/* * linux/drivers/net/irda/sa1100_ir.c * * Copyright (C) 2000-2001 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Infra-red driver for the StrongARM SA1100 embedded microprocessor * * Note that we don't have to worry about the SA1111's DMA bugs in here, * so we use the straight forward dma_map_* functions with a null pointer. * * This driver takes one kernel command line parameter, sa1100ir=, with * the following options: * max_rate:baudrate - set the maximum baud rate * power_level:level - set the transmitter power level * tx_lpm:0|1 - set transmit low power mode */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/types.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/netdevice.h> #include <linux/slab.h> #include <linux/rtnetlink.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/sa11x0-dma.h> #include <net/irda/irda.h> #include <net/irda/wrapper.h> #include <net/irda/irda_device.h> #include <mach/hardware.h> #include <asm/mach/irda.h> static int power_level = 3; static int tx_lpm; static int max_rate = 4000000; struct sa1100_buf { struct device *dev; struct sk_buff *skb; struct scatterlist sg; struct dma_chan *chan; dma_cookie_t cookie; }; struct sa1100_irda { unsigned char utcr4; unsigned char power; unsigned char open; int speed; int newspeed; struct sa1100_buf dma_rx; struct sa1100_buf dma_tx; struct device *dev; struct irda_platform_data *pdata; struct irlap_cb *irlap; struct qos_info qos; iobuff_t tx_buff; iobuff_t rx_buff; int (*tx_start)(struct sk_buff *, struct net_device *, struct sa1100_irda *); irqreturn_t (*irq)(struct net_device *, struct sa1100_irda *); }; static int sa1100_irda_set_speed(struct sa1100_irda *, int); #define IS_FIR(si) ((si)->speed >= 4000000) #define HPSIR_MAX_RXLEN 2047 static struct dma_slave_config sa1100_irda_sir_tx = { .direction = DMA_TO_DEVICE, .dst_addr = __PREG(Ser2UTDR), .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, .dst_maxburst = 4, }; static struct dma_slave_config sa1100_irda_fir_rx = { .direction = DMA_FROM_DEVICE, .src_addr = __PREG(Ser2HSDR), .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, .src_maxburst = 8, }; static struct dma_slave_config sa1100_irda_fir_tx = { .direction = DMA_TO_DEVICE, .dst_addr = __PREG(Ser2HSDR), .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, .dst_maxburst = 8, }; static unsigned sa1100_irda_dma_xferred(struct sa1100_buf *buf) { struct dma_chan *chan = buf->chan; struct dma_tx_state state; enum dma_status status; status = chan->device->device_tx_status(chan, buf->cookie, &state); if (status != DMA_PAUSED) return 0; return sg_dma_len(&buf->sg) - state.residue; } static int sa1100_irda_dma_request(struct device *dev, struct sa1100_buf *buf, const char *name, struct dma_slave_config *cfg) { dma_cap_mask_t m; int ret; dma_cap_zero(m); dma_cap_set(DMA_SLAVE, m); buf->chan = dma_request_channel(m, sa11x0_dma_filter_fn, (void *)name); if (!buf->chan) { dev_err(dev, "unable to request DMA channel for %s\n", name); return -ENOENT; } ret = dmaengine_slave_config(buf->chan, cfg); if (ret) dev_warn(dev, "DMA slave_config for %s returned %d\n", name, ret); buf->dev = buf->chan->device->dev; return 0; } static void sa1100_irda_dma_start(struct sa1100_buf *buf, enum dma_transfer_direction dir, dma_async_tx_callback cb, void *cb_p) { struct dma_async_tx_descriptor *desc; struct dma_chan *chan = buf->chan; desc = dmaengine_prep_slave_sg(chan, &buf->sg, 1, dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (desc) { desc->callback = cb; desc->callback_param = cb_p; buf->cookie = dmaengine_submit(desc); dma_async_issue_pending(chan); } } /* * Allocate and map the receive buffer, unless it is already allocated. */ static int sa1100_irda_rx_alloc(struct sa1100_irda *si) { if (si->dma_rx.skb) return 0; si->dma_rx.skb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC); if (!si->dma_rx.skb) { printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n"); return -ENOMEM; } /* * Align any IP headers that may be contained * within the frame. */ skb_reserve(si->dma_rx.skb, 1); sg_set_buf(&si->dma_rx.sg, si->dma_rx.skb->data, HPSIR_MAX_RXLEN); if (dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE) == 0) { dev_kfree_skb_any(si->dma_rx.skb); return -ENOMEM; } return 0; } /* * We want to get here as soon as possible, and get the receiver setup. * We use the existing buffer. */ static void sa1100_irda_rx_dma_start(struct sa1100_irda *si) { if (!si->dma_rx.skb) { printk(KERN_ERR "sa1100_ir: rx buffer went missing\n"); return; } /* * First empty receive FIFO */ Ser2HSCR0 = HSCR0_HSSP; /* * Enable the DMA, receiver and receive interrupt. */ dmaengine_terminate_all(si->dma_rx.chan); sa1100_irda_dma_start(&si->dma_rx, DMA_DEV_TO_MEM, NULL, NULL); Ser2HSCR0 = HSCR0_HSSP | HSCR0_RXE; } static void sa1100_irda_check_speed(struct sa1100_irda *si) { if (si->newspeed) { sa1100_irda_set_speed(si, si->newspeed); si->newspeed = 0; } } /* * HP-SIR format support. */ static void sa1100_irda_sirtxdma_irq(void *id) { struct net_device *dev = id; struct sa1100_irda *si = netdev_priv(dev); dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE); dev_kfree_skb(si->dma_tx.skb); si->dma_tx.skb = NULL; dev->stats.tx_packets++; dev->stats.tx_bytes += sg_dma_len(&si->dma_tx.sg); /* We need to ensure that the transmitter has finished. */ do rmb(); while (Ser2UTSR1 & UTSR1_TBY); /* * Ok, we've finished transmitting. Now enable the receiver. * Sometimes we get a receive IRQ immediately after a transmit... */ Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID; Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE; sa1100_irda_check_speed(si); /* I'm hungry! */ netif_wake_queue(dev); } static int sa1100_irda_sir_tx_start(struct sk_buff *skb, struct net_device *dev, struct sa1100_irda *si) { si->tx_buff.data = si->tx_buff.head; si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data, si->tx_buff.truesize); si->dma_tx.skb = skb; sg_set_buf(&si->dma_tx.sg, si->tx_buff.data, si->tx_buff.len); if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) { si->dma_tx.skb = NULL; netif_wake_queue(dev); dev->stats.tx_dropped++; return NETDEV_TX_OK; } sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_sirtxdma_irq, dev); /* * The mean turn-around time is enforced by XBOF padding, * so we don't have to do anything special here. */ Ser2UTCR3 = UTCR3_TXE; return NETDEV_TX_OK; } static irqreturn_t sa1100_irda_sir_irq(struct net_device *dev, struct sa1100_irda *si) { int status; status = Ser2UTSR0; /* * Deal with any receive errors first. The bytes in error may be * the only bytes in the receive FIFO, so we do this first. */ while (status & UTSR0_EIF) { int stat, data; stat = Ser2UTSR1; data = Ser2UTDR; if (stat & (UTSR1_FRE | UTSR1_ROR)) { dev->stats.rx_errors++; if (stat & UTSR1_FRE) dev->stats.rx_frame_errors++; if (stat & UTSR1_ROR) dev->stats.rx_fifo_errors++; } else async_unwrap_char(dev, &dev->stats, &si->rx_buff, data); status = Ser2UTSR0; } /* * We must clear certain bits. */ Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB); if (status & UTSR0_RFS) { /* * There are at least 4 bytes in the FIFO. Read 3 bytes * and leave the rest to the block below. */ async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR); async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR); async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR); } if (status & (UTSR0_RFS | UTSR0_RID)) { /* * Fifo contains more than 1 character. */ do { async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR); } while (Ser2UTSR1 & UTSR1_RNE); } return IRQ_HANDLED; } /* * FIR format support. */ static void sa1100_irda_firtxdma_irq(void *id) { struct net_device *dev = id; struct sa1100_irda *si = netdev_priv(dev); struct sk_buff *skb; /* * Wait for the transmission to complete. Unfortunately, * the hardware doesn't give us an interrupt to indicate * "end of frame". */ do rmb(); while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY); /* * Clear the transmit underrun bit. */ Ser2HSSR0 = HSSR0_TUR; /* * Do we need to change speed? Note that we're lazy * here - we don't free the old dma_rx.skb. We don't need * to allocate a buffer either. */ sa1100_irda_check_speed(si); /* * Start reception. This disables the transmitter for * us. This will be using the existing RX buffer. */ sa1100_irda_rx_dma_start(si); /* Account and free the packet. */ skb = si->dma_tx.skb; if (skb) { dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE); dev->stats.tx_packets ++; dev->stats.tx_bytes += skb->len; dev_kfree_skb_irq(skb); si->dma_tx.skb = NULL; } /* * Make sure that the TX queue is available for sending * (for retries). TX has priority over RX at all times. */ netif_wake_queue(dev); } static int sa1100_irda_fir_tx_start(struct sk_buff *skb, struct net_device *dev, struct sa1100_irda *si) { int mtt = irda_get_mtt(skb); si->dma_tx.skb = skb; sg_set_buf(&si->dma_tx.sg, skb->data, skb->len); if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) { si->dma_tx.skb = NULL; netif_wake_queue(dev); dev->stats.tx_dropped++; dev_kfree_skb(skb); return NETDEV_TX_OK; } sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_firtxdma_irq, dev); /* * If we have a mean turn-around time, impose the specified * specified delay. We could shorten this by timing from * the point we received the packet. */ if (mtt) udelay(mtt); Ser2HSCR0 = HSCR0_HSSP | HSCR0_TXE; return NETDEV_TX_OK; } static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev) { struct sk_buff *skb = si->dma_rx.skb; unsigned int len, stat, data; if (!skb) { printk(KERN_ERR "sa1100_ir: SKB is NULL!\n"); return; } /* * Get the current data position. */ len = sa1100_irda_dma_xferred(&si->dma_rx); if (len > HPSIR_MAX_RXLEN) len = HPSIR_MAX_RXLEN; dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE); do { /* * Read Status, and then Data. */ stat = Ser2HSSR1; rmb(); data = Ser2HSDR; if (stat & (HSSR1_CRE | HSSR1_ROR)) { dev->stats.rx_errors++; if (stat & HSSR1_CRE) dev->stats.rx_crc_errors++; if (stat & HSSR1_ROR) dev->stats.rx_frame_errors++; } else skb->data[len++] = data; /* * If we hit the end of frame, there's * no point in continuing. */ if (stat & HSSR1_EOF) break; } while (Ser2HSSR0 & HSSR0_EIF); if (stat & HSSR1_EOF) { si->dma_rx.skb = NULL; skb_put(skb, len); skb->dev = dev; skb_reset_mac_header(skb); skb->protocol = htons(ETH_P_IRDA); dev->stats.rx_packets++; dev->stats.rx_bytes += len; /* * Before we pass the buffer up, allocate a new one. */ sa1100_irda_rx_alloc(si); netif_rx(skb); } else { /* * Remap the buffer - it was previously mapped, and we * hope that this succeeds. */ dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE); } } /* * We only have to handle RX events here; transmit events go via the TX * DMA handler. We disable RX, process, and the restart RX. */ static irqreturn_t sa1100_irda_fir_irq(struct net_device *dev, struct sa1100_irda *si) { /* * Stop RX DMA */ dmaengine_pause(si->dma_rx.chan); /* * Framing error - we throw away the packet completely. * Clearing RXE flushes the error conditions and data * from the fifo. */ if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) { dev->stats.rx_errors++; if (Ser2HSSR0 & HSSR0_FRE) dev->stats.rx_frame_errors++; /* * Clear out the DMA... */ Ser2HSCR0 = HSCR0_HSSP; /* * Clear selected status bits now, so we * don't miss them next time around. */ Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB; } /* * Deal with any receive errors. The any of the lowest * 8 bytes in the FIFO may contain an error. We must read * them one by one. The "error" could even be the end of * packet! */ if (Ser2HSSR0 & HSSR0_EIF) sa1100_irda_fir_error(si, dev); /* * No matter what happens, we must restart reception. */ sa1100_irda_rx_dma_start(si); return IRQ_HANDLED; } /* * Set the IrDA communications speed. */ static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed) { unsigned long flags; int brd, ret = -EINVAL; switch (speed) { case 9600: case 19200: case 38400: case 57600: case 115200: brd = 3686400 / (16 * speed) - 1; /* Stop the receive DMA, and configure transmit. */ if (IS_FIR(si)) { dmaengine_terminate_all(si->dma_rx.chan); dmaengine_slave_config(si->dma_tx.chan, &sa1100_irda_sir_tx); } local_irq_save(flags); Ser2UTCR3 = 0; Ser2HSCR0 = HSCR0_UART; Ser2UTCR1 = brd >> 8; Ser2UTCR2 = brd; /* * Clear status register */ Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID; Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE; if (si->pdata->set_speed) si->pdata->set_speed(si->dev, speed); si->speed = speed; si->tx_start = sa1100_irda_sir_tx_start; si->irq = sa1100_irda_sir_irq; local_irq_restore(flags); ret = 0; break; case 4000000: if (!IS_FIR(si)) dmaengine_slave_config(si->dma_tx.chan, &sa1100_irda_fir_tx); local_irq_save(flags); Ser2HSSR0 = 0xff; Ser2HSCR0 = HSCR0_HSSP; Ser2UTCR3 = 0; si->speed = speed; si->tx_start = sa1100_irda_fir_tx_start; si->irq = sa1100_irda_fir_irq; if (si->pdata->set_speed) si->pdata->set_speed(si->dev, speed); sa1100_irda_rx_alloc(si); sa1100_irda_rx_dma_start(si); local_irq_restore(flags); break; default: break; } return ret; } /* * Control the power state of the IrDA transmitter. * State: * 0 - off * 1 - short range, lowest power * 2 - medium range, medium power * 3 - maximum range, high power * * Currently, only assabet is known to support this. */ static int __sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state) { int ret = 0; if (si->pdata->set_power) ret = si->pdata->set_power(si->dev, state); return ret; } static inline int sa1100_set_power(struct sa1100_irda *si, unsigned int state) { int ret; ret = __sa1100_irda_set_power(si, state); if (ret == 0) si->power = state; return ret; } static irqreturn_t sa1100_irda_irq(int irq, void *dev_id) { struct net_device *dev = dev_id; struct sa1100_irda *si = netdev_priv(dev); return si->irq(dev, si); } static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev) { struct sa1100_irda *si = netdev_priv(dev); int speed = irda_get_next_speed(skb); /* * Does this packet contain a request to change the interface * speed? If so, remember it until we complete the transmission * of this frame. */ if (speed != si->speed && speed != -1) si->newspeed = speed; /* If this is an empty frame, we can bypass a lot. */ if (skb->len == 0) { sa1100_irda_check_speed(si); dev_kfree_skb(skb); return NETDEV_TX_OK; } netif_stop_queue(dev); /* We must not already have a skb to transmit... */ BUG_ON(si->dma_tx.skb); return si->tx_start(skb, dev, si); } static int sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd) { struct if_irda_req *rq = (struct if_irda_req *)ifreq; struct sa1100_irda *si = netdev_priv(dev); int ret = -EOPNOTSUPP; switch (cmd) { case SIOCSBANDWIDTH: if (capable(CAP_NET_ADMIN)) { /* * We are unable to set the speed if the * device is not running. */ if (si->open) { ret = sa1100_irda_set_speed(si, rq->ifr_baudrate); } else { printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n"); ret = 0; } } break; case SIOCSMEDIABUSY: ret = -EPERM; if (capable(CAP_NET_ADMIN)) { irda_device_set_media_busy(dev, TRUE); ret = 0; } break; case SIOCGRECEIVING: rq->ifr_receiving = IS_FIR(si) ? 0 : si->rx_buff.state != OUTSIDE_FRAME; break; default: break; } return ret; } static int sa1100_irda_startup(struct sa1100_irda *si) { int ret; /* * Ensure that the ports for this device are setup correctly. */ if (si->pdata->startup) { ret = si->pdata->startup(si->dev); if (ret) return ret; } /* * Configure PPC for IRDA - we want to drive TXD2 low. * We also want to drive this pin low during sleep. */ PPSR &= ~PPC_TXD2; PSDR &= ~PPC_TXD2; PPDR |= PPC_TXD2; /* * Enable HP-SIR modulation, and ensure that the port is disabled. */ Ser2UTCR3 = 0; Ser2HSCR0 = HSCR0_UART; Ser2UTCR4 = si->utcr4; Ser2UTCR0 = UTCR0_8BitData; Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL; /* * Clear status register */ Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID; ret = sa1100_irda_set_speed(si, si->speed = 9600); if (ret) { Ser2UTCR3 = 0; Ser2HSCR0 = 0; if (si->pdata->shutdown) si->pdata->shutdown(si->dev); } return ret; } static void sa1100_irda_shutdown(struct sa1100_irda *si) { /* * Stop all DMA activity. */ dmaengine_terminate_all(si->dma_rx.chan); dmaengine_terminate_all(si->dma_tx.chan); /* Disable the port. */ Ser2UTCR3 = 0; Ser2HSCR0 = 0; if (si->pdata->shutdown) si->pdata->shutdown(si->dev); } static int sa1100_irda_start(struct net_device *dev) { struct sa1100_irda *si = netdev_priv(dev); int err; si->speed = 9600; err = sa1100_irda_dma_request(si->dev, &si->dma_rx, "Ser2ICPRc", &sa1100_irda_fir_rx); if (err) goto err_rx_dma; err = sa1100_irda_dma_request(si->dev, &si->dma_tx, "Ser2ICPTr", &sa1100_irda_sir_tx); if (err) goto err_tx_dma; /* * Setup the serial port for the specified speed. */ err = sa1100_irda_startup(si); if (err) goto err_startup; /* * Open a new IrLAP layer instance. */ si->irlap = irlap_open(dev, &si->qos, "sa1100"); err = -ENOMEM; if (!si->irlap) goto err_irlap; err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev); if (err) goto err_irq; /* * Now enable the interrupt and start the queue */ si->open = 1; sa1100_set_power(si, power_level); /* low power mode */ netif_start_queue(dev); return 0; err_irq: irlap_close(si->irlap); err_irlap: si->open = 0; sa1100_irda_shutdown(si); err_startup: dma_release_channel(si->dma_tx.chan); err_tx_dma: dma_release_channel(si->dma_rx.chan); err_rx_dma: return err; } static int sa1100_irda_stop(struct net_device *dev) { struct sa1100_irda *si = netdev_priv(dev); struct sk_buff *skb; netif_stop_queue(dev); si->open = 0; sa1100_irda_shutdown(si); /* * If we have been doing any DMA activity, make sure we * tidy that up cleanly. */ skb = si->dma_rx.skb; if (skb) { dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE); dev_kfree_skb(skb); si->dma_rx.skb = NULL; } skb = si->dma_tx.skb; if (skb) { dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE); dev_kfree_skb(skb); si->dma_tx.skb = NULL; } /* Stop IrLAP */ if (si->irlap) { irlap_close(si->irlap); si->irlap = NULL; } /* * Free resources */ dma_release_channel(si->dma_tx.chan); dma_release_channel(si->dma_rx.chan); free_irq(dev->irq, dev); sa1100_set_power(si, 0); return 0; } static int sa1100_irda_init_iobuf(iobuff_t *io, int size) { io->head = kmalloc(size, GFP_KERNEL | GFP_DMA); if (io->head != NULL) { io->truesize = size; io->in_frame = FALSE; io->state = OUTSIDE_FRAME; io->data = io->head; } return io->head ? 0 : -ENOMEM; } static const struct net_device_ops sa1100_irda_netdev_ops = { .ndo_open = sa1100_irda_start, .ndo_stop = sa1100_irda_stop, .ndo_start_xmit = sa1100_irda_hard_xmit, .ndo_do_ioctl = sa1100_irda_ioctl, }; static int sa1100_irda_probe(struct platform_device *pdev) { struct net_device *dev; struct sa1100_irda *si; unsigned int baudrate_mask; int err, irq; if (!pdev->dev.platform_data) return -EINVAL; irq = platform_get_irq(pdev, 0); if (irq <= 0) return irq < 0 ? irq : -ENXIO; err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY; if (err) goto err_mem_1; err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY; if (err) goto err_mem_2; err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY; if (err) goto err_mem_3; dev = alloc_irdadev(sizeof(struct sa1100_irda)); if (!dev) { err = -ENOMEM; goto err_mem_4; } SET_NETDEV_DEV(dev, &pdev->dev); si = netdev_priv(dev); si->dev = &pdev->dev; si->pdata = pdev->dev.platform_data; sg_init_table(&si->dma_rx.sg, 1); sg_init_table(&si->dma_tx.sg, 1); /* * Initialise the HP-SIR buffers */ err = sa1100_irda_init_iobuf(&si->rx_buff, 14384); if (err) goto err_mem_5; err = sa1100_irda_init_iobuf(&si->tx_buff, IRDA_SIR_MAX_FRAME); if (err) goto err_mem_5; dev->netdev_ops = &sa1100_irda_netdev_ops; dev->irq = irq; irda_init_max_qos_capabilies(&si->qos); /* * We support original IRDA up to 115k2. (we don't currently * support 4Mbps). Min Turn Time set to 1ms or greater. */ baudrate_mask = IR_9600; switch (max_rate) { case 4000000: baudrate_mask |= IR_4000000 << 8; case 115200: baudrate_mask |= IR_115200; case 57600: baudrate_mask |= IR_57600; case 38400: baudrate_mask |= IR_38400; case 19200: baudrate_mask |= IR_19200; } si->qos.baud_rate.bits &= baudrate_mask; si->qos.min_turn_time.bits = 7; irda_qos_bits_to_value(&si->qos); si->utcr4 = UTCR4_HPSIR; if (tx_lpm) si->utcr4 |= UTCR4_Z1_6us; /* * Initially enable HP-SIR modulation, and ensure that the port * is disabled. */ Ser2UTCR3 = 0; Ser2UTCR4 = si->utcr4; Ser2HSCR0 = HSCR0_UART; err = register_netdev(dev); if (err == 0) platform_set_drvdata(pdev, dev); if (err) { err_mem_5: kfree(si->tx_buff.head); kfree(si->rx_buff.head); free_netdev(dev); err_mem_4: release_mem_region(__PREG(Ser2HSCR2), 0x04); err_mem_3: release_mem_region(__PREG(Ser2HSCR0), 0x1c); err_mem_2: release_mem_region(__PREG(Ser2UTCR0), 0x24); } err_mem_1: return err; } static int sa1100_irda_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); if (dev) { struct sa1100_irda *si = netdev_priv(dev); unregister_netdev(dev); kfree(si->tx_buff.head); kfree(si->rx_buff.head); free_netdev(dev); } release_mem_region(__PREG(Ser2HSCR2), 0x04); release_mem_region(__PREG(Ser2HSCR0), 0x1c); release_mem_region(__PREG(Ser2UTCR0), 0x24); return 0; } #ifdef CONFIG_PM /* * Suspend the IrDA interface. */ static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state) { struct net_device *dev = platform_get_drvdata(pdev); struct sa1100_irda *si; if (!dev) return 0; si = netdev_priv(dev); if (si->open) { /* * Stop the transmit queue */ netif_device_detach(dev); disable_irq(dev->irq); sa1100_irda_shutdown(si); __sa1100_irda_set_power(si, 0); } return 0; } /* * Resume the IrDA interface. */ static int sa1100_irda_resume(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct sa1100_irda *si; if (!dev) return 0; si = netdev_priv(dev); if (si->open) { /* * If we missed a speed change, initialise at the new speed * directly. It is debatable whether this is actually * required, but in the interests of continuing from where * we left off it is desirable. The converse argument is * that we should re-negotiate at 9600 baud again. */ if (si->newspeed) { si->speed = si->newspeed; si->newspeed = 0; } sa1100_irda_startup(si); __sa1100_irda_set_power(si, si->power); enable_irq(dev->irq); /* * This automatically wakes up the queue */ netif_device_attach(dev); } return 0; } #else #define sa1100_irda_suspend NULL #define sa1100_irda_resume NULL #endif static struct platform_driver sa1100ir_driver = { .probe = sa1100_irda_probe, .remove = sa1100_irda_remove, .suspend = sa1100_irda_suspend, .resume = sa1100_irda_resume, .driver = { .name = "sa11x0-ir", .owner = THIS_MODULE, }, }; static int __init sa1100_irda_init(void) { /* * Limit power level a sensible range. */ if (power_level < 1) power_level = 1; if (power_level > 3) power_level = 3; return platform_driver_register(&sa1100ir_driver); } static void __exit sa1100_irda_exit(void) { platform_driver_unregister(&sa1100ir_driver); } module_init(sa1100_irda_init); module_exit(sa1100_irda_exit); module_param(power_level, int, 0); module_param(tx_lpm, int, 0); module_param(max_rate, int, 0); MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>"); MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver"); MODULE_LICENSE("GPL"); MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)"); MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode"); MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)"); MODULE_ALIAS("platform:sa11x0-ir");