halt_bt_gpm(ah, false, true); ar9003_mci_2g5g_switch(ah, false); break; case MCI_STATE_RESET_REQ_WAKE: ar9003_mci_reset_req_wakeup(ah); mci->update_2g5g = true; if (mci->config & ATH_MCI_CONFIG_MCI_OBS_MASK) { /* Check if we still have control of the GPIOs */ if ((REG_READ(ah, AR_GLB_GPIO_CONTROL) & ATH_MCI_CONFIG_MCI_OBS_GPIO) != ATH_MCI_CONFIG_MCI_OBS_GPIO) { ar9003_mci_observation_set_up(ah); } } break; case MCI_STATE_SEND_WLAN_COEX_VERSION: ar9003_mci_send_coex_version_response(ah, true); break; case MCI_STATE_SEND_VERSION_QUERY: ar9003_mci_send_coex_version_query(ah, true); break; case MCI_STATE_SEND_STATUS_QUERY: query_type = MCI_GPM_COEX_QUERY_BT_TOPOLOGY; ar9003_mci_send_coex_bt_status_query(ah, true, query_type); break; case MCI_STATE_RECOVER_RX: tsf = ath9k_hw_gettsf32(ah); if ((tsf - mci->last_recovery) <= MCI_RECOVERY_DUR_TSF) { ath_dbg(ath9k_hw_common(ah), MCI, "(MCI) ignore Rx recovery\n"); break; } ath_dbg(ath9k_hw_common(ah), MCI, "(MCI) RECOVER RX\n"); mci->last_recovery = tsf; ar9003_mci_prep_interface(ah); mci->query_bt = true; mci->need_flush_btinfo = true; ar9003_mci_send_coex_wlan_channels(ah, true); ar9003_mci_2g5g_switch(ah, false); break; case MCI_STATE_NEED_FTP_STOMP: value = !(mci->config & ATH_MCI_CONFIG_DISABLE_FTP_STOMP); break; case MCI_STATE_NEED_FLUSH_BT_INFO: value = (!mci->unhalt_bt_gpm && mci->need_flush_btinfo) ? 1 : 0; mci->need_flush_btinfo = false; break; default: break; } return value; } EXPORT_SYMBOL(ar9003_mci_state); void ar9003_mci_bt_gain_ctrl(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; ath_dbg(common, MCI, "Give LNA and SPDT control to BT\n"); ar9003_mci_send_lna_take(ah, true); udelay(50); REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL); mci->is_2g = false; mci->update_2g5g = true; ar9003_mci_send_2g5g_status(ah, true); /* Force another 2g5g update at next scanning */ mci->update_2g5g = true; } void ar9003_mci_set_power_awake(struct ath_hw *ah) { u32 btcoex_ctrl2, diag_sw; int i; u8 lna_ctrl, bt_sleep; for (i = 0; i < AH_WAIT_TIMEOUT; i++) { btcoex_ctrl2 = REG_READ(ah, AR_BTCOEX_CTRL2); if (btcoex_ctrl2 != 0xdeadbeef) break; udelay(AH_TIME_QUANTUM); } REG_WRITE(ah, AR_BTCOEX_CTRL2, (btcoex_ctrl2 | BIT(23))); for (i = 0; i < AH_WAIT_TIMEOUT; i++) { diag_sw = REG_READ(ah, AR_DIAG_SW); if (diag_sw != 0xdeadbeef) break; udelay(AH_TIME_QUANTUM); } REG_WRITE(ah, AR_DIAG_SW, (diag_sw | BIT(27) | BIT(19) | BIT(18))); lna_ctrl = REG_READ(ah, AR_OBS_BUS_CTRL) & 0x3; bt_sleep = MS(REG_READ(ah, AR_MCI_RX_STATUS), AR_MCI_RX_REMOTE_SLEEP); REG_WRITE(ah, AR_BTCOEX_CTRL2, btcoex_ctrl2); REG_WRITE(ah, AR_DIAG_SW, diag_sw); if (bt_sleep && (lna_ctrl == 2)) { REG_SET_BIT(ah, AR_BTCOEX_RC, 0x1); REG_CLR_BIT(ah, AR_BTCOEX_RC, 0x1); udelay(50); } } void ar9003_mci_check_gpm_offset(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 offset; /* * This should only be called before "MAC Warm Reset" or "MCI Reset Rx". */ offset = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR); if (mci->gpm_idx == offset) return; ath_dbg(common, MCI, "GPM cached write pointer mismatch %d %d\n", mci->gpm_idx, offset); mci->query_bt = true; mci->need_flush_btinfo = true; mci->gpm_idx = 0; } u32 ar9003_mci_get_next_gpm_offset(struct ath_hw *ah, bool first, u32 *more) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; u32 offset, more_gpm = 0, gpm_ptr; if (first) { gpm_ptr = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR); if (gpm_ptr >= mci->gpm_len) gpm_ptr = 0; mci->gpm_idx = gpm_ptr; return gpm_ptr; } /* * This could be useful to avoid new GPM message interrupt which * may lead to spurious interrupt after power sleep, or multiple * entry of ath_mci_intr(). * Adding empty GPM check by returning HAL_MCI_GPM_INVALID can * alleviate this effect, but clearing GPM RX interrupt bit is * safe, because whether this is called from hw or driver code * there must be an interrupt bit set/triggered initially */ REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, AR_MCI_INTERRUPT_RX_MSG_GPM); gpm_ptr = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR); offset = gpm_ptr; if (!offset) offset = mci->gpm_len - 1; else if (offset >= mci->gpm_len) { if (offset != 0xFFFF) offset = 0; } else { offset--; } if ((offset == 0xFFFF) || (gpm_ptr == mci->gpm_idx)) { offset = MCI_GPM_INVALID; more_gpm = MCI_GPM_NOMORE; goto out; } for (;;) { u32 temp_index; /* skip reserved GPM if any */ if (offset != mci->gpm_idx) more_gpm = MCI_GPM_MORE; else more_gpm = MCI_GPM_NOMORE; temp_index = mci->gpm_idx; if (temp_index >= mci->gpm_len) temp_index = 0; mci->gpm_idx++; if (mci->gpm_idx >= mci->gpm_len) mci->gpm_idx = 0; if (ar9003_mci_is_gpm_valid(ah, temp_index)) { offset = temp_index; break; } if (more_gpm == MCI_GPM_NOMORE) { offset = MCI_GPM_INVALID; break; } } if (offset != MCI_GPM_INVALID) offset <<= 4; out: if (more) *more = more_gpm; return offset; } EXPORT_SYMBOL(ar9003_mci_get_next_gpm_offset); void ar9003_mci_set_bt_version(struct ath_hw *ah, u8 major, u8 minor) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; mci->bt_ver_major = major; mci->bt_ver_minor = minor; mci->bt_version_known = true; ath_dbg(ath9k_hw_common(ah), MCI, "MCI BT version set: %d.%d\n", mci->bt_ver_major, mci->bt_ver_minor); } EXPORT_SYMBOL(ar9003_mci_set_bt_version); void ar9003_mci_send_wlan_channels(struct ath_hw *ah) { struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci; mci->wlan_channels_update = true; ar9003_mci_send_coex_wlan_channels(ah, true); } EXPORT_SYMBOL(ar9003_mci_send_wlan_channels); u16 ar9003_mci_get_max_txpower(struct ath_hw *ah, u8 ctlmode) { if (!ah->btcoex_hw.mci.concur_tx) goto out; if (ctlmode == CTL_2GHT20) return ATH_BTCOEX_HT20_MAX_TXPOWER; else if (ctlmode == CTL_2GHT40) return ATH_BTCOEX_HT40_MAX_TXPOWER; out: return -1; }