/* * TI Common Platform Time Sync * * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include <linux/err.h> #include <linux/if.h> #include <linux/hrtimer.h> #include <linux/module.h> #include <linux/net_tstamp.h> #include <linux/ptp_classify.h> #include <linux/time.h> #include <linux/uaccess.h> #include <linux/workqueue.h> #include "cpts.h" #ifdef CONFIG_TI_CPTS static struct sock_filter ptp_filter[] = { PTP_FILTER }; #define cpts_read32(c, r) __raw_readl(&c->reg->r) #define cpts_write32(c, v, r) __raw_writel(v, &c->reg->r) static int event_expired(struct cpts_event *event) { return time_after(jiffies, event->tmo); } static int event_type(struct cpts_event *event) { return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; } static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low) { u32 r = cpts_read32(cpts, intstat_raw); if (r & TS_PEND_RAW) { *high = cpts_read32(cpts, event_high); *low = cpts_read32(cpts, event_low); cpts_write32(cpts, EVENT_POP, event_pop); return 0; } return -1; } /* * Returns zero if matching event type was found. */ static int cpts_fifo_read(struct cpts *cpts, int match) { int i, type = -1; u32 hi, lo; struct cpts_event *event; for (i = 0; i < CPTS_FIFO_DEPTH; i++) { if (cpts_fifo_pop(cpts, &hi, &lo)) break; if (list_empty(&cpts->pool)) { pr_err("cpts: event pool is empty\n"); return -1; } event = list_first_entry(&cpts->pool, struct cpts_event, list); event->tmo = jiffies + 2; event->high = hi; event->low = lo; type = event_type(event); switch (type) { case CPTS_EV_PUSH: case CPTS_EV_RX: case CPTS_EV_TX: list_del_init(&event->list); list_add_tail(&event->list, &cpts->events); break; case CPTS_EV_ROLL: case CPTS_EV_HALF: case CPTS_EV_HW: break; default: pr_err("cpts: unknown event type\n"); break; } if (type == match) break; } return type == match ? 0 : -1; } static cycle_t cpts_systim_read(const struct cyclecounter *cc) { u64 val = 0; struct cpts_event *event; struct list_head *this, *next; struct cpts *cpts = container_of(cc, struct cpts, cc); cpts_write32(cpts, TS_PUSH, ts_push); if (cpts_fifo_read(cpts, CPTS_EV_PUSH)) pr_err("cpts: unable to obtain a time stamp\n"); list_for_each_safe(this, next, &cpts->events) { event = list_entry(this, struct cpts_event, list); if (event_type(event) == CPTS_EV_PUSH) { list_del_init(&event->list); list_add(&event->list, &cpts->pool); val = event->low; break; } } return val; } /* PTP clock operations */ static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) { u64 adj; u32 diff, mult; int neg_adj = 0; unsigned long flags; struct cpts *cpts = container_of(ptp, struct cpts, info); if (ppb < 0) { neg_adj = 1; ppb = -ppb; } mult = cpts->cc_mult; adj = mult; adj *= ppb; diff = div_u64(adj, 1000000000ULL); spin_lock_irqsave(&cpts->lock, flags); timecounter_read(&cpts->tc); cpts->cc.mult = neg_adj ? mult - diff : mult + diff; spin_unlock_irqrestore(&cpts->lock, flags); return 0; } static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { s64 now; unsigned long flags; struct cpts *cpts = container_of(ptp, struct cpts, info); spin_lock_irqsave(&cpts->lock, flags); now = timecounter_read(&cpts->tc); now += delta; timecounter_init(&cpts->tc, &cpts->cc, now); spin_unlock_irqrestore(&cpts->lock, flags); return 0; } static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts) { u64 ns; u32 remainder; unsigned long flags; struct cpts *cpts = container_of(ptp, struct cpts, info); spin_lock_irqsave(&cpts->lock, flags); ns = timecounter_read(&cpts->tc); spin_unlock_irqrestore(&cpts->lock, flags); ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder); ts->tv_nsec = remainder; return 0; } static int cpts_ptp_settime(struct ptp_clock_info *ptp, const struct timespec *ts) { u64 ns; unsigned long flags; struct cpts *cpts = container_of(ptp, struct cpts, info); ns = ts->tv_sec * 1000000000ULL; ns += ts->tv_nsec; spin_lock_irqsave(&cpts->lock, flags); timecounter_init(&cpts->tc, &cpts->cc, ns); spin_unlock_irqrestore(&cpts->lock, flags); return 0; } static int cpts_ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { return -EOPNOTSUPP; } static struct ptp_clock_info cpts_info = { .owner = THIS_MODULE, .name = "CTPS timer", .max_adj = 1000000, .n_ext_ts = 0, .pps = 0, .adjfreq = cpts_ptp_adjfreq, .adjtime = cpts_ptp_adjtime, .gettime = cpts_ptp_gettime, .settime = cpts_ptp_settime, .enable = cpts_ptp_enable, }; static void cpts_overflow_check(struct work_struct *work) { struct timespec ts; struct cpts *cpts = container_of(work, struct cpts, overflow_work.work); cpts_write32(cpts, CPTS_EN, control); cpts_write32(cpts, TS_PEND_EN, int_enable); cpts_ptp_gettime(&cpts->info, &ts); pr_debug("cpts overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec); schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD); } #define CPTS_REF_CLOCK_NAME "cpsw_cpts_rft_clk" static void cpts_clk_init(struct cpts *cpts) { cpts->refclk = clk_get(NULL, CPTS_REF_CLOCK_NAME); if (IS_ERR(cpts->refclk)) { pr_err("Failed to clk_get %s\n", CPTS_REF_CLOCK_NAME); cpts->refclk = NULL; return; } clk_prepare_enable(cpts->refclk); } static void cpts_clk_release(struct cpts *cpts) { clk_disable(cpts->refclk); clk_put(cpts->refclk); } static int cpts_match(struct sk_buff *skb, unsigned int ptp_class, u16 ts_seqid, u8 ts_msgtype) { u16 *seqid; unsigned int offset; u8 *msgtype, *data = skb->data; switch (ptp_class) { case PTP_CLASS_V1_IPV4: case PTP_CLASS_V2_IPV4: offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN; break; case PTP_CLASS_V1_IPV6: case PTP_CLASS_V2_IPV6: offset = OFF_PTP6; break; case PTP_CLASS_V2_L2: offset = ETH_HLEN; break; case PTP_CLASS_V2_VLAN: offset = ETH_HLEN + VLAN_HLEN; break; default: return 0; } if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid)) return 0; if (unlikely(ptp_class & PTP_CLASS_V1)) msgtype = data + offset + OFF_PTP_CONTROL; else msgtype = data + offset; seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID); return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid)); } static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type) { u64 ns = 0; struct cpts_event *event; struct list_head *this, *next; unsigned int class = sk_run_filter(skb, ptp_filter); unsigned long flags; u16 seqid; u8 mtype; if (class == PTP_CLASS_NONE) return 0; spin_lock_irqsave(&cpts->lock, flags); cpts_fifo_read(cpts, CPTS_EV_PUSH); list_for_each_safe(this, next, &cpts->events) { event = list_entry(this, struct cpts_event, list); if (event_expired(event)) { list_del_init(&event->list); list_add(&event->list, &cpts->pool); continue; } mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK; seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK; if (ev_type == event_type(event) && cpts_match(skb, class, seqid, mtype)) { ns = timecounter_cyc2time(&cpts->tc, event->low); list_del_init(&event->list); list_add(&event->list, &cpts->pool); break; } } spin_unlock_irqrestore(&cpts->lock, flags); return ns; } void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb) { u64 ns; struct skb_shared_hwtstamps *ssh; if (!cpts->rx_enable) return; ns = cpts_find_ts(cpts, skb, CPTS_EV_RX); if (!ns) return; ssh = skb_hwtstamps(skb); memset(ssh, 0, sizeof(*ssh)); ssh->hwtstamp = ns_to_ktime(ns); } void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb) { u64 ns; struct skb_shared_hwtstamps ssh; if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) return; ns = cpts_find_ts(cpts, skb, CPTS_EV_TX); if (!ns) return; memset(&ssh, 0, sizeof(ssh)); ssh.hwtstamp = ns_to_ktime(ns); skb_tstamp_tx(skb, &ssh); } #endif /*CONFIG_TI_CPTS*/ int cpts_register(struct device *dev, struct cpts *cpts, u32 mult, u32 shift) { #ifdef CONFIG_TI_CPTS int err, i; unsigned long flags; if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter))) { pr_err("cpts: bad ptp filter\n"); return -EINVAL; } cpts->info = cpts_info; cpts->clock = ptp_clock_register(&cpts->info, dev); if (IS_ERR(cpts->clock)) { err = PTR_ERR(cpts->clock); cpts->clock = NULL; return err; } spin_lock_init(&cpts->lock); cpts->cc.read = cpts_systim_read; cpts->cc.mask = CLOCKSOURCE_MASK(32); cpts->cc_mult = mult; cpts->cc.mult = mult; cpts->cc.shift = shift; INIT_LIST_HEAD(&cpts->events); INIT_LIST_HEAD(&cpts->pool); for (i = 0; i < CPTS_MAX_EVENTS; i++) list_add(&cpts->pool_data[i].list, &cpts->pool); cpts_clk_init(cpts); cpts_write32(cpts, CPTS_EN, control); cpts_write32(cpts, TS_PEND_EN, int_enable); spin_lock_irqsave(&cpts->lock, flags); timecounter_init(&cpts->tc, &cpts->cc, ktime_to_ns(ktime_get_real())); spin_unlock_irqrestore(&cpts->lock, flags); INIT_DELAYED_WORK(&cpts->overflow_work, cpts_overflow_check); schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD); cpts->phc_index = ptp_clock_index(cpts->clock); #endif return 0; } void cpts_unregister(struct cpts *cpts) { #ifdef CONFIG_TI_CPTS if (cpts->clock) { ptp_clock_unregister(cpts->clock); cancel_delayed_work_sync(&cpts->overflow_work); } if (cpts->refclk) cpts_clk_release(cpts); #endif }