/* sunbmac.c: Driver for Sparc BigMAC 100baseT ethernet adapters. * * Copyright (C) 1997, 1998, 1999, 2003, 2008 David S. Miller (davem@davemloft.net) */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/in.h> #include <linux/string.h> #include <linux/delay.h> #include <linux/crc32.h> #include <linux/errno.h> #include <linux/ethtool.h> #include <linux/mii.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/bitops.h> #include <linux/dma-mapping.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/gfp.h> #include <asm/auxio.h> #include <asm/byteorder.h> #include <asm/dma.h> #include <asm/idprom.h> #include <asm/io.h> #include <asm/openprom.h> #include <asm/oplib.h> #include <asm/pgtable.h> #include "sunbmac.h" #define DRV_NAME "sunbmac" #define DRV_VERSION "2.1" #define DRV_RELDATE "August 26, 2008" #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)" static char version[] = DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n"; MODULE_VERSION(DRV_VERSION); MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION("Sun BigMAC 100baseT ethernet driver"); MODULE_LICENSE("GPL"); #undef DEBUG_PROBE #undef DEBUG_TX #undef DEBUG_IRQ #ifdef DEBUG_PROBE #define DP(x) printk x #else #define DP(x) #endif #ifdef DEBUG_TX #define DTX(x) printk x #else #define DTX(x) #endif #ifdef DEBUG_IRQ #define DIRQ(x) printk x #else #define DIRQ(x) #endif #define DEFAULT_JAMSIZE 4 /* Toe jam */ #define QEC_RESET_TRIES 200 static int qec_global_reset(void __iomem *gregs) { int tries = QEC_RESET_TRIES; sbus_writel(GLOB_CTRL_RESET, gregs + GLOB_CTRL); while (--tries) { if (sbus_readl(gregs + GLOB_CTRL) & GLOB_CTRL_RESET) { udelay(20); continue; } break; } if (tries) return 0; printk(KERN_ERR "BigMAC: Cannot reset the QEC.\n"); return -1; } static void qec_init(struct bigmac *bp) { struct platform_device *qec_op = bp->qec_op; void __iomem *gregs = bp->gregs; u8 bsizes = bp->bigmac_bursts; u32 regval; /* 64byte bursts do not work at the moment, do * not even try to enable them. -DaveM */ if (bsizes & DMA_BURST32) regval = GLOB_CTRL_B32; else regval = GLOB_CTRL_B16; sbus_writel(regval | GLOB_CTRL_BMODE, gregs + GLOB_CTRL); sbus_writel(GLOB_PSIZE_2048, gregs + GLOB_PSIZE); /* All of memsize is given to bigmac. */ sbus_writel(resource_size(&qec_op->resource[1]), gregs + GLOB_MSIZE); /* Half to the transmitter, half to the receiver. */ sbus_writel(resource_size(&qec_op->resource[1]) >> 1, gregs + GLOB_TSIZE); sbus_writel(resource_size(&qec_op->resource[1]) >> 1, gregs + GLOB_RSIZE); } #define TX_RESET_TRIES 32 #define RX_RESET_TRIES 32 static void bigmac_tx_reset(void __iomem *bregs) { int tries = TX_RESET_TRIES; sbus_writel(0, bregs + BMAC_TXCFG); /* The fifo threshold bit is read-only and does * not clear. -DaveM */ while ((sbus_readl(bregs + BMAC_TXCFG) & ~(BIGMAC_TXCFG_FIFO)) != 0 && --tries != 0) udelay(20); if (!tries) { printk(KERN_ERR "BIGMAC: Transmitter will not reset.\n"); printk(KERN_ERR "BIGMAC: tx_cfg is %08x\n", sbus_readl(bregs + BMAC_TXCFG)); } } static void bigmac_rx_reset(void __iomem *bregs) { int tries = RX_RESET_TRIES; sbus_writel(0, bregs + BMAC_RXCFG); while (sbus_readl(bregs + BMAC_RXCFG) && --tries) udelay(20); if (!tries) { printk(KERN_ERR "BIGMAC: Receiver will not reset.\n"); printk(KERN_ERR "BIGMAC: rx_cfg is %08x\n", sbus_readl(bregs + BMAC_RXCFG)); } } /* Reset the transmitter and receiver. */ static void bigmac_stop(struct bigmac *bp) { bigmac_tx_reset(bp->bregs); bigmac_rx_reset(bp->bregs); } static void bigmac_get_counters(struct bigmac *bp, void __iomem *bregs) { struct net_device_stats *stats = &bp->enet_stats; stats->rx_crc_errors += sbus_readl(bregs + BMAC_RCRCECTR); sbus_writel(0, bregs + BMAC_RCRCECTR); stats->rx_frame_errors += sbus_readl(bregs + BMAC_UNALECTR); sbus_writel(0, bregs + BMAC_UNALECTR); stats->rx_length_errors += sbus_readl(bregs + BMAC_GLECTR); sbus_writel(0, bregs + BMAC_GLECTR); stats->tx_aborted_errors += sbus_readl(bregs + BMAC_EXCTR); stats->collisions += (sbus_readl(bregs + BMAC_EXCTR) + sbus_readl(bregs + BMAC_LTCTR)); sbus_writel(0, bregs + BMAC_EXCTR); sbus_writel(0, bregs + BMAC_LTCTR); } static void bigmac_clean_rings(struct bigmac *bp) { int i; for (i = 0; i < RX_RING_SIZE; i++) { if (bp->rx_skbs[i] != NULL) { dev_kfree_skb_any(bp->rx_skbs[i]); bp->rx_skbs[i] = NULL; } } for (i = 0; i < TX_RING_SIZE; i++) { if (bp->tx_skbs[i] != NULL) { dev_kfree_skb_any(bp->tx_skbs[i]); bp->tx_skbs[i] = NULL; } } } static void bigmac_init_rings(struct bigmac *bp, int from_irq) { struct bmac_init_block *bb = bp->bmac_block; int i; gfp_t gfp_flags = GFP_KERNEL; if (from_irq || in_interrupt()) gfp_flags = GFP_ATOMIC; bp->rx_new = bp->rx_old = bp->tx_new = bp->tx_old = 0; /* Free any skippy bufs left around in the rings. */ bigmac_clean_rings(bp); /* Now get new skbufs for the receive ring. */ for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb; skb = big_mac_alloc_skb(RX_BUF_ALLOC_SIZE, gfp_flags); if (!skb) continue; bp->rx_skbs[i] = skb; /* Because we reserve afterwards. */ skb_put(skb, ETH_FRAME_LEN); skb_reserve(skb, 34); bb->be_rxd[i].rx_addr = dma_map_single(&bp->bigmac_op->dev, skb->data, RX_BUF_ALLOC_SIZE - 34, DMA_FROM_DEVICE); bb->be_rxd[i].rx_flags = (RXD_OWN | ((RX_BUF_ALLOC_SIZE - 34) & RXD_LENGTH)); } for (i = 0; i < TX_RING_SIZE; i++) bb->be_txd[i].tx_flags = bb->be_txd[i].tx_addr = 0; } #define MGMT_CLKON (MGMT_PAL_INT_MDIO|MGMT_PAL_EXT_MDIO|MGMT_PAL_OENAB|MGMT_PAL_DCLOCK) #define MGMT_CLKOFF (MGMT_PAL_INT_MDIO|MGMT_PAL_EXT_MDIO|MGMT_PAL_OENAB) static void idle_transceiver(void __iomem *tregs) { int i = 20; while (i--) { sbus_writel(MGMT_CLKOFF, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); sbus_writel(MGMT_CLKON, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); } } static void write_tcvr_bit(struct bigmac *bp, void __iomem *tregs, int bit) { if (bp->tcvr_type == internal) { bit = (bit & 1) << 3; sbus_writel(bit | (MGMT_PAL_OENAB | MGMT_PAL_EXT_MDIO), tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); sbus_writel(bit | MGMT_PAL_OENAB | MGMT_PAL_EXT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); } else if (bp->tcvr_type == external) { bit = (bit & 1) << 2; sbus_writel(bit | MGMT_PAL_INT_MDIO | MGMT_PAL_OENAB, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); sbus_writel(bit | MGMT_PAL_INT_MDIO | MGMT_PAL_OENAB | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); } else { printk(KERN_ERR "write_tcvr_bit: No transceiver type known!\n"); } } static int read_tcvr_bit(struct bigmac *bp, void __iomem *tregs) { int retval = 0; if (bp->tcvr_type == internal) { sbus_writel(MGMT_PAL_EXT_MDIO, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); sbus_writel(MGMT_PAL_EXT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); retval = (sbus_readl(tregs + TCVR_MPAL) & MGMT_PAL_INT_MDIO) >> 3; } else if (bp->tcvr_type == external) { sbus_writel(MGMT_PAL_INT_MDIO, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); sbus_writel(MGMT_PAL_INT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); retval = (sbus_readl(tregs + TCVR_MPAL) & MGMT_PAL_EXT_MDIO) >> 2; } else { printk(KERN_ERR "read_tcvr_bit: No transceiver type known!\n"); } return retval; } static int read_tcvr_bit2(struct bigmac *bp, void __iomem *tregs) { int retval = 0; if (bp->tcvr_type == internal) { sbus_writel(MGMT_PAL_EXT_MDIO, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); retval = (sbus_readl(tregs + TCVR_MPAL) & MGMT_PAL_INT_MDIO) >> 3; sbus_writel(MGMT_PAL_EXT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); } else if (bp->tcvr_type == external) { sbus_writel(MGMT_PAL_INT_MDIO, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); retval = (sbus_readl(tregs + TCVR_MPAL) & MGMT_PAL_EXT_MDIO) >> 2; sbus_writel(MGMT_PAL_INT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); } else { printk(KERN_ERR "read_tcvr_bit2: No transceiver type known!\n"); } return retval; } static void put_tcvr_byte(struct bigmac *bp, void __iomem *tregs, unsigned int byte) { int shift = 4; do { write_tcvr_bit(bp, tregs, ((byte >> shift) & 1)); shift -= 1; } while (shift >= 0); } static void bigmac_tcvr_write(struct bigmac *bp, void __iomem *tregs, int reg, unsigned short val) { int shift; reg &= 0xff; val &= 0xffff; switch(bp->tcvr_type) { case internal: case external: break; default: printk(KERN_ERR "bigmac_tcvr_read: Whoops, no known transceiver type.\n"); return; } idle_transceiver(tregs); write_tcvr_bit(bp, tregs, 0); write_tcvr_bit(bp, tregs, 1); write_tcvr_bit(bp, tregs, 0); write_tcvr_bit(bp, tregs, 1); put_tcvr_byte(bp, tregs, ((bp->tcvr_type == internal) ? BIGMAC_PHY_INTERNAL : BIGMAC_PHY_EXTERNAL)); put_tcvr_byte(bp, tregs, reg); write_tcvr_bit(bp, tregs, 1); write_tcvr_bit(bp, tregs, 0); shift = 15; do { write_tcvr_bit(bp, tregs, (val >> shift) & 1); shift -= 1; } while (shift >= 0); } static unsigned short bigmac_tcvr_read(struct bigmac *bp, void __iomem *tregs, int reg) { unsigned short retval = 0; reg &= 0xff; switch(bp->tcvr_type) { case internal: case external: break; default: printk(KERN_ERR "bigmac_tcvr_read: Whoops, no known transceiver type.\n"); return 0xffff; } idle_transceiver(tregs); write_tcvr_bit(bp, tregs, 0); write_tcvr_bit(bp, tregs, 1); write_tcvr_bit(bp, tregs, 1); write_tcvr_bit(bp, tregs, 0); put_tcvr_byte(bp, tregs, ((bp->tcvr_type == internal) ? BIGMAC_PHY_INTERNAL : BIGMAC_PHY_EXTERNAL)); put_tcvr_byte(bp, tregs, reg); if (bp->tcvr_type == external) { int shift = 15; (void) read_tcvr_bit2(bp, tregs); (void) read_tcvr_bit2(bp, tregs); do { int tmp; tmp = read_tcvr_bit2(bp, tregs); retval |= ((tmp & 1) << shift); shift -= 1; } while (shift >= 0); (void) read_tcvr_bit2(bp, tregs); (void) read_tcvr_bit2(bp, tregs); (void) read_tcvr_bit2(bp, tregs); } else { int shift = 15; (void) read_tcvr_bit(bp, tregs); (void) read_tcvr_bit(bp, tregs); do { int tmp; tmp = read_tcvr_bit(bp, tregs); retval |= ((tmp & 1) << shift); shift -= 1; } while (shift >= 0); (void) read_tcvr_bit(bp, tregs); (void) read_tcvr_bit(bp, tregs); (void) read_tcvr_bit(bp, tregs); } return retval; } static void bigmac_tcvr_init(struct bigmac *bp) { void __iomem *tregs = bp->tregs; u32 mpal; idle_transceiver(tregs); sbus_writel(MGMT_PAL_INT_MDIO | MGMT_PAL_EXT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); /* Only the bit for the present transceiver (internal or * external) will stick, set them both and see what stays. */ sbus_writel(MGMT_PAL_INT_MDIO | MGMT_PAL_EXT_MDIO, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); udelay(20); mpal = sbus_readl(tregs + TCVR_MPAL); if (mpal & MGMT_PAL_EXT_MDIO) { bp->tcvr_type = external; sbus_writel(~(TCVR_PAL_EXTLBACK | TCVR_PAL_MSENSE | TCVR_PAL_LTENABLE), tregs + TCVR_TPAL); sbus_readl(tregs + TCVR_TPAL); } else if (mpal & MGMT_PAL_INT_MDIO) { bp->tcvr_type = internal; sbus_writel(~(TCVR_PAL_SERIAL | TCVR_PAL_EXTLBACK | TCVR_PAL_MSENSE | TCVR_PAL_LTENABLE), tregs + TCVR_TPAL); sbus_readl(tregs + TCVR_TPAL); } else { printk(KERN_ERR "BIGMAC: AIEEE, neither internal nor " "external MDIO available!\n"); printk(KERN_ERR "BIGMAC: mgmt_pal[%08x] tcvr_pal[%08x]\n", sbus_readl(tregs + TCVR_MPAL), sbus_readl(tregs + TCVR_TPAL)); } } static int bigmac_init_hw(struct bigmac *, int); static int try_next_permutation(struct bigmac *bp, void __iomem *tregs) { if (bp->sw_bmcr & BMCR_SPEED100) { int timeout; /* Reset the PHY. */ bp->sw_bmcr = (BMCR_ISOLATE | BMCR_PDOWN | BMCR_LOOPBACK); bigmac_tcvr_write(bp, tregs, MII_BMCR, bp->sw_bmcr); bp->sw_bmcr = (BMCR_RESET); bigmac_tcvr_write(bp, tregs, MII_BMCR, bp->sw_bmcr); timeout = 64; while (--timeout) { bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, MII_BMCR); if ((bp->sw_bmcr & BMCR_RESET) == 0) break; udelay(20); } if (timeout == 0) printk(KERN_ERR "%s: PHY reset failed.\n", bp->dev->name); bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, MII_BMCR); /* Now we try 10baseT. */ bp->sw_bmcr &= ~(BMCR_SPEED100); bigmac_tcvr_write(bp, tregs, MII_BMCR, bp->sw_bmcr); return 0; } /* We've tried them all. */ return -1; } static void bigmac_timer(unsigned long data) { struct bigmac *bp = (struct bigmac *) data; void __iomem *tregs = bp->tregs; int restart_timer = 0; bp->timer_ticks++; if (bp->timer_state == ltrywait) { bp->sw_bmsr = bigmac_tcvr_read(bp, tregs, MII_BMSR); bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, MII_BMCR); if (bp->sw_bmsr & BMSR_LSTATUS) { printk(KERN_INFO "%s: Link is now up at %s.\n", bp->dev->name, (bp->sw_bmcr & BMCR_SPEED100) ? "100baseT" : "10baseT"); bp->timer_state = asleep; restart_timer = 0; } else { if (bp->timer_ticks >= 4) { int ret; ret = try_next_permutation(bp, tregs); if (ret == -1) { printk(KERN_ERR "%s: Link down, cable problem?\n", bp->dev->name); ret = bigmac_init_hw(bp, 0); if (ret) { printk(KERN_ERR "%s: Error, cannot re-init the " "BigMAC.\n", bp->dev->name); } return; } bp->timer_ticks = 0; restart_timer = 1; } else { restart_timer = 1; } } } else { /* Can't happens.... */ printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n", bp->dev->name); restart_timer = 0; bp->timer_ticks = 0; bp->timer_state = asleep; /* foo on you */ } if (restart_timer != 0) { bp->bigmac_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */ add_timer(&bp->bigmac_timer); } } /* Well, really we just force the chip into 100baseT then * 10baseT, each time checking for a link status. */ static void bigmac_begin_auto_negotiation(struct bigmac *bp) { void __iomem *tregs = bp->tregs; int timeout; /* Grab new software copies of PHY registers. */ bp->sw_bmsr = bigmac_tcvr_read(bp, tregs, MII_BMSR); bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, MII_BMCR); /* Reset the PHY. */ bp->sw_bmcr = (BMCR_ISOLATE | BMCR_PDOWN | BMCR_LOOPBACK); bigmac_tcvr_write(bp, tregs, MII_BMCR, bp->sw_bmcr); bp->sw_bmcr = (BMCR_RESET); bigmac_tcvr_write(bp, tregs, MII_BMCR, bp->sw_bmcr); timeout = 64; while (--timeout) { bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, MII_BMCR); if ((bp->sw_bmcr & BMCR_RESET) == 0) break; udelay(20); } if (timeout == 0) printk(KERN_ERR "%s: PHY reset failed.\n", bp->dev->name); bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, MII_BMCR); /* First we try 100baseT. */ bp->sw_bmcr |= BMCR_SPEED100; bigmac_tcvr_write(bp, tregs, MII_BMCR, bp->sw_bmcr); bp->timer_state = ltrywait; bp->timer_ticks = 0; bp->bigmac_timer.expires = jiffies + (12 * HZ) / 10; bp->bigmac_timer.data = (unsigned long) bp; bp->bigmac_timer.function = bigmac_timer; add_timer(&bp->bigmac_timer); } static int bigmac_init_hw(struct bigmac *bp, int from_irq) { void __iomem *gregs = bp->gregs; void __iomem *cregs = bp->creg; void __iomem *bregs = bp->bregs; unsigned char *e = &bp->dev->dev_addr[0]; /* Latch current counters into statistics. */ bigmac_get_counters(bp, bregs); /* Reset QEC. */ qec_global_reset(gregs); /* Init QEC. */ qec_init(bp); /* Alloc and reset the tx/rx descriptor chains. */ bigmac_init_rings(bp, from_irq); /* Initialize the PHY. */ bigmac_tcvr_init(bp); /* Stop transmitter and receiver. */ bigmac_stop(bp); /* Set hardware ethernet address. */ sbus_writel(((e[4] << 8) | e[5]), bregs + BMAC_MACADDR2); sbus_writel(((e[2] << 8) | e[3]), bregs + BMAC_MACADDR1); sbus_writel(((e[0] << 8) | e[1]), bregs + BMAC_MACADDR0); /* Clear the hash table until mc upload occurs. */ sbus_writel(0, bregs + BMAC_HTABLE3); sbus_writel(0, bregs + BMAC_HTABLE2); sbus_writel(0, bregs + BMAC_HTABLE1); sbus_writel(0, bregs + BMAC_HTABLE0); /* Enable Big Mac hash table filter. */ sbus_writel(BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_FIFO, bregs + BMAC_RXCFG); udelay(20); /* Ok, configure the Big Mac transmitter. */ sbus_writel(BIGMAC_TXCFG_FIFO, bregs + BMAC_TXCFG); /* The HME docs recommend to use the 10LSB of our MAC here. */ sbus_writel(((e[5] | e[4] << 8) & 0x3ff), bregs + BMAC_RSEED); /* Enable the output drivers no matter what. */ sbus_writel(BIGMAC_XCFG_ODENABLE | BIGMAC_XCFG_RESV, bregs + BMAC_XIFCFG); /* Tell the QEC where the ring descriptors are. */ sbus_writel(bp->bblock_dvma + bib_offset(be_rxd, 0), cregs + CREG_RXDS); sbus_writel(bp->bblock_dvma + bib_offset(be_txd, 0), cregs + CREG_TXDS); /* Setup the FIFO pointers into QEC local memory. */ sbus_writel(0, cregs + CREG_RXRBUFPTR); sbus_writel(0, cregs + CREG_RXWBUFPTR); sbus_writel(sbus_readl(gregs + GLOB_RSIZE), cregs + CREG_TXRBUFPTR); sbus_writel(sbus_readl(gregs + GLOB_RSIZE), cregs + CREG_TXWBUFPTR); /* Tell bigmac what interrupts we don't want to hear about. */ sbus_writel(BIGMAC_IMASK_GOTFRAME | BIGMAC_IMASK_SENTFRAME, bregs + BMAC_IMASK); /* Enable the various other irq's. */ sbus_writel(0, cregs + CREG_RIMASK); sbus_writel(0, cregs + CREG_TIMASK); sbus_writel(0, cregs + CREG_QMASK); sbus_writel(0, cregs + CREG_BMASK); /* Set jam size to a reasonable default. */ sbus_writel(DEFAULT_JAMSIZE, bregs + BMAC_JSIZE); /* Clear collision counter. */ sbus_writel(0, cregs + CREG_CCNT); /* Enable transmitter and receiver. */ sbus_writel(sbus_readl(bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE, bregs + BMAC_TXCFG); sbus_writel(sbus_readl(bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE, bregs + BMAC_RXCFG); /* Ok, start detecting link speed/duplex. */ bigmac_begin_auto_negotiation(bp); /* Success. */ return 0; } /* Error interrupts get sent here. */ static void bigmac_is_medium_rare(struct bigmac *bp, u32 qec_status, u32 bmac_status) { printk(KERN_ERR "bigmac_is_medium_rare: "); if (qec_status & (GLOB_STAT_ER | GLOB_STAT_BM)) { if (qec_status & GLOB_STAT_ER) printk("QEC_ERROR, "); if (qec_status & GLOB_STAT_BM) printk("QEC_BMAC_ERROR, "); } if (bmac_status & CREG_STAT_ERRORS) { if (bmac_status & CREG_STAT_BERROR) printk("BMAC_ERROR, "); if (bmac_status & CREG_STAT_TXDERROR) printk("TXD_ERROR, "); if (bmac_status & CREG_STAT_TXLERR) printk("TX_LATE_ERROR, "); if (bmac_status & CREG_STAT_TXPERR) printk("TX_PARITY_ERROR, "); if (bmac_status & CREG_STAT_TXSERR) printk("TX_SBUS_ERROR, "); if (bmac_status & CREG_STAT_RXDROP) printk("RX_DROP_ERROR, "); if (bmac_status & CREG_STAT_RXSMALL) printk("RX_SMALL_ERROR, "); if (bmac_status & CREG_STAT_RXLERR) printk("RX_LATE_ERROR, "); if (bmac_status & CREG_STAT_RXPERR) printk("RX_PARITY_ERROR, "); if (bmac_status & CREG_STAT_RXSERR) printk("RX_SBUS_ERROR, "); } printk(" RESET\n"); bigmac_init_hw(bp, 1); } /* BigMAC transmit complete service routines. */ static void bigmac_tx(struct bigmac *bp) { struct be_txd *txbase = &bp->bmac_block->be_txd[0]; struct net_device *dev = bp->dev; int elem; spin_lock(&bp->lock); elem = bp->tx_old; DTX(("bigmac_tx: tx_old[%d] ", elem)); while (elem != bp->tx_new) { struct sk_buff *skb; struct be_txd *this = &txbase[elem]; DTX(("this(%p) [flags(%08x)addr(%08x)]", this, this->tx_flags, this->tx_addr)); if (this->tx_flags & TXD_OWN) break; skb = bp->tx_skbs[elem]; bp->enet_stats.tx_packets++; bp->enet_stats.tx_bytes += skb->len; dma_unmap_single(&bp->bigmac_op->dev, this->tx_addr, skb->len, DMA_TO_DEVICE); DTX(("skb(%p) ", skb)); bp->tx_skbs[elem] = NULL; dev_kfree_skb_irq(skb); elem = NEXT_TX(elem); } DTX((" DONE, tx_old=%d\n", elem)); bp->tx_old = elem; if (netif_queue_stopped(dev) && TX_BUFFS_AVAIL(bp) > 0) netif_wake_queue(bp->dev); spin_unlock(&bp->lock); } /* BigMAC receive complete service routines. */ static void bigmac_rx(struct bigmac *bp) { struct be_rxd *rxbase = &bp->bmac_block->be_rxd[0]; struct be_rxd *this; int elem = bp->rx_new, drops = 0; u32 flags; this = &rxbase[elem]; while (!((flags = this->rx_flags) & RXD_OWN)) { struct sk_buff *skb; int len = (flags & RXD_LENGTH); /* FCS not included */ /* Check for errors. */ if (len < ETH_ZLEN) { bp->enet_stats.rx_errors++; bp->enet_stats.rx_length_errors++; drop_it: /* Return it to the BigMAC. */ bp->enet_stats.rx_dropped++; this->rx_flags = (RXD_OWN | ((RX_BUF_ALLOC_SIZE - 34) & RXD_LENGTH)); goto next; } skb = bp->rx_skbs[elem]; if (len > RX_COPY_THRESHOLD) { struct sk_buff *new_skb; /* Now refill the entry, if we can. */ new_skb = big_mac_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); if (new_skb == NULL) { drops++; goto drop_it; } dma_unmap_single(&bp->bigmac_op->dev, this->rx_addr, RX_BUF_ALLOC_SIZE - 34, DMA_FROM_DEVICE); bp->rx_skbs[elem] = new_skb; skb_put(new_skb, ETH_FRAME_LEN); skb_reserve(new_skb, 34); this->rx_addr = dma_map_single(&bp->bigmac_op->dev, new_skb->data, RX_BUF_ALLOC_SIZE - 34, DMA_FROM_DEVICE); this->rx_flags = (RXD_OWN | ((RX_BUF_ALLOC_SIZE - 34) & RXD_LENGTH)); /* Trim the original skb for the netif. */ skb_trim(skb, len); } else { struct sk_buff *copy_skb = netdev_alloc_skb(bp->dev, len + 2); if (copy_skb == NULL) { drops++; goto drop_it; } skb_reserve(copy_skb, 2); skb_put(copy_skb, len); dma_sync_single_for_cpu(&bp->bigmac_op->dev, this->rx_addr, len, DMA_FROM_DEVICE); skb_copy_to_linear_data(copy_skb, (unsigned char *)skb->data, len); dma_sync_single_for_device(&bp->bigmac_op->dev, this->rx_addr, len, DMA_FROM_DEVICE); /* Reuse original ring buffer. */ this->rx_flags = (RXD_OWN | ((RX_BUF_ALLOC_SIZE - 34) & RXD_LENGTH)); skb = copy_skb; } /* No checksums done by the BigMAC ;-( */ skb->protocol = eth_type_trans(skb, bp->dev); netif_rx(skb); bp->enet_stats.rx_packets++; bp->enet_stats.rx_bytes += len; next: elem = NEXT_RX(elem); this = &rxbase[elem]; } bp->rx_new = elem; if (drops) printk(KERN_NOTICE "%s: Memory squeeze, deferring packet.\n", bp->dev->name); } static irqreturn_t bigmac_interrupt(int irq, void *dev_id) { struct bigmac *bp = (struct bigmac *) dev_id; u32 qec_status, bmac_status; DIRQ(("bigmac_interrupt: ")); /* Latch status registers now. */ bmac_status = sbus_readl(bp->creg + CREG_STAT); qec_status = sbus_readl(bp->gregs + GLOB_STAT); DIRQ(("qec_status=%08x bmac_status=%08x\n", qec_status, bmac_status)); if ((qec_status & (GLOB_STAT_ER | GLOB_STAT_BM)) || (bmac_status & CREG_STAT_ERRORS)) bigmac_is_medium_rare(bp, qec_status, bmac_status); if (bmac_status & CREG_STAT_TXIRQ) bigmac_tx(bp); if (bmac_status & CREG_STAT_RXIRQ) bigmac_rx(bp); return IRQ_HANDLED; } static int bigmac_open(struct net_device *dev) { struct bigmac *bp = netdev_priv(dev); int ret; ret = request_irq(dev->irq, bigmac_interrupt, IRQF_SHARED, dev->name, bp); if (ret) { printk(KERN_ERR "BIGMAC: Can't order irq %d to go.\n", dev->irq); return ret; } init_timer(&bp->bigmac_timer); ret = bigmac_init_hw(bp, 0); if (ret) free_irq(dev->irq, bp); return ret; } static int bigmac_close(struct net_device *dev) { struct bigmac *bp = netdev_priv(dev); del_timer(&bp->bigmac_timer); bp->timer_state = asleep; bp->timer_ticks = 0; bigmac_stop(bp); bigmac_clean_rings(bp); free_irq(dev->irq, bp); return 0; } static void bigmac_tx_timeout(struct net_device *dev) { struct bigmac *bp = netdev_priv(dev); bigmac_init_hw(bp, 0); netif_wake_queue(dev); } /* Put a packet on the wire. */ static int bigmac_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct bigmac *bp = netdev_priv(dev); int len, entry; u32 mapping; len = skb->len; mapping = dma_map_single(&bp->bigmac_op->dev, skb->data, len, DMA_TO_DEVICE); /* Avoid a race... */ spin_lock_irq(&bp->lock); entry = bp->tx_new; DTX(("bigmac_start_xmit: len(%d) entry(%d)\n", len, entry)); bp->bmac_block->be_txd[entry].tx_flags = TXD_UPDATE; bp->tx_skbs[entry] = skb; bp->bmac_block->be_txd[entry].tx_addr = mapping; bp->bmac_block->be_txd[entry].tx_flags = (TXD_OWN | TXD_SOP | TXD_EOP | (len & TXD_LENGTH)); bp->tx_new = NEXT_TX(entry); if (TX_BUFFS_AVAIL(bp) <= 0) netif_stop_queue(dev); spin_unlock_irq(&bp->lock); /* Get it going. */ sbus_writel(CREG_CTRL_TWAKEUP, bp->creg + CREG_CTRL); return NETDEV_TX_OK; } static struct net_device_stats *bigmac_get_stats(struct net_device *dev) { struct bigmac *bp = netdev_priv(dev); bigmac_get_counters(bp, bp->bregs); return &bp->enet_stats; } static void bigmac_set_multicast(struct net_device *dev) { struct bigmac *bp = netdev_priv(dev); void __iomem *bregs = bp->bregs; struct netdev_hw_addr *ha; u32 tmp, crc; /* Disable the receiver. The bit self-clears when * the operation is complete. */ tmp = sbus_readl(bregs + BMAC_RXCFG); tmp &= ~(BIGMAC_RXCFG_ENABLE); sbus_writel(tmp, bregs + BMAC_RXCFG); while ((sbus_readl(bregs + BMAC_RXCFG) & BIGMAC_RXCFG_ENABLE) != 0) udelay(20); if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) { sbus_writel(0xffff, bregs + BMAC_HTABLE0); sbus_writel(0xffff, bregs + BMAC_HTABLE1); sbus_writel(0xffff, bregs + BMAC_HTABLE2); sbus_writel(0xffff, bregs + BMAC_HTABLE3); } else if (dev->flags & IFF_PROMISC) { tmp = sbus_readl(bregs + BMAC_RXCFG); tmp |= BIGMAC_RXCFG_PMISC; sbus_writel(tmp, bregs + BMAC_RXCFG); } else { u16 hash_table[4] = { 0 }; netdev_for_each_mc_addr(ha, dev) { crc = ether_crc_le(6, ha->addr); crc >>= 26; hash_table[crc >> 4] |= 1 << (crc & 0xf); } sbus_writel(hash_table[0], bregs + BMAC_HTABLE0); sbus_writel(hash_table[1], bregs + BMAC_HTABLE1); sbus_writel(hash_table[2], bregs + BMAC_HTABLE2); sbus_writel(hash_table[3], bregs + BMAC_HTABLE3); } /* Re-enable the receiver. */ tmp = sbus_readl(bregs + BMAC_RXCFG); tmp |= BIGMAC_RXCFG_ENABLE; sbus_writel(tmp, bregs + BMAC_RXCFG); } /* Ethtool support... */ static void bigmac_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strlcpy(info->driver, "sunbmac", sizeof(info->driver)); strlcpy(info->version, "2.0", sizeof(info->version)); } static u32 bigmac_get_link(struct net_device *dev) { struct bigmac *bp = netdev_priv(dev); spin_lock_irq(&bp->lock); bp->sw_bmsr = bigmac_tcvr_read(bp, bp->tregs, MII_BMSR); spin_unlock_irq(&bp->lock); return (bp->sw_bmsr & BMSR_LSTATUS); } static const struct ethtool_ops bigmac_ethtool_ops = { .get_drvinfo = bigmac_get_drvinfo, .get_link = bigmac_get_link, }; static const struct net_device_ops bigmac_ops = { .ndo_open = bigmac_open, .ndo_stop = bigmac_close, .ndo_start_xmit = bigmac_start_xmit, .ndo_get_stats = bigmac_get_stats, .ndo_set_rx_mode = bigmac_set_multicast, .ndo_tx_timeout = bigmac_tx_timeout, .ndo_change_mtu = eth_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static int bigmac_ether_init(struct platform_device *op, struct platform_device *qec_op) { static int version_printed; struct net_device *dev; u8 bsizes, bsizes_more; struct bigmac *bp; int i; /* Get a new device struct for this interface. */ dev = alloc_etherdev(sizeof(struct bigmac)); if (!dev) return -ENOMEM; if (version_printed++ == 0) printk(KERN_INFO "%s", version); for (i = 0; i < 6; i++) dev->dev_addr[i] = idprom->id_ethaddr[i]; /* Setup softc, with backpointers to QEC and BigMAC SBUS device structs. */ bp = netdev_priv(dev); bp->qec_op = qec_op; bp->bigmac_op = op; SET_NETDEV_DEV(dev, &op->dev); spin_lock_init(&bp->lock); /* Map in QEC global control registers. */ bp->gregs = of_ioremap(&qec_op->resource[0], 0, GLOB_REG_SIZE, "BigMAC QEC GLobal Regs"); if (!bp->gregs) { printk(KERN_ERR "BIGMAC: Cannot map QEC global registers.\n"); goto fail_and_cleanup; } /* Make sure QEC is in BigMAC mode. */ if ((sbus_readl(bp->gregs + GLOB_CTRL) & 0xf0000000) != GLOB_CTRL_BMODE) { printk(KERN_ERR "BigMAC: AIEEE, QEC is not in BigMAC mode!\n"); goto fail_and_cleanup; } /* Reset the QEC. */ if (qec_global_reset(bp->gregs)) goto fail_and_cleanup; /* Get supported SBUS burst sizes. */ bsizes = of_getintprop_default(qec_op->dev.of_node, "burst-sizes", 0xff); bsizes_more = of_getintprop_default(qec_op->dev.of_node, "burst-sizes", 0xff); bsizes &= 0xff; if (bsizes_more != 0xff) bsizes &= bsizes_more; if (bsizes == 0xff || (bsizes & DMA_BURST16) == 0 || (bsizes & DMA_BURST32) == 0) bsizes = (DMA_BURST32 - 1); bp->bigmac_bursts = bsizes; /* Perform QEC initialization. */ qec_init(bp); /* Map in the BigMAC channel registers. */ bp->creg = of_ioremap(&op->resource[0], 0, CREG_REG_SIZE, "BigMAC QEC Channel Regs"); if (!bp->creg) { printk(KERN_ERR "BIGMAC: Cannot map QEC channel registers.\n"); goto fail_and_cleanup; } /* Map in the BigMAC control registers. */ bp->bregs = of_ioremap(&op->resource[1], 0, BMAC_REG_SIZE, "BigMAC Primary Regs"); if (!bp->bregs) { printk(KERN_ERR "BIGMAC: Cannot map BigMAC primary registers.\n"); goto fail_and_cleanup; } /* Map in the BigMAC transceiver registers, this is how you poke at * the BigMAC's PHY. */ bp->tregs = of_ioremap(&op->resource[2], 0, TCVR_REG_SIZE, "BigMAC Transceiver Regs"); if (!bp->tregs) { printk(KERN_ERR "BIGMAC: Cannot map BigMAC transceiver registers.\n"); goto fail_and_cleanup; } /* Stop the BigMAC. */ bigmac_stop(bp); /* Allocate transmit/receive descriptor DVMA block. */ bp->bmac_block = dma_alloc_coherent(&bp->bigmac_op->dev, PAGE_SIZE, &bp->bblock_dvma, GFP_ATOMIC); if (bp->bmac_block == NULL || bp->bblock_dvma == 0) goto fail_and_cleanup; /* Get the board revision of this BigMAC. */ bp->board_rev = of_getintprop_default(bp->bigmac_op->dev.of_node, "board-version", 1); /* Init auto-negotiation timer state. */ init_timer(&bp->bigmac_timer); bp->timer_state = asleep; bp->timer_ticks = 0; /* Backlink to generic net device struct. */ bp->dev = dev; /* Set links to our BigMAC open and close routines. */ dev->ethtool_ops = &bigmac_ethtool_ops; dev->netdev_ops = &bigmac_ops; dev->watchdog_timeo = 5*HZ; /* Finish net device registration. */ dev->irq = bp->bigmac_op->archdata.irqs[0]; dev->dma = 0; if (register_netdev(dev)) { printk(KERN_ERR "BIGMAC: Cannot register device.\n"); goto fail_and_cleanup; } dev_set_drvdata(&bp->bigmac_op->dev, bp); printk(KERN_INFO "%s: BigMAC 100baseT Ethernet %pM\n", dev->name, dev->dev_addr); return 0; fail_and_cleanup: /* Something went wrong, undo whatever we did so far. */ /* Free register mappings if any. */ if (bp->gregs) of_iounmap(&qec_op->resource[0], bp->gregs, GLOB_REG_SIZE); if (bp->creg) of_iounmap(&op->resource[0], bp->creg, CREG_REG_SIZE); if (bp->bregs) of_iounmap(&op->resource[1], bp->bregs, BMAC_REG_SIZE); if (bp->tregs) of_iounmap(&op->resource[2], bp->tregs, TCVR_REG_SIZE); if (bp->bmac_block) dma_free_coherent(&bp->bigmac_op->dev, PAGE_SIZE, bp->bmac_block, bp->bblock_dvma); /* This also frees the co-located private data */ free_netdev(dev); return -ENODEV; } /* QEC can be the parent of either QuadEthernet or a BigMAC. We want * the latter. */ static int bigmac_sbus_probe(struct platform_device *op) { struct device *parent = op->dev.parent; struct platform_device *qec_op; qec_op = to_platform_device(parent); return bigmac_ether_init(op, qec_op); } static int bigmac_sbus_remove(struct platform_device *op) { struct bigmac *bp = platform_get_drvdata(op); struct device *parent = op->dev.parent; struct net_device *net_dev = bp->dev; struct platform_device *qec_op; qec_op = to_platform_device(parent); unregister_netdev(net_dev); of_iounmap(&qec_op->resource[0], bp->gregs, GLOB_REG_SIZE); of_iounmap(&op->resource[0], bp->creg, CREG_REG_SIZE); of_iounmap(&op->resource[1], bp->bregs, BMAC_REG_SIZE); of_iounmap(&op->resource[2], bp->tregs, TCVR_REG_SIZE); dma_free_coherent(&op->dev, PAGE_SIZE, bp->bmac_block, bp->bblock_dvma); free_netdev(net_dev); return 0; } static const struct of_device_id bigmac_sbus_match[] = { { .name = "be", }, {}, }; MODULE_DEVICE_TABLE(of, bigmac_sbus_match); static struct platform_driver bigmac_sbus_driver = { .driver = { .name = "sunbmac", .owner = THIS_MODULE, .of_match_table = bigmac_sbus_match, }, .probe = bigmac_sbus_probe, .remove = bigmac_sbus_remove, }; module_platform_driver(bigmac_sbus_driver);