/************************************************************************ * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC * Copyright(c) 2002-2010 Exar Corp. * * This software may be used and distributed according to the terms of * the GNU General Public License (GPL), incorporated herein by reference. * Drivers based on or derived from this code fall under the GPL and must * retain the authorship, copyright and license notice. This file is not * a complete program and may only be used when the entire operating * system is licensed under the GPL. * See the file COPYING in this distribution for more information. * * Credits: * Jeff Garzik : For pointing out the improper error condition * check in the s2io_xmit routine and also some * issues in the Tx watch dog function. Also for * patiently answering all those innumerable * questions regaring the 2.6 porting issues. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some * macros available only in 2.6 Kernel. * Francois Romieu : For pointing out all code part that were * deprecated and also styling related comments. * Grant Grundler : For helping me get rid of some Architecture * dependent code. * Christopher Hellwig : Some more 2.6 specific issues in the driver. * * The module loadable parameters that are supported by the driver and a brief * explanation of all the variables. * * rx_ring_num : This can be used to program the number of receive rings used * in the driver. * rx_ring_sz: This defines the number of receive blocks each ring can have. * This is also an array of size 8. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid * values are 1, 2. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. * tx_fifo_len: This too is an array of 8. Each element defines the number of * Tx descriptors that can be associated with each corresponding FIFO. * intr_type: This defines the type of interrupt. The values can be 0(INTA), * 2(MSI_X). Default value is '2(MSI_X)' * lro_max_pkts: This parameter defines maximum number of packets can be * aggregated as a single large packet * napi: This parameter used to enable/disable NAPI (polling Rx) * Possible values '1' for enable and '0' for disable. Default is '1' * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO) * Possible values '1' for enable and '0' for disable. Default is '0' * vlan_tag_strip: This can be used to enable or disable vlan stripping. * Possible values '1' for enable , '0' for disable. * Default is '2' - which means disable in promisc mode * and enable in non-promiscuous mode. * multiq: This parameter used to enable/disable MULTIQUEUE support. * Possible values '1' for enable and '0' for disable. Default is '0' ************************************************************************/ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/mdio.h> #include <linux/skbuff.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/stddef.h> #include <linux/ioctl.h> #include <linux/timex.h> #include <linux/ethtool.h> #include <linux/workqueue.h> #include <linux/if_vlan.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/uaccess.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/prefetch.h> #include <net/tcp.h> #include <net/checksum.h> #include <asm/div64.h> #include <asm/irq.h> /* local include */ #include "s2io.h" #include "s2io-regs.h" #define DRV_VERSION "2.0.26.28" /* S2io Driver name & version. */ static const char s2io_driver_name[] = "Neterion"; static const char s2io_driver_version[] = DRV_VERSION; static const int rxd_size[2] = {32, 48}; static const int rxd_count[2] = {127, 85}; static inline int RXD_IS_UP2DT(struct RxD_t *rxdp) { int ret; ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) && (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK)); return ret; } /* * Cards with following subsystem_id have a link state indication * problem, 600B, 600C, 600D, 640B, 640C and 640D. * macro below identifies these cards given the subsystem_id. */ #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \ (dev_type == XFRAME_I_DEVICE) ? \ ((((subid >= 0x600B) && (subid <= 0x600D)) || \ ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ ADAPTER_STATUS_RMAC_LOCAL_FAULT))) static inline int is_s2io_card_up(const struct s2io_nic *sp) { return test_bit(__S2IO_STATE_CARD_UP, &sp->state); } /* Ethtool related variables and Macros. */ static const char s2io_gstrings[][ETH_GSTRING_LEN] = { "Register test\t(offline)", "Eeprom test\t(offline)", "Link test\t(online)", "RLDRAM test\t(offline)", "BIST Test\t(offline)" }; static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = { {"tmac_frms"}, {"tmac_data_octets"}, {"tmac_drop_frms"}, {"tmac_mcst_frms"}, {"tmac_bcst_frms"}, {"tmac_pause_ctrl_frms"}, {"tmac_ttl_octets"}, {"tmac_ucst_frms"}, {"tmac_nucst_frms"}, {"tmac_any_err_frms"}, {"tmac_ttl_less_fb_octets"}, {"tmac_vld_ip_octets"}, {"tmac_vld_ip"}, {"tmac_drop_ip"}, {"tmac_icmp"}, {"tmac_rst_tcp"}, {"tmac_tcp"}, {"tmac_udp"}, {"rmac_vld_frms"}, {"rmac_data_octets"}, {"rmac_fcs_err_frms"}, {"rmac_drop_frms"}, {"rmac_vld_mcst_frms"}, {"rmac_vld_bcst_frms"}, {"rmac_in_rng_len_err_frms"}, {"rmac_out_rng_len_err_frms"}, {"rmac_long_frms"}, {"rmac_pause_ctrl_frms"}, {"rmac_unsup_ctrl_frms"}, {"rmac_ttl_octets"}, {"rmac_accepted_ucst_frms"}, {"rmac_accepted_nucst_frms"}, {"rmac_discarded_frms"}, {"rmac_drop_events"}, {"rmac_ttl_less_fb_octets"}, {"rmac_ttl_frms"}, {"rmac_usized_frms"}, {"rmac_osized_frms"}, {"rmac_frag_frms"}, {"rmac_jabber_frms"}, {"rmac_ttl_64_frms"}, {"rmac_ttl_65_127_frms"}, {"rmac_ttl_128_255_frms"}, {"rmac_ttl_256_511_frms"}, {"rmac_ttl_512_1023_frms"}, {"rmac_ttl_1024_1518_frms"}, {"rmac_ip"}, {"rmac_ip_octets"}, {"rmac_hdr_err_ip"}, {"rmac_drop_ip"}, {"rmac_icmp"}, {"rmac_tcp"}, {"rmac_udp"}, {"rmac_err_drp_udp"}, {"rmac_xgmii_err_sym"}, {"rmac_frms_q0"}, {"rmac_frms_q1"}, {"rmac_frms_q2"}, {"rmac_frms_q3"}, {"rmac_frms_q4"}, {"rmac_frms_q5"}, {"rmac_frms_q6"}, {"rmac_frms_q7"}, {"rmac_full_q0"}, {"rmac_full_q1"}, {"rmac_full_q2"}, {"rmac_full_q3"}, {"rmac_full_q4"}, {"rmac_full_q5"}, {"rmac_full_q6"}, {"rmac_full_q7"}, {"rmac_pause_cnt"}, {"rmac_xgmii_data_err_cnt"}, {"rmac_xgmii_ctrl_err_cnt"}, {"rmac_accepted_ip"}, {"rmac_err_tcp"}, {"rd_req_cnt"}, {"new_rd_req_cnt"}, {"new_rd_req_rtry_cnt"}, {"rd_rtry_cnt"}, {"wr_rtry_rd_ack_cnt"}, {"wr_req_cnt"}, {"new_wr_req_cnt"}, {"new_wr_req_rtry_cnt"}, {"wr_rtry_cnt"}, {"wr_disc_cnt"}, {"rd_rtry_wr_ack_cnt"}, {"txp_wr_cnt"}, {"txd_rd_cnt"}, {"txd_wr_cnt"}, {"rxd_rd_cnt"}, {"rxd_wr_cnt"}, {"txf_rd_cnt"}, {"rxf_wr_cnt"} }; static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = { {"rmac_ttl_1519_4095_frms"}, {"rmac_ttl_4096_8191_frms"}, {"rmac_ttl_8192_max_frms"}, {"rmac_ttl_gt_max_frms"}, {"rmac_osized_alt_frms"}, {"rmac_jabber_alt_frms"}, {"rmac_gt_max_alt_frms"}, {"rmac_vlan_frms"}, {"rmac_len_discard"}, {"rmac_fcs_discard"}, {"rmac_pf_discard"}, {"rmac_da_discard"}, {"rmac_red_discard"}, {"rmac_rts_discard"}, {"rmac_ingm_full_discard"}, {"link_fault_cnt"} }; static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = { {"\n DRIVER STATISTICS"}, {"single_bit_ecc_errs"}, {"double_bit_ecc_errs"}, {"parity_err_cnt"}, {"serious_err_cnt"}, {"soft_reset_cnt"}, {"fifo_full_cnt"}, {"ring_0_full_cnt"}, {"ring_1_full_cnt"}, {"ring_2_full_cnt"}, {"ring_3_full_cnt"}, {"ring_4_full_cnt"}, {"ring_5_full_cnt"}, {"ring_6_full_cnt"}, {"ring_7_full_cnt"}, {"alarm_transceiver_temp_high"}, {"alarm_transceiver_temp_low"}, {"alarm_laser_bias_current_high"}, {"alarm_laser_bias_current_low"}, {"alarm_laser_output_power_high"}, {"alarm_laser_output_power_low"}, {"warn_transceiver_temp_high"}, {"warn_transceiver_temp_low"}, {"warn_laser_bias_current_high"}, {"warn_laser_bias_current_low"}, {"warn_laser_output_power_high"}, {"warn_laser_output_power_low"}, {"lro_aggregated_pkts"}, {"lro_flush_both_count"}, {"lro_out_of_sequence_pkts"}, {"lro_flush_due_to_max_pkts"}, {"lro_avg_aggr_pkts"}, {"mem_alloc_fail_cnt"}, {"pci_map_fail_cnt"}, {"watchdog_timer_cnt"}, {"mem_allocated"}, {"mem_freed"}, {"link_up_cnt"}, {"link_down_cnt"}, {"link_up_time"}, {"link_down_time"}, {"tx_tcode_buf_abort_cnt"}, {"tx_tcode_desc_abort_cnt"}, {"tx_tcode_parity_err_cnt"}, {"tx_tcode_link_loss_cnt"}, {"tx_tcode_list_proc_err_cnt"}, {"rx_tcode_parity_err_cnt"}, {"rx_tcode_abort_cnt"}, {"rx_tcode_parity_abort_cnt"}, {"rx_tcode_rda_fail_cnt"}, {"rx_tcode_unkn_prot_cnt"}, {"rx_tcode_fcs_err_cnt"}, {"rx_tcode_buf_size_err_cnt"}, {"rx_tcode_rxd_corrupt_cnt"}, {"rx_tcode_unkn_err_cnt"}, {"tda_err_cnt"}, {"pfc_err_cnt"}, {"pcc_err_cnt"}, {"tti_err_cnt"}, {"tpa_err_cnt"}, {"sm_err_cnt"}, {"lso_err_cnt"}, {"mac_tmac_err_cnt"}, {"mac_rmac_err_cnt"}, {"xgxs_txgxs_err_cnt"}, {"xgxs_rxgxs_err_cnt"}, {"rc_err_cnt"}, {"prc_pcix_err_cnt"}, {"rpa_err_cnt"}, {"rda_err_cnt"}, {"rti_err_cnt"}, {"mc_err_cnt"} }; #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys) #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys) #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys) #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN) #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN) #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN) #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN) #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings) #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN) #define S2IO_TIMER_CONF(timer, handle, arg, exp) \ init_timer(&timer); \ timer.function = handle; \ timer.data = (unsigned long)arg; \ mod_timer(&timer, (jiffies + exp)) \ /* copy mac addr to def_mac_addr array */ static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr) { sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr); sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8); sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16); sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24); sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32); sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40); } /* * Constants to be programmed into the Xena's registers, to configure * the XAUI. */ #define END_SIGN 0x0 static const u64 herc_act_dtx_cfg[] = { /* Set address */ 0x8000051536750000ULL, 0x80000515367500E0ULL, /* Write data */ 0x8000051536750004ULL, 0x80000515367500E4ULL, /* Set address */ 0x80010515003F0000ULL, 0x80010515003F00E0ULL, /* Write data */ 0x80010515003F0004ULL, 0x80010515003F00E4ULL, /* Set address */ 0x801205150D440000ULL, 0x801205150D4400E0ULL, /* Write data */ 0x801205150D440004ULL, 0x801205150D4400E4ULL, /* Set address */ 0x80020515F2100000ULL, 0x80020515F21000E0ULL, /* Write data */ 0x80020515F2100004ULL, 0x80020515F21000E4ULL, /* Done */ END_SIGN }; static const u64 xena_dtx_cfg[] = { /* Set address */ 0x8000051500000000ULL, 0x80000515000000E0ULL, /* Write data */ 0x80000515D9350004ULL, 0x80000515D93500E4ULL, /* Set address */ 0x8001051500000000ULL, 0x80010515000000E0ULL, /* Write data */ 0x80010515001E0004ULL, 0x80010515001E00E4ULL, /* Set address */ 0x8002051500000000ULL, 0x80020515000000E0ULL, /* Write data */ 0x80020515F2100004ULL, 0x80020515F21000E4ULL, END_SIGN }; /* * Constants for Fixing the MacAddress problem seen mostly on * Alpha machines. */ static const u64 fix_mac[] = { 0x0060000000000000ULL, 0x0060600000000000ULL, 0x0040600000000000ULL, 0x0000600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0000600000000000ULL, 0x0040600000000000ULL, 0x0060600000000000ULL, END_SIGN }; MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); /* Module Loadable parameters. */ S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM); S2IO_PARM_INT(rx_ring_num, 1); S2IO_PARM_INT(multiq, 0); S2IO_PARM_INT(rx_ring_mode, 1); S2IO_PARM_INT(use_continuous_tx_intrs, 1); S2IO_PARM_INT(rmac_pause_time, 0x100); S2IO_PARM_INT(mc_pause_threshold_q0q3, 187); S2IO_PARM_INT(mc_pause_threshold_q4q7, 187); S2IO_PARM_INT(shared_splits, 0); S2IO_PARM_INT(tmac_util_period, 5); S2IO_PARM_INT(rmac_util_period, 5); S2IO_PARM_INT(l3l4hdr_size, 128); /* 0 is no steering, 1 is Priority steering, 2 is Default steering */ S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING); /* Frequency of Rx desc syncs expressed as power of 2 */ S2IO_PARM_INT(rxsync_frequency, 3); /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */ S2IO_PARM_INT(intr_type, 2); /* Large receive offload feature */ /* Max pkts to be aggregated by LRO at one time. If not specified, * aggregation happens until we hit max IP pkt size(64K) */ S2IO_PARM_INT(lro_max_pkts, 0xFFFF); S2IO_PARM_INT(indicate_max_pkts, 0); S2IO_PARM_INT(napi, 1); S2IO_PARM_INT(ufo, 0); S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC); static unsigned int tx_fifo_len[MAX_TX_FIFOS] = {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN}; static unsigned int rx_ring_sz[MAX_RX_RINGS] = {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT}; static unsigned int rts_frm_len[MAX_RX_RINGS] = {[0 ...(MAX_RX_RINGS - 1)] = 0 }; module_param_array(tx_fifo_len, uint, NULL, 0); module_param_array(rx_ring_sz, uint, NULL, 0); module_param_array(rts_frm_len, uint, NULL, 0); /* * S2IO device table. * This table lists all the devices that this driver supports. */ static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = { {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, PCI_ANY_ID, PCI_ANY_ID}, {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, PCI_ANY_ID, PCI_ANY_ID}, {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, PCI_ANY_ID, PCI_ANY_ID}, {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, PCI_ANY_ID, PCI_ANY_ID}, {0,} }; MODULE_DEVICE_TABLE(pci, s2io_tbl); static const struct pci_error_handlers s2io_err_handler = { .error_detected = s2io_io_error_detected, .slot_reset = s2io_io_slot_reset, .resume = s2io_io_resume, }; static struct pci_driver s2io_driver = { .name = "S2IO", .id_table = s2io_tbl, .probe = s2io_init_nic, .remove = s2io_rem_nic, .err_handler = &s2io_err_handler, }; /* A simplifier macro used both by init and free shared_mem Fns(). */ #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) /* netqueue manipulation helper functions */ static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp) { if (!sp->config.multiq) { int i; for (i = 0; i < sp->config.tx_fifo_num; i++) sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP; } netif_tx_stop_all_queues(sp->dev); } static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no) { if (!sp->config.multiq) sp->mac_control.fifos[fifo_no].queue_state = FIFO_QUEUE_STOP; netif_tx_stop_all_queues(sp->dev); } static inline void s2io_start_all_tx_queue(struct s2io_nic *sp) { if (!sp->config.multiq) { int i; for (i = 0; i < sp->config.tx_fifo_num; i++) sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; } netif_tx_start_all_queues(sp->dev); } static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no) { if (!sp->config.multiq) sp->mac_control.fifos[fifo_no].queue_state = FIFO_QUEUE_START; netif_tx_start_all_queues(sp->dev); } static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp) { if (!sp->config.multiq) { int i; for (i = 0; i < sp->config.tx_fifo_num; i++) sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; } netif_tx_wake_all_queues(sp->dev); } static inline void s2io_wake_tx_queue( struct fifo_info *fifo, int cnt, u8 multiq) { if (multiq) { if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no)) netif_wake_subqueue(fifo->dev, fifo->fifo_no); } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) { if (netif_queue_stopped(fifo->dev)) { fifo->queue_state = FIFO_QUEUE_START; netif_wake_queue(fifo->dev); } } } /** * init_shared_mem - Allocation and Initialization of Memory * @nic: Device private variable. * Description: The function allocates all the memory areas shared * between the NIC and the driver. This includes Tx descriptors, * Rx descriptors and the statistics block. */ static int init_shared_mem(struct s2io_nic *nic) { u32 size; void *tmp_v_addr, *tmp_v_addr_next; dma_addr_t tmp_p_addr, tmp_p_addr_next; struct RxD_block *pre_rxd_blk = NULL; int i, j, blk_cnt; int lst_size, lst_per_page; struct net_device *dev = nic->dev; unsigned long tmp; struct buffAdd *ba; struct config_param *config = &nic->config; struct mac_info *mac_control = &nic->mac_control; unsigned long long mem_allocated = 0; /* Allocation and initialization of TXDLs in FIFOs */ size = 0; for (i = 0; i < config->tx_fifo_num; i++) { struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; size += tx_cfg->fifo_len; } if (size > MAX_AVAILABLE_TXDS) { DBG_PRINT(ERR_DBG, "Too many TxDs requested: %d, max supported: %d\n", size, MAX_AVAILABLE_TXDS); return -EINVAL; } size = 0; for (i = 0; i < config->tx_fifo_num; i++) { struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; size = tx_cfg->fifo_len; /* * Legal values are from 2 to 8192 */ if (size < 2) { DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - " "Valid lengths are 2 through 8192\n", i, size); return -EINVAL; } } lst_size = (sizeof(struct TxD) * config->max_txds); lst_per_page = PAGE_SIZE / lst_size; for (i = 0; i < config->tx_fifo_num; i++) { struct fifo_info *fifo = &mac_control->fifos[i]; struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; int fifo_len = tx_cfg->fifo_len; int list_holder_size = fifo_len * sizeof(struct list_info_hold); fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL); if (!fifo->list_info) { DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n"); return -ENOMEM; } mem_allocated += list_holder_size; } for (i = 0; i < config->tx_fifo_num; i++) { int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, lst_per_page); struct fifo_info *fifo = &mac_control->fifos[i]; struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; fifo->tx_curr_put_info.offset = 0; fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1; fifo->tx_curr_get_info.offset = 0; fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1; fifo->fifo_no = i; fifo->nic = nic; fifo->max_txds = MAX_SKB_FRAGS + 2; fifo->dev = dev; for (j = 0; j < page_num; j++) { int k = 0; dma_addr_t tmp_p; void *tmp_v; tmp_v = pci_alloc_consistent(nic->pdev, PAGE_SIZE, &tmp_p); if (!tmp_v) { DBG_PRINT(INFO_DBG, "pci_alloc_consistent failed for TxDL\n"); return -ENOMEM; } /* If we got a zero DMA address(can happen on * certain platforms like PPC), reallocate. * Store virtual address of page we don't want, * to be freed later. */ if (!tmp_p) { mac_control->zerodma_virt_addr = tmp_v; DBG_PRINT(INIT_DBG, "%s: Zero DMA address for TxDL. " "Virtual address %p\n", dev->name, tmp_v); tmp_v = pci_alloc_consistent(nic->pdev, PAGE_SIZE, &tmp_p); if (!tmp_v) { DBG_PRINT(INFO_DBG, "pci_alloc_consistent failed for TxDL\n"); return -ENOMEM; } mem_allocated += PAGE_SIZE; } while (k < lst_per_page) { int l = (j * lst_per_page) + k; if (l == tx_cfg->fifo_len) break; fifo->list_info[l].list_virt_addr = tmp_v + (k * lst_size); fifo->list_info[l].list_phy_addr = tmp_p + (k * lst_size); k++; } } } for (i = 0; i < config->tx_fifo_num; i++) { struct fifo_info *fifo = &mac_control->fifos[i]; struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; size = tx_cfg->fifo_len; fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL); if (!fifo->ufo_in_band_v) return -ENOMEM; mem_allocated += (size * sizeof(u64)); } /* Allocation and initialization of RXDs in Rings */ size = 0; for (i = 0; i < config->rx_ring_num; i++) { struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; struct ring_info *ring = &mac_control->rings[i]; if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) { DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a " "multiple of RxDs per Block\n", dev->name, i); return FAILURE; } size += rx_cfg->num_rxd; ring->block_count = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1); ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count; } if (nic->rxd_mode == RXD_MODE_1) size = (size * (sizeof(struct RxD1))); else size = (size * (sizeof(struct RxD3))); for (i = 0; i < config->rx_ring_num; i++) { struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; struct ring_info *ring = &mac_control->rings[i]; ring->rx_curr_get_info.block_index = 0; ring->rx_curr_get_info.offset = 0; ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1; ring->rx_curr_put_info.block_index = 0; ring->rx_curr_put_info.offset = 0; ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1; ring->nic = nic; ring->ring_no = i; blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1); /* Allocating all the Rx blocks */ for (j = 0; j < blk_cnt; j++) { struct rx_block_info *rx_blocks; int l; rx_blocks = &ring->rx_blocks[j]; size = SIZE_OF_BLOCK; /* size is always page size */ tmp_v_addr = pci_alloc_consistent(nic->pdev, size, &tmp_p_addr); if (tmp_v_addr == NULL) { /* * In case of failure, free_shared_mem() * is called, which should free any * memory that was alloced till the * failure happened. */ rx_blocks->block_virt_addr = tmp_v_addr; return -ENOMEM; } mem_allocated += size; memset(tmp_v_addr, 0, size); size = sizeof(struct rxd_info) * rxd_count[nic->rxd_mode]; rx_blocks->block_virt_addr = tmp_v_addr; rx_blocks->block_dma_addr = tmp_p_addr; rx_blocks->rxds = kmalloc(size, GFP_KERNEL); if (!rx_blocks->rxds) return -ENOMEM; mem_allocated += size; for (l = 0; l < rxd_count[nic->rxd_mode]; l++) { rx_blocks->rxds[l].virt_addr = rx_blocks->block_virt_addr + (rxd_size[nic->rxd_mode] * l); rx_blocks->rxds[l].dma_addr = rx_blocks->block_dma_addr + (rxd_size[nic->rxd_mode] * l); } } /* Interlinking all Rx Blocks */ for (j = 0; j < blk_cnt; j++) { int next = (j + 1) % blk_cnt; tmp_v_addr = ring->rx_blocks[j].block_virt_addr; tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr; tmp_p_addr = ring->rx_blocks[j].block_dma_addr; tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr; pre_rxd_blk = tmp_v_addr; pre_rxd_blk->reserved_2_pNext_RxD_block = (unsigned long)tmp_v_addr_next; pre_rxd_blk->pNext_RxD_Blk_physical = (u64)tmp_p_addr_next; } } if (nic->rxd_mode == RXD_MODE_3B) { /* * Allocation of Storages for buffer addresses in 2BUFF mode * and the buffers as well. */ for (i = 0; i < config->rx_ring_num; i++) { struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; struct ring_info *ring = &mac_control->rings[i]; blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1); size = sizeof(struct buffAdd *) * blk_cnt; ring->ba = kmalloc(size, GFP_KERNEL); if (!ring->ba) return -ENOMEM; mem_allocated += size; for (j = 0; j < blk_cnt; j++) { int k = 0; size = sizeof(struct buffAdd) * (rxd_count[nic->rxd_mode] + 1); ring->ba[j] = kmalloc(size, GFP_KERNEL); if (!ring->ba[j]) return -ENOMEM; mem_allocated += size; while (k != rxd_count[nic->rxd_mode]) { ba = &ring->ba[j][k]; size = BUF0_LEN + ALIGN_SIZE; ba->ba_0_org = kmalloc(size, GFP_KERNEL); if (!ba->ba_0_org) return -ENOMEM; mem_allocated += size; tmp = (unsigned long)ba->ba_0_org; tmp += ALIGN_SIZE; tmp &= ~((unsigned long)ALIGN_SIZE); ba->ba_0 = (void *)tmp; size = BUF1_LEN + ALIGN_SIZE; ba->ba_1_org = kmalloc(size, GFP_KERNEL); if (!ba->ba_1_org) return -ENOMEM; mem_allocated += size; tmp = (unsigned long)ba->ba_1_org; tmp += ALIGN_SIZE; tmp &= ~((unsigned long)ALIGN_SIZE); ba->ba_1 = (void *)tmp; k++; } } } } /* Allocation and initialization of Statistics block */ size = sizeof(struct stat_block); mac_control->stats_mem = pci_alloc_consistent(nic->pdev, size, &mac_control->stats_mem_phy); if (!mac_control->stats_mem) { /* * In case of failure, free_shared_mem() is called, which * should free any memory that was alloced till the * failure happened. */ return -ENOMEM; } mem_allocated += size; mac_control->stats_mem_sz = size; tmp_v_addr = mac_control->stats_mem; mac_control->stats_info = tmp_v_addr; memset(tmp_v_addr, 0, size); DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n", dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr); mac_control->stats_info->sw_stat.mem_allocated += mem_allocated; return SUCCESS; } /** * free_shared_mem - Free the allocated Memory * @nic: Device private variable. * Description: This function is to free all memory locations allocated by * the init_shared_mem() function and return it to the kernel. */ static void free_shared_mem(struct s2io_nic *nic) { int i, j, blk_cnt, size; void *tmp_v_addr; dma_addr_t tmp_p_addr; int lst_size, lst_per_page; struct net_device *dev; int page_num = 0; struct config_param *config; struct mac_info *mac_control; struct stat_block *stats; struct swStat *swstats; if (!nic) return; dev = nic->dev; config = &nic->config; mac_control = &nic->mac_control; stats = mac_control->stats_info; swstats = &stats->sw_stat; lst_size = sizeof(struct TxD) * config->max_txds; lst_per_page = PAGE_SIZE / lst_size; for (i = 0; i < config->tx_fifo_num; i++) { struct fifo_info *fifo = &mac_control->fifos[i]; struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page); for (j = 0; j < page_num; j++) { int mem_blks = (j * lst_per_page); struct list_info_hold *fli; if (!fifo->list_info) return; fli = &fifo->list_info[mem_blks]; if (!fli->list_virt_addr) break; pci_free_consistent(nic->pdev, PAGE_SIZE, fli->list_virt_addr, fli->list_phy_addr); swstats->mem_freed += PAGE_SIZE; } /* If we got a zero DMA address during allocation, * free the page now */ if (mac_control->zerodma_virt_addr) { pci_free_consistent(nic->pdev, PAGE_SIZE, mac_control->zerodma_virt_addr, (dma_addr_t)0); DBG_PRINT(INIT_DBG, "%s: Freeing TxDL with zero DMA address. " "Virtual address %p\n", dev->name, mac_control->zerodma_virt_addr); swstats->mem_freed += PAGE_SIZE; } kfree(fifo->list_info); swstats->mem_freed += tx_cfg->fifo_len * sizeof(struct list_info_hold); } size = SIZE_OF_BLOCK; for (i = 0; i < config->rx_ring_num; i++) { struct ring_info *ring = &mac_control->rings[i]; blk_cnt = ring->block_count; for (j = 0; j < blk_cnt; j++) { tmp_v_addr = ring->rx_blocks[j].block_virt_addr; tmp_p_addr = ring->rx_blocks[j].block_dma_addr; if (tmp_v_addr == NULL) break; pci_free_consistent(nic->pdev, size, tmp_v_addr, tmp_p_addr); swstats->mem_freed += size; kfree(ring->rx_blocks[j].rxds); swstats->mem_freed += sizeof(struct rxd_info) * rxd_count[nic->rxd_mode]; } } if (nic->rxd_mode == RXD_MODE_3B) { /* Freeing buffer storage addresses in 2BUFF mode. */ for (i = 0; i < config->rx_ring_num; i++) { struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; struct ring_info *ring = &mac_control->rings[i]; blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1); for (j = 0; j < blk_cnt; j++) { int k = 0; if (!ring->ba[j]) continue; while (k != rxd_count[nic->rxd_mode]) { struct buffAdd *ba = &ring->ba[j][k]; kfree(ba->ba_0_org); swstats->mem_freed += BUF0_LEN + ALIGN_SIZE; kfree(ba->ba_1_org); swstats->mem_freed += BUF1_LEN + ALIGN_SIZE; k++; } kfree(ring->ba[j]); swstats->mem_freed += sizeof(struct buffAdd) * (rxd_count[nic->rxd_mode] + 1); } kfree(ring->ba); swstats->mem_freed += sizeof(struct buffAdd *) * blk_cnt; } } for (i = 0; i < nic->config.tx_fifo_num; i++) { struct fifo_info *fifo = &mac_control->fifos[i]; struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; if (fifo->ufo_in_band_v) { swstats->mem_freed += tx_cfg->fifo_len * sizeof(u64); kfree(fifo->ufo_in_band_v); } } if (mac_control->stats_mem) { swstats->mem_freed += mac_control->stats_mem_sz; pci_free_consistent(nic->pdev, mac_control->stats_mem_sz, mac_control->stats_mem, mac_control->stats_mem_phy); } } /** * s2io_verify_pci_mode - */ static int s2io_verify_pci_mode(struct s2io_nic *nic) { struct XENA_dev_config __iomem *bar0 = nic->bar0; register u64 val64 = 0; int mode; val64 = readq(&bar0->pci_mode); mode = (u8)GET_PCI_MODE(val64); if (val64 & PCI_MODE_UNKNOWN_MODE) return -1; /* Unknown PCI mode */ return mode; } #define NEC_VENID 0x1033 #define NEC_DEVID 0x0125 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev) { struct pci_dev *tdev = NULL; for_each_pci_dev(tdev) { if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) { if (tdev->bus == s2io_pdev->bus->parent) { pci_dev_put(tdev); return 1; } } } return 0; } static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266}; /** * s2io_print_pci_mode - */ static int s2io_print_pci_mode(struct s2io_nic *nic) { struct XENA_dev_config __iomem *bar0 = nic->bar0; register u64 val64 = 0; int mode; struct config_param *config = &nic->config; const char *pcimode; val64 = readq(&bar0->pci_mode); mode = (u8)GET_PCI_MODE(val64); if (val64 & PCI_MODE_UNKNOWN_MODE) return -1; /* Unknown PCI mode */ config->bus_speed = bus_speed[mode]; if (s2io_on_nec_bridge(nic->pdev)) { DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n", nic->dev->name); return mode; } switch (mode) { case PCI_MODE_PCI_33: pcimode = "33MHz PCI bus"; break; case PCI_MODE_PCI_66: pcimode = "66MHz PCI bus"; break; case PCI_MODE_PCIX_M1_66: pcimode = "66MHz PCIX(M1) bus"; break; case PCI_MODE_PCIX_M1_100: pcimode = "100MHz PCIX(M1) bus"; break; case PCI_MODE_PCIX_M1_133: pcimode = "133MHz PCIX(M1) bus"; break; case PCI_MODE_PCIX_M2_66: pcimode = "133MHz PCIX(M2) bus"; break; case PCI_MODE_PCIX_M2_100: pcimode = "200MHz PCIX(M2) bus"; break; case PCI_MODE_PCIX_M2_133: pcimode = "266MHz PCIX(M2) bus"; break; default: pcimode = "unsupported bus!"; mode = -1; } DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n", nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode); return mode; } /** * init_tti - Initialization transmit traffic interrupt scheme * @nic: device private variable * @link: link status (UP/DOWN) used to enable/disable continuous * transmit interrupts * Description: The function configures transmit traffic interrupts * Return Value: SUCCESS on success and * '-1' on failure */ static int init_tti(struct s2io_nic *nic, int link) { struct XENA_dev_config __iomem *bar0 = nic->bar0; register u64 val64 = 0; int i; struct config_param *config = &nic->config; for (i = 0; i < config->tx_fifo_num; i++) { /* * TTI Initialization. Default Tx timer gets us about * 250 interrupts per sec. Continuous interrupts are enabled * by default. */ if (nic->device_type == XFRAME_II_DEVICE) { int count = (nic->config.bus_speed * 125)/2; val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count); } else val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078); val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) | TTI_DATA1_MEM_TX_URNG_B(0x10) | TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN; if (i == 0) if (use_continuous_tx_intrs && (link == LINK_UP)) val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN; writeq(val64, &bar0->tti_data1_mem); if (nic->config.intr_type == MSI_X) { val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | TTI_DATA2_MEM_TX_UFC_B(0x100) | TTI_DATA2_MEM_TX_UFC_C(0x200) | TTI_DATA2_MEM_TX_UFC_D(0x300); } else { if ((nic->config.tx_steering_type == TX_DEFAULT_STEERING) && (config->tx_fifo_num > 1) && (i >= nic->udp_fifo_idx) && (i < (nic->udp_fifo_idx + nic->total_udp_fifos))) val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) | TTI_DATA2_MEM_TX_UFC_B(0x80) | TTI_DATA2_MEM_TX_UFC_C(0x100) | TTI_DATA2_MEM_TX_UFC_D(0x120); else val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | TTI_DATA2_MEM_TX_UFC_B(0x20) | TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80); } writeq(val64, &bar0->tti_data2_mem); val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD | TTI_CMD_MEM_OFFSET(i); writeq(val64, &bar0->tti_command_mem); if (wait_for_cmd_complete(&bar0->tti_command_mem, TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS) return FAILURE; } return SUCCESS; } /** * init_nic - Initialization of hardware * @nic: device private variable * Description: The function sequentially configures every block * of the H/W from their reset values. * Return Value: SUCCESS on success and * '-1' on failure (endian settings incorrect). */ static int init_nic(struct s2io_nic *nic) { struct XENA_dev_config __iomem *bar0 = nic->bar0; struct net_device *dev = nic->dev; register u64 val64 = 0; void __iomem *add; u32 time; int i, j; int dtx_cnt = 0; unsigned long long mem_share; int mem_size; struct config_param *config = &nic->config; struct mac_info *mac_control = &nic->mac_control; /* to set the swapper controle on the card */ if (s2io_set_swapper(nic)) { DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n"); return -EIO; } /* * Herc requires EOI to be removed from reset before XGXS, so.. */ if (nic->device_type & XFRAME_II_DEVICE) { val64 = 0xA500000000ULL; writeq(val64, &bar0->sw_reset); msleep(500); val64 = readq(&bar0->sw_reset); } /* Remove XGXS from reset state */ val64 = 0; writeq(val64, &bar0->sw_reset); msleep(500); val64 = readq(&bar0->sw_reset); /* Ensure that it's safe to access registers by checking * RIC_RUNNING bit is reset. Check is valid only for XframeII. */ if (nic->device_type == XFRAME_II_DEVICE) { for (i = 0; i < 50; i++) { val64 = readq(&bar0->adapter_status); if (!(val64 & ADAPTER_STATUS_RIC_RUNNING)) break; msleep(10); } if (i == 50) return -ENODEV; } /* Enable Receiving broadcasts */ add = &bar0->mac_cfg; val64 = readq(&bar0->mac_cfg); val64 |= MAC_RMAC_BCAST_ENABLE; writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32)val64, add); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64 >> 32), (add + 4)); /* Read registers in all blocks */ val64 = readq(&bar0->mac_int_mask); val64 = readq(&bar0->mc_int_mask); val64 = readq(&bar0->xgxs_int_mask); /* Set MTU */ val64 = dev->mtu; writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); if (nic->device_type & XFRAME_II_DEVICE) { while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], &bar0->dtx_control, UF); if (dtx_cnt & 0x1) msleep(1); /* Necessary!! */ dtx_cnt++; } } else { while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], &bar0->dtx_control, UF); val64 = readq(&bar0->dtx_control); dtx_cnt++; } } /* Tx DMA Initialization */ val64 = 0; writeq(val64, &bar0->tx_fifo_partition_0); writeq(val64, &bar0->tx_fifo_partition_1); writeq(val64, &bar0->tx_fifo_partition_2); writeq(val64, &bar0->tx_fifo_partition_3); for (i = 0, j = 0; i < config->tx_fifo_num; i++) { struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) | vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3); if (i == (config->tx_fifo_num - 1)) { if (i % 2 == 0) i++; } switch (i) { case 1: writeq(val64, &bar0->tx_fifo_partition_0); val64 = 0; j = 0; break; case 3: writeq(val64, &bar0->tx_fifo_partition_1); val64 = 0; j = 0; break; case 5: writeq(val64, &bar0->tx_fifo_partition_2); val64 = 0; j = 0; break; case 7: writeq(val64, &bar0->tx_fifo_partition_3); val64 = 0; j = 0; break; default: j++; break; } } /* * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. */ if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4)) writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable); val64 = readq(&bar0->tx_fifo_partition_0); DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", &bar0->tx_fifo_partition_0, (unsigned long long)val64); /* * Initialization of Tx_PA_CONFIG register to ignore packet * integrity checking. */ val64 = readq(&bar0->tx_pa_cfg); val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI | TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR; writeq(val64, &bar0->tx_pa_cfg); /* Rx DMA intialization. */ val64 = 0; for (i = 0; i < config->rx_ring_num; i++) { struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3); } writeq(val64, &bar0->rx_queue_priority); /* * Allocating equal share of memory to all the * configured Rings. */ val64 = 0; if (nic->device_type & XFRAME_II_DEVICE) mem_size = 32; else mem_size = 64; for (i = 0; i < config->rx_ring_num; i++) { switch (i) { case 0: mem_share = (mem_size / config->rx_ring_num + mem_size % config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); continue; case 1: mem_share = (mem_size / config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); continue; case 2: mem_share = (mem_size / config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); continue; case 3: mem_share = (mem_size / config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); continue; case 4: mem_share = (mem_size / config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); continue; case 5: mem_share = (mem_size / config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); continue; case 6: mem_share = (mem_size / config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); continue; case 7: mem_share = (mem_size / config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); continue; } } writeq(val64, &bar0->rx_queue_cfg); /* * Filling Tx round robin registers * as per the number of FIFOs for equal scheduling priority */ switch (config->tx_fifo_num) { case 1: val64 = 0x0; writeq(val64, &bar0->tx_w_round_robin_0); writeq(val64, &bar0->tx_w_round_robin_1); writeq(val64, &bar0->tx_w_round_robin_2); writeq(val64, &bar0->tx_w_round_robin_3); writeq(val64, &bar0->tx_w_round_robin_4); break; case 2: val64 = 0x0001000100010001ULL; writeq(val64, &bar0->tx_w_round_robin_0); writeq(val64, &bar0->tx_w_round_robin_1); writeq(val64, &bar0->tx_w_round_robin_2); writeq(val64, &bar0->tx_w_round_robin_3); val64 = 0x0001000100000000ULL; writeq(val64, &bar0->tx_w_round_robin_4); break; case 3: val64 = 0x0001020001020001ULL; writeq(val64, &bar0->tx_w_round_robin_0); val64 = 0x0200010200010200ULL; writeq(val64, &bar0->tx_w_round_robin_1); val64 = 0x0102000102000102ULL; writeq(val64, &bar0->tx_w_round_robin_2); val64 = 0x0001020001020001ULL; writeq(val64, &bar0->tx_w_round_robin_3); val64 = 0x0200010200000000ULL; writeq(val64, &bar0->tx_w_round_robin_4); break; case 4: val64 = 0x0001020300010203ULL; writeq(val64, &bar0->tx_w_round_robin_0); writeq(val64, &bar0->tx_w_round_robin_1); writeq(val64, &bar0->tx_w_round_robin_2); writeq(val64, &bar0->tx_w_round_robin_3); val64 = 0x0001020300000000ULL; writeq(val64, &bar0->tx_w_round_robin_4); break; case 5: val64 = 0x0001020304000102ULL; writeq(val64, &bar0->tx_w_round_robin_0); val64 = 0x0304000102030400ULL; writeq(val64, &bar0->tx_w_round_robin_1); val64 = 0x0102030400010203ULL; writeq(val64, &bar0->tx_w_round_robin_2); val64 = 0x0400010203040001ULL; writeq(val64, &bar0->tx_w_round_robin_3); val64 = 0x0203040000000000ULL; writeq(val64, &bar0->tx_w_round_robin_4); break; case 6: val64 = 0x0001020304050001ULL; writeq(val64, &bar0->tx_w_round_robin_0); val64 = 0x0203040500010203ULL; writeq(val64, &bar0->tx_w_round_robin_1); val64 = 0x0405000102030405ULL; writeq(val64, &bar0->tx_w_round_robin_2); val64 = 0x0001020304050001ULL; writeq(val64, &bar0->tx_w_round_robin_3); val64 = 0x0203040500000000ULL; writeq(val64, &bar0->tx_w_round_robin_4); break; case 7: val64 = 0x0001020304050600ULL; writeq(val64, &bar0->tx_w_round_robin_0); val64 = 0x0102030405060001ULL; writeq(val64, &bar0->tx_w_round_robin_1); val64 = 0x0203040506000102ULL; writeq(val64, &bar0->tx_w_round_robin_2); val64 = 0x0304050600010203ULL; writeq(val64, &bar0->tx_w_round_robin_3); val64 = 0x0405060000000000ULL; writeq(val64, &bar0->tx_w_round_robin_4); break; case 8: val64 = 0x0001020304050607ULL; writeq(val64, &bar0->tx_w_round_robin_0); writeq(val64, &bar0->tx_w_round_robin_1); writeq(val64, &bar0->tx_w_round_robin_2); writeq(val64, &bar0->tx_w_round_robin_3); val64 = 0x0001020300000000ULL; writeq(val64, &bar0->tx_w_round_robin_4); break; } /* Enable all configured Tx FIFO partitions */ val64 = readq(&bar0->tx_fifo_partition_0); val64 |= (TX_FIFO_PARTITION_EN); writeq(val64, &bar0->tx_fifo_partition_0); /* Filling the Rx round robin registers as per the * number of Rings and steering based on QoS with * equal priority. */ switch (config->rx_ring_num) { case 1: val64 = 0x0; writeq(val64, &bar0->rx_w_round_robin_0); writeq(val64, &bar0->rx_w_round_robin_1); writeq(val64, &bar0->rx_w_round_robin_2); writeq(val64, &bar0->rx_w_round_robin_3); writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8080808080808080ULL; writeq(val64, &bar0->rts_qos_steering); break; case 2: val64 = 0x0001000100010001ULL; writeq(val64, &bar0->rx_w_round_robin_0); writeq(val64, &bar0->rx_w_round_robin_1); writeq(val64, &bar0->rx_w_round_robin_2); writeq(val64, &bar0->rx_w_round_robin_3); val64 = 0x0001000100000000ULL; writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8080808040404040ULL; writeq(val64, &bar0->rts_qos_steering); break; case 3: val64 = 0x0001020001020001ULL; writeq(val64, &bar0->rx_w_round_robin_0); val64 = 0x0200010200010200ULL; writeq(val64, &bar0->rx_w_round_robin_1); val64 = 0x0102000102000102ULL; writeq(val64, &bar0->rx_w_round_robin_2); val64 = 0x0001020001020001ULL; writeq(val64, &bar0->rx_w_round_robin_3); val64 = 0x0200010200000000ULL; writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8080804040402020ULL; writeq(val64, &bar0->rts_qos_steering); break; case 4: val64 = 0x0001020300010203ULL; writeq(val64, &bar0->rx_w_round_robin_0); writeq(val64, &bar0->rx_w_round_robin_1); writeq(val64, &bar0->rx_w_round_robin_2); writeq(val64, &bar0->rx_w_round_robin_3); val64 = 0x0001020300000000ULL; writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8080404020201010ULL; writeq(val64, &bar0->rts_qos_steering); break; case 5: val64 = 0x0001020304000102ULL; writeq(val64, &bar0->rx_w_round_robin_0); val64 = 0x0304000102030400ULL; writeq(val64, &bar0->rx_w_round_robin_1); val64 = 0x0102030400010203ULL; writeq(val64, &bar0->rx_w_round_robin_2); val64 = 0x0400010203040001ULL; writeq(val64, &bar0->rx_w_round_robin_3); val64 = 0x0203040000000000ULL; writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8080404020201008ULL; writeq(val64, &bar0->rts_qos_steering); break; case 6: val64 = 0x0001020304050001ULL; writeq(val64, &bar0->rx_w_round_robin_0); val64 = 0x0203040500010203ULL; writeq(val64, &bar0->rx_w_round_robin_1); val64 = 0x0405000102030405ULL; writeq(val64, &bar0->rx_w_round_robin_2); val64 = 0x0001020304050001ULL; writeq(val64, &bar0->rx_w_round_robin_3); val64 = 0x0203040500000000ULL; writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8080404020100804ULL; writeq(val64, &bar0->rts_qos_steering); break; case 7: val64 = 0x0001020304050600ULL; writeq(val64, &bar0->rx_w_round_robin_0); val64 = 0x0102030405060001ULL; writeq(val64, &bar0->rx_w_round_robin_1); val64 = 0x0203040506000102ULL; writeq(val64, &bar0->rx_w_round_robin_2); val64 = 0x0304050600010203ULL; writeq(val64, &bar0->rx_w_round_robin_3); val64 = 0x0405060000000000ULL; writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8080402010080402ULL; writeq(val64, &bar0->rts_qos_steering); break; case 8: val64 = 0x0001020304050607ULL; writeq(val64, &bar0->rx_w_round_robin_0); writeq(val64, &bar0->rx_w_round_robin_1); writeq(val64, &bar0->rx_w_round_robin_2); writeq(val64, &bar0->rx_w_round_robin_3); val64 = 0x0001020300000000ULL; writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8040201008040201ULL; writeq(val64, &bar0->rts_qos_steering); break; } /* UDP Fix */ val64 = 0; for (i = 0; i < 8; i++) writeq(val64, &bar0->rts_frm_len_n[i]); /* Set the default rts frame length for the rings configured */ val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22); for (i = 0 ; i < config->rx_ring_num ; i++) writeq(val64, &bar0->rts_frm_len_n[i]); /* Set the frame length for the configured rings * desired by the user */ for (i = 0; i < config->rx_ring_num; i++) { /* If rts_frm_len[i] == 0 then it is assumed that user not * specified frame length steering. * If the user provides the frame length then program * the rts_frm_len register for those values or else * leave it as it is. */ if (rts_frm_len[i] != 0) { writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]), &bar0->rts_frm_len_n[i]); } } /* Disable differentiated services steering logic */ for (i = 0; i < 64; i++) { if (rts_ds_steer(nic, i, 0) == FAILURE) { DBG_PRINT(ERR_DBG, "%s: rts_ds_steer failed on codepoint %d\n", dev->name, i); return -ENODEV; } } /* Program statistics memory */ writeq(mac_control->stats_mem_phy, &bar0->stat_addr); if (nic->device_type == XFRAME_II_DEVICE) { val64 = STAT_BC(0x320); writeq(val64, &bar0->stat_byte_cnt); } /* * Initializing the sampling rate for the device to calculate the * bandwidth utilization. */ val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | MAC_RX_LINK_UTIL_VAL(rmac_util_period); writeq(val64, &bar0->mac_link_util); /* * Initializing the Transmit and Receive Traffic Interrupt * Scheme. */ /* Initialize TTI */ if (SUCCESS != init_tti(nic, nic->last_link_state)) return -ENODEV; /* RTI Initialization */ if (nic->device_type == XFRAME_II_DEVICE) { /* * Programmed to generate Apprx 500 Intrs per * second */ int count = (nic->config.bus_speed * 125)/4; val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count); } else val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF); val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) | RTI_DATA1_MEM_RX_URNG_B(0x10) | RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN; writeq(val64, &bar0->rti_data1_mem); val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | RTI_DATA2_MEM_RX_UFC_B(0x2) ; if (nic->config.intr_type == MSI_X) val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | RTI_DATA2_MEM_RX_UFC_D(0x40)); else val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | RTI_DATA2_MEM_RX_UFC_D(0x80)); writeq(val64, &bar0->rti_data2_mem); for (i = 0; i < config->rx_ring_num; i++) { val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD | RTI_CMD_MEM_OFFSET(i); writeq(val64, &bar0->rti_command_mem); /* * Once the operation completes, the Strobe bit of the * command register will be reset. We poll for this * particular condition. We wait for a maximum of 500ms * for the operation to complete, if it's not complete * by then we return error. */ time = 0; while (true) { val64 = readq(&bar0->rti_command_mem); if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) break; if (time > 10) { DBG_PRINT(ERR_DBG, "%s: RTI init failed\n", dev->name); return -ENODEV; } time++; msleep(50); } } /* * Initializing proper values as Pause threshold into all * the 8 Queues on Rx side. */ writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); /* Disable RMAC PAD STRIPPING */ add = &bar0->mac_cfg; val64 = readq(&bar0->mac_cfg); val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64), add); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64 >> 32), (add + 4)); val64 = readq(&bar0->mac_cfg); /* Enable FCS stripping by adapter */ add = &bar0->mac_cfg; val64 = readq(&bar0->mac_cfg); val64 |= MAC_CFG_RMAC_STRIP_FCS; if (nic->device_type == XFRAME_II_DEVICE) writeq(val64, &bar0->mac_cfg); else { writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64), add); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64 >> 32), (add + 4)); } /* * Set the time value to be inserted in the pause frame * generated by xena. */ val64 = readq(&bar0->rmac_pause_cfg); val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); writeq(val64, &bar0->rmac_pause_cfg); /* * Set the Threshold Limit for Generating the pause frame * If the amount of data in any Queue exceeds ratio of * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 * pause frame is generated */ val64 = 0; for (i = 0; i < 4; i++) { val64 |= (((u64)0xFF00 | nic->mac_control.mc_pause_threshold_q0q3) << (i * 2 * 8)); } writeq(val64, &bar0->mc_pause_thresh_q0q3); val64 = 0; for (i = 0; i < 4; i++) { val64 |= (((u64)0xFF00 | nic->mac_control.mc_pause_threshold_q4q7) << (i * 2 * 8)); } writeq(val64, &bar0->mc_pause_thresh_q4q7); /* * TxDMA will stop Read request if the number of read split has * exceeded the limit pointed by shared_splits */ val64 = readq(&bar0->pic_control); val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); writeq(val64, &bar0->pic_control); if (nic->config.bus_speed == 266) { writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout); writeq(0x0, &bar0->read_retry_delay); writeq(0x0, &bar0->write_retry_delay); } /* * Programming the Herc to split every write transaction * that does not start on an ADB to reduce disconnects. */ if (nic->device_type == XFRAME_II_DEVICE) { val64 = FAULT_BEHAVIOUR | EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3); writeq(val64, &bar0->misc_control); val64 = readq(&bar0->pic_control2); val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15)); writeq(val64, &bar0->pic_control2); } if (strstr(nic->product_name, "CX4")) { val64 = TMAC_AVG_IPG(0x17); writeq(val64, &bar0->tmac_avg_ipg); } return SUCCESS; } #define LINK_UP_DOWN_INTERRUPT 1 #define MAC_RMAC_ERR_TIMER 2 static int s2io_link_fault_indication(struct s2io_nic *nic) { if (nic->device_type == XFRAME_II_DEVICE) return LINK_UP_DOWN_INTERRUPT; else return MAC_RMAC_ERR_TIMER; } /** * do_s2io_write_bits - update alarm bits in alarm register * @value: alarm bits * @flag: interrupt status * @addr: address value * Description: update alarm bits in alarm register * Return Value: * NONE. */ static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr) { u64 temp64; temp64 = readq(addr); if (flag == ENABLE_INTRS) temp64 &= ~((u64)value); else temp64 |= ((u64)value); writeq(temp64, addr); } static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag) { struct XENA_dev_config __iomem *bar0 = nic->bar0; register u64 gen_int_mask = 0; u64 interruptible; writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask); if (mask & TX_DMA_INTR) { gen_int_mask |= TXDMA_INT_M; do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT | TXDMA_PCC_INT | TXDMA_TTI_INT | TXDMA_LSO_INT | TXDMA_TPA_INT | TXDMA_SM_INT, flag, &bar0->txdma_int_mask); do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | PFC_MISC_0_ERR | PFC_MISC_1_ERR | PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag, &bar0->pfc_err_mask); do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR, flag, &bar0->tda_err_mask); do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR | PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | PCC_N_SERR | PCC_6_COF_OV_ERR | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask); do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR | TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask); do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM | LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, flag, &bar0->lso_err_mask); do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP, flag, &bar0->tpa_err_mask); do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask); } if (mask & TX_MAC_INTR) { gen_int_mask |= TXMAC_INT_M; do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag, &bar0->mac_int_mask); do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR | TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, flag, &bar0->mac_tmac_err_mask); } if (mask & TX_XGXS_INTR) { gen_int_mask |= TXXGXS_INT_M; do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag, &bar0->xgxs_int_mask); do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR | TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, flag, &bar0->xgxs_txgxs_err_mask); } if (mask & RX_DMA_INTR) { gen_int_mask |= RXDMA_INT_M; do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M | RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M, flag, &bar0->rxdma_int_mask); do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR | RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM | RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR | RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask); do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn | PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag, &bar0->prc_pcix_err_mask); do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR | RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag, &bar0->rpa_err_mask); do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR, flag, &bar0->rda_err_mask); do_s2io_write_bits(RTI_SM_ERR_ALARM | RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, flag, &bar0->rti_err_mask); } if (mask & RX_MAC_INTR) { gen_int_mask |= RXMAC_INT_M; do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag, &bar0->mac_int_mask); interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR | RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR | RMAC_DOUBLE_ECC_ERR); if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) interruptible |= RMAC_LINK_STATE_CHANGE_INT; do_s2io_write_bits(interruptible, flag, &bar0->mac_rmac_err_mask); } if (mask & RX_XGXS_INTR) { gen_int_mask |= RXXGXS_INT_M; do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag, &bar0->xgxs_int_mask); do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag, &bar0->xgxs_rxgxs_err_mask); } if (mask & MC_INTR) { gen_int_mask |= MC_INT_M; do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask); do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag, &bar0->mc_err_mask); } nic->general_int_mask = gen_int_mask; /* Remove this line when alarm interrupts are enabled */ nic->general_int_mask = 0; } /** * en_dis_able_nic_intrs - Enable or Disable the interrupts * @nic: device private variable, * @mask: A mask indicating which Intr block must be modified and, * @flag: A flag indicating whether to enable or disable the Intrs. * Description: This function will either disable or enable the interrupts * depending on the flag argument. The mask argument can be used to * enable/disable any Intr block. * Return Value: NONE. */ static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) { struct XENA_dev_config __iomem *bar0 = nic->bar0; register u64 temp64 = 0, intr_mask = 0; intr_mask = nic->general_int_mask; /* Top level interrupt classification */ /* PIC Interrupts */ if (mask & TX_PIC_INTR) { /* Enable PIC Intrs in the general intr mask register */ intr_mask |= TXPIC_INT_M; if (flag == ENABLE_INTRS) { /* * If Hercules adapter enable GPIO otherwise * disable all PCIX, Flash, MDIO, IIC and GPIO * interrupts for now. * TODO */ if (s2io_link_fault_indication(nic) == LINK_UP_DOWN_INTERRUPT) { do_s2io_write_bits(PIC_INT_GPIO, flag, &bar0->pic_int_mask); do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag, &bar0->gpio_int_mask); } else writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); } else if (flag == DISABLE_INTRS) { /* * Disable PIC Intrs in the general * intr mask register */ writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); } } /* Tx traffic interrupts */ if (mask & TX_TRAFFIC_INTR) { intr_mask |= TXTRAFFIC_INT_M; if (flag == ENABLE_INTRS) { /* * Enable all the Tx side interrupts * writing 0 Enables all 64 TX interrupt levels */ writeq(0x0, &bar0->tx_traffic_mask); } else if (flag == DISABLE_INTRS) { /* * Disable Tx Traffic Intrs in the general intr mask * register. */ writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); } } /* Rx traffic interrupts */ if (mask & RX_TRAFFIC_INTR) { intr_mask |= RXTRAFFIC_INT_M; if (flag == ENABLE_INTRS) { /* writing 0 Enables all 8 RX interrupt levels */ writeq(0x0, &bar0->rx_traffic_mask); } else if (flag == DISABLE_INTRS) { /* * Disable Rx Traffic Intrs in the general intr mask * register. */ writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); } } temp64 = readq(&bar0->general_int_mask); if (flag == ENABLE_INTRS) temp64 &= ~((u64)intr_mask); else temp64 = DISABLE_ALL_INTRS; writeq(temp64, &bar0->general_int_mask); nic->general_int_mask = readq(&bar0->general_int_mask); } /** * verify_pcc_quiescent- Checks for PCC quiescent state * Return: 1 If PCC is quiescence * 0 If PCC is not quiescence */ static int verify_pcc_quiescent(struct s2io_nic *sp, int flag) { int ret = 0, herc; struct XENA_dev_config __iomem *bar0 = sp->bar0; u64 val64 = readq(&bar0->adapter_status); herc = (sp->device_type == XFRAME_II_DEVICE); if (flag == false) { if ((!herc && (sp->pdev->revision >= 4)) || herc) { if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE)) ret = 1; } else { if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) ret = 1; } } else { if ((!herc && (sp->pdev->revision >= 4)) || herc) { if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == ADAPTER_STATUS_RMAC_PCC_IDLE)) ret = 1; } else { if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) == ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) ret = 1; } } return ret; } /** * verify_xena_quiescence - Checks whether the H/W is ready * Description: Returns whether the H/W is ready to go or not. Depending * on whether adapter enable bit was written or not the comparison * differs and the calling function passes the input argument flag to * indicate this. * Return: 1 If xena is quiescence * 0 If Xena is not quiescence */ static int verify_xena_quiescence(struct s2io_nic *sp) { int mode; struct XENA_dev_config __iomem *bar0 = sp->bar0; u64 val64 = readq(&bar0->adapter_status); mode = s2io_verify_pci_mode(sp); if (!(val64 & ADAPTER_STATUS_TDMA_READY)) { DBG_PRINT(ERR_DBG, "TDMA is not ready!\n"); return 0; } if (!(val64 & ADAPTER_STATUS_RDMA_READY)) { DBG_PRINT(ERR_DBG, "RDMA is not ready!\n"); return 0; } if (!(val64 & ADAPTER_STATUS_PFC_READY)) { DBG_PRINT(ERR_DBG, "PFC is not ready!\n"); return 0; } if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) { DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n"); return 0; } if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) { DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n"); return 0; } if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) { DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n"); return 0; } if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) { DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n"); return 0; } if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) { DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n"); return 0; } /* * In PCI 33 mode, the P_PLL is not used, and therefore, * the the P_PLL_LOCK bit in the adapter_status register will * not be asserted. */ if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) && sp->device_type == XFRAME_II_DEVICE && mode != PCI_MODE_PCI_33) { DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n"); return 0; } if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == ADAPTER_STATUS_RC_PRC_QUIESCENT)) { DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n"); return 0; } return 1; } /** * fix_mac_address - Fix for Mac addr problem on Alpha platforms * @sp: Pointer to device specifc structure * Description : * New procedure to clear mac address reading problems on Alpha platforms * */ static void fix_mac_address(struct s2io_nic *sp) { struct XENA_dev_config __iomem *bar0 = sp->bar0; int i = 0; while (fix_mac[i] != END_SIGN) { writeq(fix_mac[i++], &bar0->gpio_control); udelay(10); (void) readq(&bar0->gpio_control); } } /** * start_nic - Turns the device on * @nic : device private variable. * Description: * This function actually turns the device on. Before this function is * called,all Registers are configured from their reset states * and shared memory is allocated but the NIC is still quiescent. On * calling this function, the device interrupts are cleared and the NIC is * literally switched on by writing into the adapter control register. * Return Value: * SUCCESS on success and -1 on failure. */ static int start_nic(struct s2io_nic *nic) { struct XENA_dev_config __iomem *bar0 = nic->bar0; struct net_device *dev = nic->dev; register u64 val64 = 0; u16 subid, i; struct config_param *config = &nic->config; struct mac_info *mac_control = &nic->mac_control; /* PRC Initialization and configuration */ for (i = 0; i < config->rx_ring_num; i++) { struct ring_info *ring = &mac_control->rings[i]; writeq((u64)ring->rx_blocks[0].block_dma_addr, &bar0->prc_rxd0_n[i]); val64 = readq(&bar0->prc_ctrl_n[i]); if (nic->rxd_mode == RXD_MODE_1) val64 |= PRC_CTRL_RC_ENABLED; else val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; if (nic->device_type == XFRAME_II_DEVICE) val64 |= PRC_CTRL_GROUP_READS; val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF); val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000); writeq(val64, &bar0->prc_ctrl_n[i]); } if (nic->rxd_mode == RXD_MODE_3B) { /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ val64 = readq(&bar0->rx_pa_cfg); val64 |= RX_PA_CFG_IGNORE_L2_ERR; writeq(val64, &bar0->rx_pa_cfg); } if (vlan_tag_strip == 0) { val64 = readq(&bar0->rx_pa_cfg); val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; writeq(val64, &bar0->rx_pa_cfg); nic->vlan_strip_flag = 0; } /* * Enabling MC-RLDRAM. After enabling the device, we timeout * for around 100ms, which is approximately the time required * for the device to be ready for operation. */ val64 = readq(&bar0->mc_rldram_mrs); val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); val64 = readq(&bar0->mc_rldram_mrs); msleep(100); /* Delay by around 100 ms. */ /* Enabling ECC Protection. */ val64 = readq(&bar0->adapter_control); val64 &= ~ADAPTER_ECC_EN; writeq(val64, &bar0->adapter_control); /* * Verify if the device is ready to be enabled, if so enable * it. */ val64 = readq(&bar0->adapter_status); if (!verify_xena_quiescence(nic)) { DBG_PRINT(ERR_DBG, "%s: device is not ready, " "Adapter status reads: 0x%llx\n", dev->name, (unsigned long long)val64); return FAILURE; } /* * With some switches, link might be already up at this point. * Because of this weird behavior, when we enable laser, * we may not get link. We need to handle this. We cannot * figure out which switch is misbehaving. So we are forced to * make a global change. */ /* Enabling Laser. */ val64 = readq(&bar0->adapter_control); val64 |= ADAPTER_EOI_TX_ON; writeq(val64, &bar0->adapter_control); if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { /* * Dont see link state interrupts initially on some switches, * so directly scheduling the link state task here. */ schedule_work(&nic->set_link_task); } /* SXE-002: Initialize link and activity LED */ subid = nic->pdev->subsystem_device; if (((subid & 0xFF) >= 0x07) && (nic->device_type == XFRAME_I_DEVICE)) { val64 = readq(&bar0->gpio_control); val64 |= 0x0000800000000000ULL; writeq(val64, &bar0->gpio_control); val64 = 0x0411040400000000ULL; writeq(val64, (void __iomem *)bar0 + 0x2700); } return SUCCESS; } /** * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb */ static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct TxD *txdlp, int get_off) { struct s2io_nic *nic = fifo_data->nic; struct sk_buff *skb; struct TxD *txds; u16 j, frg_cnt; txds = txdlp; if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) { pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, sizeof(u64), PCI_DMA_TODEVICE); txds++; } skb = (struct sk_buff *)((unsigned long)txds->Host_Control); if (!skb) { memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); return NULL; } pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, skb_headlen(skb), PCI_DMA_TODEVICE); frg_cnt = skb_shinfo(skb)->nr_frags; if (frg_cnt) { txds++; for (j = 0; j < frg_cnt; j++, txds++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; if (!txds->Buffer_Pointer) break; pci_unmap_page(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, skb_frag_size(frag), PCI_DMA_TODEVICE); } } memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); return skb; } /** * free_tx_buffers - Free all queued Tx buffers * @nic : device private variable. * Description: * Free all queued Tx buffers. * Return Value: void */ static void free_tx_buffers(struct s2io_nic *nic) { struct net_device *dev = nic->dev; struct sk_buff *skb; struct TxD *txdp; int i, j; int cnt = 0; struct config_param *config = &nic->config; struct mac_info *mac_control = &nic->mac_control; struct stat_block *stats = mac_control->stats_info; struct swStat *swstats = &stats->sw_stat; for (i = 0; i < config->tx_fifo_num; i++) { struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; struct fifo_info *fifo = &mac_control->fifos[i]; unsigned long flags; spin_lock_irqsave(&fifo->tx_lock, flags); for (j = 0; j < tx_cfg->fifo_len; j++) { txdp = fifo->list_info[j].list_virt_addr; skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j); if (skb) { swstats->mem_freed += skb->truesize; dev_kfree_skb(skb); cnt++; } } DBG_PRINT(INTR_DBG, "%s: forcibly freeing %d skbs on FIFO%d\n", dev->name, cnt, i); fifo->tx_curr_get_info.offset = 0; fifo->tx_curr_put_info.offset = 0; spin_unlock_irqrestore(&fifo->tx_lock, flags); } } /** * stop_nic - To stop the nic * @nic ; device private variable. * Description: * This function does exactly the opposite of what the start_nic() * function does. This function is called to stop the device. * Return Value: * void. */ static void stop_nic(struct s2io_nic *nic) { struct XENA_dev_config __iomem *bar0 = nic->bar0; register u64 val64 = 0; u16 interruptible; /* Disable all interrupts */ en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS); interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; interruptible |= TX_PIC_INTR; en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */ val64 = readq(&bar0->adapter_control); val64 &= ~(ADAPTER_CNTL_EN); writeq(val64, &bar0->adapter_control); } /** * fill_rx_buffers - Allocates the Rx side skbs * @ring_info: per ring structure * @from_card_up: If this is true, we will map the buffer to get * the dma address for buf0 and buf1 to give it to the card. * Else we will sync the already mapped buffer to give it to the card. * Description: * The function allocates Rx side skbs and puts the physical * address of these buffers into the RxD buffer pointers, so that the NIC * can DMA the received frame into these locations. * The NIC supports 3 receive modes, viz * 1. single buffer, * 2. three buffer and * 3. Five buffer modes. * Each mode defines how many fragments the received frame will be split * up into by the NIC. The frame is split into L3 header, L4 Header, * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself * is split into 3 fragments. As of now only single buffer mode is * supported. * Return Value: * SUCCESS on success or an appropriate -ve value on failure. */ static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring, int from_card_up) { struct sk_buff *skb; struct RxD_t *rxdp; int off, size, block_no, block_no1; u32 alloc_tab = 0; u32 alloc_cnt; u64 tmp; struct buffAdd *ba; struct RxD_t *first_rxdp = NULL; u64 Buffer0_ptr = 0, Buffer1_ptr = 0; int rxd_index = 0; struct RxD1 *rxdp1; struct RxD3 *rxdp3; struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat; alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left; block_no1 = ring->rx_curr_get_info.block_index; while (alloc_tab < alloc_cnt) { block_no = ring->rx_curr_put_info.block_index; off = ring->rx_curr_put_info.offset; rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr; rxd_index = off + 1; if (block_no) rxd_index += (block_no * ring->rxd_count); if ((block_no == block_no1) && (off == ring->rx_curr_get_info.offset) && (rxdp->Host_Control)) { DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n", ring->dev->name); goto end; } if (off && (off == ring->rxd_count)) { ring->rx_curr_put_info.block_index++; if (ring->rx_curr_put_info.block_index == ring->block_count) ring->rx_curr_put_info.block_index = 0; block_no = ring->rx_curr_put_info.block_index; off = 0; ring->rx_curr_put_info.offset = off; rxdp = ring->rx_blocks[block_no].block_virt_addr; DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", ring->dev->name, rxdp); } if ((rxdp->Control_1 & RXD_OWN_XENA) && ((ring->rxd_mode == RXD_MODE_3B) && (rxdp->Control_2 & s2BIT(0)))) { ring->rx_curr_put_info.offset = off; goto end; } /* calculate size of skb based on ring mode */ size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE + HEADER_802_2_SIZE + HEADER_SNAP_SIZE; if (ring->rxd_mode == RXD_MODE_1) size += NET_IP_ALIGN; else size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4; /* allocate skb */ skb = netdev_alloc_skb(nic->dev, size); if (!skb) { DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n", ring->dev->name); if (first_rxdp) { wmb(); first_rxdp->Control_1 |= RXD_OWN_XENA; } swstats->mem_alloc_fail_cnt++; return -ENOMEM ; } swstats->mem_allocated += skb->truesize; if (ring->rxd_mode == RXD_MODE_1) { /* 1 buffer mode - normal operation mode */ rxdp1 = (struct RxD1 *)rxdp; memset(rxdp, 0, sizeof(struct RxD1)); skb_reserve(skb, NET_IP_ALIGN); rxdp1->Buffer0_ptr = pci_map_single(ring->pdev, skb->data, size - NET_IP_ALIGN, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(nic->pdev, rxdp1->Buffer0_ptr)) goto pci_map_failed; rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); rxdp->Host_Control = (unsigned long)skb; } else if (ring->rxd_mode == RXD_MODE_3B) { /* * 2 buffer mode - * 2 buffer mode provides 128 * byte aligned receive buffers. */ rxdp3 = (struct RxD3 *)rxdp; /* save buffer pointers to avoid frequent dma mapping */ Buffer0_ptr = rxdp3->Buffer0_ptr; Buffer1_ptr = rxdp3->Buffer1_ptr; memset(rxdp, 0, sizeof(struct RxD3)); /* restore the buffer pointers for dma sync*/ rxdp3->Buffer0_ptr = Buffer0_ptr; rxdp3->Buffer1_ptr = Buffer1_ptr; ba = &ring->ba[block_no][off]; skb_reserve(skb, BUF0_LEN); tmp = (u64)(unsigned long)skb->data; tmp += ALIGN_SIZE; tmp &= ~ALIGN_SIZE; skb->data = (void *) (unsigned long)tmp; skb_reset_tail_pointer(skb); if (from_card_up) { rxdp3->Buffer0_ptr = pci_map_single(ring->pdev, ba->ba_0, BUF0_LEN, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(nic->pdev, rxdp3->Buffer0_ptr)) goto pci_map_failed; } else pci_dma_sync_single_for_device(ring->pdev, (dma_addr_t)rxdp3->Buffer0_ptr, BUF0_LEN, PCI_DMA_FROMDEVICE); rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); if (ring->rxd_mode == RXD_MODE_3B) { /* Two buffer mode */ /* * Buffer2 will have L3/L4 header plus * L4 payload */ rxdp3->Buffer2_ptr = pci_map_single(ring->pdev, skb->data, ring->mtu + 4, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(nic->pdev, rxdp3->Buffer2_ptr)) goto pci_map_failed; if (from_card_up) { rxdp3->Buffer1_ptr = pci_map_single(ring->pdev, ba->ba_1, BUF1_LEN, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(nic->pdev, rxdp3->Buffer1_ptr)) { pci_unmap_single(ring->pdev, (dma_addr_t)(unsigned long) skb->data, ring->mtu + 4, PCI_DMA_FROMDEVICE); goto pci_map_failed; } } rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); rxdp->Control_2 |= SET_BUFFER2_SIZE_3 (ring->mtu + 4); } rxdp->Control_2 |= s2BIT(0); rxdp->Host_Control = (unsigned long) (skb); } if (alloc_tab & ((1 << rxsync_frequency) - 1)) rxdp->Control_1 |= RXD_OWN_XENA; off++; if (off == (ring->rxd_count + 1)) off = 0; ring->rx_curr_put_info.offset = off; rxdp->Control_2 |= SET_RXD_MARKER; if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) { if (first_rxdp) { wmb(); first_rxdp->Control_1 |= RXD_OWN_XENA; } first_rxdp = rxdp; } ring->rx_bufs_left += 1; alloc_tab++; } end: /* Transfer ownership of first descriptor to adapter just before * exiting. Before that, use memory barrier so that ownership * and other fields are seen by adapter correctly. */ if (first_rxdp) { wmb(); first_rxdp->Control_1 |= RXD_OWN_XENA; } return SUCCESS; pci_map_failed: swstats->pci_map_fail_cnt++; swstats->mem_freed += skb->truesize; dev_kfree_skb_irq(skb); return -ENOMEM; } static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk) { struct net_device *dev = sp->dev; int j; struct sk_buff *skb; struct RxD_t *rxdp; struct RxD1 *rxdp1; struct RxD3 *rxdp3; struct mac_info *mac_control = &sp->mac_control; struct stat_block *stats = mac_control->stats_info; struct swStat *swstats = &stats->sw_stat; for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) { rxdp = mac_control->rings[ring_no]. rx_blocks[blk].rxds[j].virt_addr; skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); if (!skb) continue; if (sp->rxd_mode == RXD_MODE_1) { rxdp1 = (struct RxD1 *)rxdp; pci_unmap_single(sp->pdev, (dma_addr_t)rxdp1->Buffer0_ptr, dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + HEADER_802_2_SIZE + HEADER_SNAP_SIZE, PCI_DMA_FROMDEVICE); memset(rxdp, 0, sizeof(struct RxD1)); } else if (sp->rxd_mode == RXD_MODE_3B) { rxdp3 = (struct RxD3 *)rxdp; pci_unmap_single(sp->pdev, (dma_addr_t)rxdp3->Buffer0_ptr, BUF0_LEN, PCI_DMA_FROMDEVICE); pci_unmap_single(sp->pdev, (dma_addr_t)rxdp3->Buffer1_ptr, BUF1_LEN, PCI_DMA_FROMDEVICE); pci_unmap_single(sp->pdev, (dma_addr_t)rxdp3->Buffer2_ptr, dev->mtu + 4, PCI_DMA_FROMDEVICE); memset(rxdp, 0, sizeof(struct RxD3)); } swstats->mem_freed += skb->truesize; dev_kfree_skb(skb); mac_control->rings[ring_no].rx_bufs_left -= 1; } } /** * free_rx_buffers - Frees all Rx buffers * @sp: device private variable. * Description: * This function will free all Rx buffers allocated by host. * Return Value: * NONE. */ static void free_rx_buffers(struct s2io_nic *sp) { struct net_device *dev = sp->dev; int i, blk = 0, buf_cnt = 0; struct config_param *config = &sp->config; struct mac_info *mac_control = &sp->mac_control; for (i = 0; i < config->rx_ring_num; i++) { struct ring_info *ring = &mac_control->rings[i]; for (blk = 0; blk < rx_ring_sz[i]; blk++) free_rxd_blk(sp, i, blk); ring->rx_curr_put_info.block_index = 0; ring->rx_curr_get_info.block_index = 0; ring->rx_curr_put_info.offset = 0; ring->rx_curr_get_info.offset = 0; ring->rx_bufs_left = 0; DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n", dev->name, buf_cnt, i); } } static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring) { if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n", ring->dev->name); } return 0; } /** * s2io_poll - Rx interrupt handler for NAPI support * @napi : pointer to the napi structure. * @budget : The number of packets that were budgeted to be processed * during one pass through the 'Poll" function. * Description: * Comes into picture only if NAPI support has been incorporated. It does * the same thing that rx_intr_handler does, but not in a interrupt context * also It will process only a given number of packets. * Return value: * 0 on success and 1 if there are No Rx packets to be processed. */ static int s2io_poll_msix(struct napi_struct *napi, int budget) { struct ring_info *ring = container_of(napi, struct ring_info, napi); struct net_device *dev = ring->dev; int pkts_processed = 0; u8 __iomem *addr = NULL; u8 val8 = 0; struct s2io_nic *nic = netdev_priv(dev); struct XENA_dev_config __iomem *bar0 = nic->bar0; int budget_org = budget; if (unlikely(!is_s2io_card_up(nic))) return 0; pkts_processed = rx_intr_handler(ring, budget); s2io_chk_rx_buffers(nic, ring); if (pkts_processed < budget_org) { napi_complete(napi); /*Re Enable MSI-Rx Vector*/ addr = (u8 __iomem *)&bar0->xmsi_mask_reg; addr += 7 - ring->ring_no; val8 = (ring->ring_no == 0) ? 0x3f : 0xbf; writeb(val8, addr); val8 = readb(addr); } return pkts_processed; } static int s2io_poll_inta(struct napi_struct *napi, int budget) { struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi); int pkts_processed = 0; int ring_pkts_processed, i; struct XENA_dev_config __iomem *bar0 = nic->bar0; int budget_org = budget; struct config_param *config = &nic->config; struct mac_info *mac_control = &nic->mac_control; if (unlikely(!is_s2io_card_up(nic))) return 0; for (i = 0; i < config->rx_ring_num; i++) { struct ring_info *ring = &mac_control->rings[i]; ring_pkts_processed = rx_intr_handler(ring, budget); s2io_chk_rx_buffers(nic, ring); pkts_processed += ring_pkts_processed; budget -= ring_pkts_processed; if (budget <= 0) break; } if (pkts_processed < budget_org) { napi_complete(napi); /* Re enable the Rx interrupts for the ring */ writeq(0, &bar0->rx_traffic_mask); readl(&bar0->rx_traffic_mask); } return pkts_processed; } #ifdef CONFIG_NET_POLL_CONTROLLER /** * s2io_netpoll - netpoll event handler entry point * @dev : pointer to the device structure. * Description: * This function will be called by upper layer to check for events on the * interface in situations where interrupts are disabled. It is used for * specific in-kernel networking tasks, such as remote consoles and kernel * debugging over the network (example netdump in RedHat). */ static void s2io_netpoll(struct net_device *dev) { struct s2io_nic *nic = netdev_priv(dev); const int irq = nic->pdev->irq; struct XENA_dev_config __iomem *bar0 = nic->bar0; u64 val64 = 0xFFFFFFFFFFFFFFFFULL; int i; struct config_param *config = &nic->config; struct mac_info *mac_control = &nic->mac_control; if (pci_channel_offline(nic->pdev)) return; disable_irq(irq); writeq(val64, &bar0->rx_traffic_int); writeq(val64, &bar0->tx_traffic_int); /* we need to free up the transmitted skbufs or else netpoll will * run out of skbs and will fail and eventually netpoll application such * as netdump will fail. */ for (i = 0; i < config->tx_fifo_num; i++) tx_intr_handler(&mac_control->fifos[i]); /* check for received packet and indicate up to network */ for (i = 0; i < config->rx_ring_num; i++) { struct ring_info *ring = &mac_control->rings[i]; rx_intr_handler(ring, 0); } for (i = 0; i < config->rx_ring_num; i++) { struct ring_info *ring = &mac_control->rings[i]; if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Netpoll!!\n", dev->name); break; } } enable_irq(irq); } #endif /** * rx_intr_handler - Rx interrupt handler * @ring_info: per ring structure. * @budget: budget for napi processing. * Description: * If the interrupt is because of a received frame or if the * receive ring contains fresh as yet un-processed frames,this function is * called. It picks out the RxD at which place the last Rx processing had * stopped and sends the skb to the OSM's Rx handler and then increments * the offset. * Return Value: * No. of napi packets processed. */ static int rx_intr_handler(struct ring_info *ring_data, int budget) { int get_block, put_block; struct rx_curr_get_info get_info, put_info; struct RxD_t *rxdp; struct sk_buff *skb; int pkt_cnt = 0, napi_pkts = 0; int i; struct RxD1 *rxdp1; struct RxD3 *rxdp3; get_info = ring_data->rx_curr_get_info; get_block = get_info.block_index; memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info)); put_block = put_info.block_index; rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr; while (RXD_IS_UP2DT(rxdp)) { /* * If your are next to put index then it's * FIFO full condition */ if ((get_block == put_block) && (get_info.offset + 1) == put_info.offset) { DBG_PRINT(INTR_DBG, "%s: Ring Full\n", ring_data->dev->name); break; } skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); if (skb == NULL) { DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n", ring_data->dev->name); return 0; } if (ring_data->rxd_mode == RXD_MODE_1) { rxdp1 = (struct RxD1 *)rxdp; pci_unmap_single(ring_data->pdev, (dma_addr_t) rxdp1->Buffer0_ptr, ring_data->mtu + HEADER_ETHERNET_II_802_3_SIZE + HEADER_802_2_SIZE + HEADER_SNAP_SIZE, PCI_DMA_FROMDEVICE); } else if (ring_data->rxd_mode == RXD_MODE_3B) { rxdp3 = (struct RxD3 *)rxdp; pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)rxdp3->Buffer0_ptr, BUF0_LEN, PCI_DMA_FROMDEVICE); pci_unmap_single(ring_data->pdev, (dma_addr_t)rxdp3->Buffer2_ptr, ring_data->mtu + 4, PCI_DMA_FROMDEVICE); } prefetch(skb->data); rx_osm_handler(ring_data, rxdp); get_info.offset++; ring_data->rx_curr_get_info.offset = get_info.offset; rxdp = ring_data->rx_blocks[get_block]. rxds[get_info.offset].virt_addr; if (get_info.offset == rxd_count[ring_data->rxd_mode]) { get_info.offset = 0; ring_data->rx_curr_get_info.offset = get_info.offset; get_block++; if (get_block == ring_data->block_count) get_block = 0; ring_data->rx_curr_get_info.block_index = get_block; rxdp = ring_data->rx_blocks[get_block].block_virt_addr; } if (ring_data->nic->config.napi) { budget--; napi_pkts++; if (!budget) break; } pkt_cnt++; if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) break; } if (ring_data->lro) { /* Clear all LRO sessions before exiting */ for (i = 0; i < MAX_LRO_SESSIONS; i++) { struct lro *lro = &ring_data->lro0_n[i]; if (lro->in_use) { update_L3L4_header(ring_data->nic, lro); queue_rx_frame(lro->parent, lro->vlan_tag); clear_lro_session(lro); } } } return napi_pkts; } /** * tx_intr_handler - Transmit interrupt handler * @nic : device private variable * Description: * If an interrupt was raised to indicate DMA complete of the * Tx packet, this function is called. It identifies the last TxD * whose buffer was freed and frees all skbs whose data have already * DMA'ed into the NICs internal memory. * Return Value: * NONE */ static void tx_intr_handler(struct fifo_info *fifo_data) { struct s2io_nic *nic = fifo_data->nic; struct tx_curr_get_info get_info, put_info; struct sk_buff *skb = NULL; struct TxD *txdlp; int pkt_cnt = 0; unsigned long flags = 0; u8 err_mask; struct stat_block *stats = nic->mac_control.stats_info; struct swStat *swstats = &stats->sw_stat; if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags)) return; get_info = fifo_data->tx_curr_get_info; memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info)); txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && (get_info.offset != put_info.offset) && (txdlp->Host_Control)) { /* Check for TxD errors */ if (txdlp->Control_1 & TXD_T_CODE) { unsigned long long err; err = txdlp->Control_1 & TXD_T_CODE; if (err & 0x1) { swstats->parity_err_cnt++; } /* update t_code statistics */ err_mask = err >> 48; switch (err_mask) { case 2: swstats->tx_buf_abort_cnt++; break; case 3: swstats->tx_desc_abort_cnt++; break; case 7: swstats->tx_parity_err_cnt++; break; case 10: swstats->tx_link_loss_cnt++; break; case 15: swstats->tx_list_proc_err_cnt++; break; } } skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset); if (skb == NULL) { spin_unlock_irqrestore(&fifo_data->tx_lock, flags); DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n", __func__); return; } pkt_cnt++; /* Updating the statistics block */ swstats->mem_freed += skb->truesize; dev_kfree_skb_irq(skb); get_info.offset++; if (get_info.offset == get_info.fifo_len + 1) get_info.offset = 0; txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; fifo_data->tx_curr_get_info.offset = get_info.offset; } s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq); spin_unlock_irqrestore(&fifo_data->tx_lock, flags); } /** * s2io_mdio_write - Function to write in to MDIO registers * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) * @addr : address value * @value : data value * @dev : pointer to net_device structure * Description: * This function is used to write values to the MDIO registers * NONE */ static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev) { u64 val64; struct s2io_nic *sp = netdev_priv(dev); struct XENA_dev_config __iomem *bar0 = sp->bar0; /* address transaction */ val64 = MDIO_MMD_INDX_ADDR(addr) | MDIO_MMD_DEV_ADDR(mmd_type) | MDIO_MMS_PRT_ADDR(0x0); writeq(val64, &bar0->mdio_control); val64 = val64 | MDIO_CTRL_START_TRANS(0xE); writeq(val64, &bar0->mdio_control); udelay(100); /* Data transaction */ val64 = MDIO_MMD_INDX_ADDR(addr) | MDIO_MMD_DEV_ADDR(mmd_type) | MDIO_MMS_PRT_ADDR(0x0) | MDIO_MDIO_DATA(value) | MDIO_OP(MDIO_OP_WRITE_TRANS); writeq(val64, &bar0->mdio_control); val64 = val64 | MDIO_CTRL_START_TRANS(0xE); writeq(val64, &bar0->mdio_control); udelay(100); val64 = MDIO_MMD_INDX_ADDR(addr) | MDIO_MMD_DEV_ADDR(mmd_type) | MDIO_MMS_PRT_ADDR(0x0) | MDIO_OP(MDIO_OP_READ_TRANS); writeq(val64, &bar0->mdio_control); val64 = val64 | MDIO_CTRL_START_TRANS(0xE); writeq(val64, &bar0->mdio_control); udelay(100); } /** * s2io_mdio_read - Function to write in to MDIO registers * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) * @addr : address value * @dev : pointer to net_device structure * Description: * This function is used to read values to the MDIO registers * NONE */ static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev) { u64 val64 = 0x0; u64 rval64 = 0x0; struct s2io_nic *sp = netdev_priv(dev); struct XENA_dev_config __iomem *bar0 = sp->bar0; /* address transaction */ val64 = val64 | (MDIO_MMD_INDX_ADDR(addr) | MDIO_MMD_DEV_ADDR(mmd_type) | MDIO_MMS_PRT_ADDR(0x0)); writeq(val64, &bar0->mdio_control); val64 = val64 | MDIO_CTRL_START_TRANS(0xE); writeq(val64, &bar0->mdio_control); udelay(100); /* Data transaction */ val64 = MDIO_MMD_INDX_ADDR(addr) | MDIO_MMD_DEV_ADDR(mmd_type) | MDIO_MMS_PRT_ADDR(0x0) | MDIO_OP(MDIO_OP_READ_TRANS); writeq(val64, &bar0->mdio_control); val64 = val64 | MDIO_CTRL_START_TRANS(0xE); writeq(val64, &bar0->mdio_control); udelay(100); /* Read the value from regs */ rval64 = readq(&bar0->mdio_control); rval64 = rval64 & 0xFFFF0000; rval64 = rval64 >> 16; return rval64; } /** * s2io_chk_xpak_counter - Function to check the status of the xpak counters * @counter : counter value to be updated * @flag : flag to indicate the status * @type : counter type * Description: * This function is to check the status of the xpak counters value * NONE */ static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type) { u64 mask = 0x3; u64 val64; int i; for (i = 0; i < index; i++) mask = mask << 0x2; if (flag > 0) { *counter = *counter + 1; val64 = *regs_stat & mask; val64 = val64 >> (index * 0x2); val64 = val64 + 1; if (val64 == 3) { switch (type) { case 1: DBG_PRINT(ERR_DBG, "Take Xframe NIC out of service.\n"); DBG_PRINT(ERR_DBG, "Excessive temperatures may result in premature transceiver failure.\n"); break; case 2: DBG_PRINT(ERR_DBG, "Take Xframe NIC out of service.\n"); DBG_PRINT(ERR_DBG, "Excessive bias currents may indicate imminent laser diode failure.\n"); break; case 3: DBG_PRINT(ERR_DBG, "Take Xframe NIC out of service.\n"); DBG_PRINT(ERR_DBG, "Excessive laser output power may saturate far-end receiver.\n"); break; default: DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm type\n"); } val64 = 0x0; } val64 = val64 << (index * 0x2); *regs_stat = (*regs_stat & (~mask)) | (val64); } else { *regs_stat = *regs_stat & (~mask); } } /** * s2io_updt_xpak_counter - Function to update the xpak counters * @dev : pointer to net_device struct * Description: * This function is to upate the status of the xpak counters value * NONE */ static void s2io_updt_xpak_counter(struct net_device *dev) { u16 flag = 0x0; u16 type = 0x0; u16 val16 = 0x0; u64 val64 = 0x0; u64 addr = 0x0; struct s2io_nic *sp = netdev_priv(dev); struct stat_block *stats = sp->mac_control.stats_info; struct xpakStat *xstats = &stats->xpak_stat; /* Check the communication with the MDIO slave */ addr = MDIO_CTRL1; val64 = 0x0; val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); if ((val64 == 0xFFFF) || (val64 == 0x0000)) { DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - Returned %llx\n", (unsigned long long)val64); return; } /* Check for the expected value of control reg 1 */ if (val64 != MDIO_CTRL1_SPEED10G) { DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - " "Returned: %llx- Expected: 0x%x\n", (unsigned long long)val64, MDIO_CTRL1_SPEED10G); return; } /* Loading the DOM register to MDIO register */ addr = 0xA100; s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev); val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); /* Reading the Alarm flags */ addr = 0xA070; val64 = 0x0; val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); flag = CHECKBIT(val64, 0x7); type = 1; s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high, &xstats->xpak_regs_stat, 0x0, flag, type); if (CHECKBIT(val64, 0x6)) xstats->alarm_transceiver_temp_low++; flag = CHECKBIT(val64, 0x3); type = 2; s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high, &xstats->xpak_regs_stat, 0x2, flag, type); if (CHECKBIT(val64, 0x2)) xstats->alarm_laser_bias_current_low++; flag = CHECKBIT(val64, 0x1); type = 3; s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high, &xstats->xpak_regs_stat, 0x4, flag, type); if (CHECKBIT(val64, 0x0)) xstats->alarm_laser_output_power_low++; /* Reading the Warning flags */ addr = 0xA074; val64 = 0x0; val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); if (CHECKBIT(val64, 0x7)) xstats->warn_transceiver_temp_high++; if (CHECKBIT(val64, 0x6)) xstats->warn_transceiver_temp_low++; if (CHECKBIT(val64, 0x3)) xstats->warn_laser_bias_current_high++; if (CHECKBIT(val64, 0x2)) xstats->warn_laser_bias_current_low++; if (CHECKBIT(val64, 0x1)) xstats->warn_laser_output_power_high++; if (CHECKBIT(val64, 0x0)) xstats->warn_laser_output_power_low++; } /** * wait_for_cmd_complete - waits for a command to complete. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * Description: Function that waits for a command to Write into RMAC * ADDR DATA registers to be completed and returns either success or * error depending on whether the command was complete or not. * Return value: * SUCCESS on success and FAILURE on failure. */ static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit, int bit_state) { int ret = FAILURE, cnt = 0, delay = 1; u64 val64; if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET)) return FAILURE; do { val64 = readq(addr); if (bit_state == S2IO_BIT_RESET) { if (!(val64 & busy_bit)) { ret = SUCCESS; break; } } else { if (val64 & busy_bit) { ret = SUCCESS; break; } } if (in_interrupt()) mdelay(delay); else msleep(delay); if (++cnt >= 10) delay = 50; } while (cnt < 20); return ret; } /** * check_pci_device_id - Checks if the device id is supported * @id : device id * Description: Function to check if the pci device id is supported by driver. * Return value: Actual device id if supported else PCI_ANY_ID */ static u16 check_pci_device_id(u16 id) { switch (id) { case PCI_DEVICE_ID_HERC_WIN: case PCI_DEVICE_ID_HERC_UNI: return XFRAME_II_DEVICE; case PCI_DEVICE_ID_S2IO_UNI: case PCI_DEVICE_ID_S2IO_WIN: return XFRAME_I_DEVICE; default: return PCI_ANY_ID; } } /** * s2io_reset - Resets the card. * @sp : private member of the device structure. * Description: Function to Reset the card. This function then also * restores the previously saved PCI configuration space registers as * the card reset also resets the configuration space. * Return value: * void. */ static void s2io_reset(struct s2io_nic *sp) { struct XENA_dev_config __iomem *bar0 = sp->bar0; u64 val64; u16 subid, pci_cmd; int i; u16 val16; unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt; unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt; struct stat_block *stats; struct swStat *swstats; DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n", __func__, pci_name(sp->pdev)); /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */ pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd)); val64 = SW_RESET_ALL; writeq(val64, &bar0->sw_reset); if (strstr(sp->product_name, "CX4")) msleep(750); msleep(250); for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) { /* Restore the PCI state saved during initialization. */ pci_restore_state(sp->pdev); pci_save_state(sp->pdev); pci_read_config_word(sp->pdev, 0x2, &val16); if (check_pci_device_id(val16) != (u16)PCI_ANY_ID) break; msleep(200); } if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__); pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd); s2io_init_pci(sp); /* Set swapper to enable I/O register access */ s2io_set_swapper(sp); /* restore mac_addr entries */ do_s2io_restore_unicast_mc(sp); /* Restore the MSIX table entries from local variables */ restore_xmsi_data(sp); /* Clear certain PCI/PCI-X fields after reset */ if (sp->device_type == XFRAME_II_DEVICE) { /* Clear "detected parity error" bit */ pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000); /* Clearing PCIX Ecc status register */ pci_write_config_dword(sp->pdev, 0x68, 0x7C); /* Clearing PCI_STATUS error reflected here */ writeq(s2BIT(62), &bar0->txpic_int_reg); } /* Reset device statistics maintained by OS */ memset(&sp->stats, 0, sizeof(struct net_device_stats)); stats = sp->mac_control.stats_info; swstats = &stats->sw_stat; /* save link up/down time/cnt, reset/memory/watchdog cnt */ up_cnt = swstats->link_up_cnt; down_cnt = swstats->link_down_cnt; up_time = swstats->link_up_time; down_time = swstats->link_down_time; reset_cnt = swstats->soft_reset_cnt; mem_alloc_cnt = swstats->mem_allocated; mem_free_cnt = swstats->mem_freed; watchdog_cnt = swstats->watchdog_timer_cnt; memset(stats, 0, sizeof(struct stat_block)); /* restore link up/down time/cnt, reset/memory/watchdog cnt */ swstats->link_up_cnt = up_cnt; swstats->link_down_cnt = down_cnt; swstats->link_up_time = up_time; swstats->link_down_time = down_time; swstats->soft_reset_cnt = reset_cnt; swstats->mem_allocated = mem_alloc_cnt; swstats->mem_freed = mem_free_cnt; swstats->watchdog_timer_cnt = watchdog_cnt; /* SXE-002: Configure link and activity LED to turn it off */ subid = sp->pdev->subsystem_device; if (((subid & 0xFF) >= 0x07) && (sp->device_type == XFRAME_I_DEVICE)) { val64 = readq(&bar0->gpio_control); val64 |= 0x0000800000000000ULL; writeq(val64, &bar0->gpio_control); val64 = 0x0411040400000000ULL; writeq(val64, (void __iomem *)bar0 + 0x2700); } /* * Clear spurious ECC interrupts that would have occurred on * XFRAME II cards after reset. */ if (sp->device_type == XFRAME_II_DEVICE) { val64 = readq(&bar0->pcc_err_reg); writeq(val64, &bar0->pcc_err_reg); } sp->device_enabled_once = false; } /** * s2io_set_swapper - to set the swapper controle on the card * @sp : private member of the device structure, * pointer to the s2io_nic structure. * Description: Function to set the swapper control on the card * correctly depending on the 'endianness' of the system. * Return value: * SUCCESS on success and FAILURE on failure. */ static int s2io_set_swapper(struct s2io_nic *sp) { struct net_device *dev = sp->dev; struct XENA_dev_config __iomem *bar0 = sp->bar0; u64 val64, valt, valr; /* * Set proper endian settings and verify the same by reading * the PIF Feed-back register. */ val64 = readq(&bar0->pif_rd_swapper_fb); if (val64 != 0x0123456789ABCDEFULL) { int i = 0; static const u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ 0x8100008181000081ULL, /* FE=1, SE=0 */ 0x4200004242000042ULL, /* FE=0, SE=1 */ 0 /* FE=0, SE=0 */ }; while (i < 4) { writeq(value[i], &bar0->swapper_ctrl); val64 = readq(&bar0->pif_rd_swapper_fb); if (val64 == 0x0123456789ABCDEFULL) break; i++; } if (i == 4) { DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, " "feedback read %llx\n", dev->name, (unsigned long long)val64); return FAILURE; } valr = value[i]; } else { valr = readq(&bar0->swapper_ctrl); } valt = 0x0123456789ABCDEFULL; writeq(valt, &bar0->xmsi_address); val64 = readq(&bar0->xmsi_address); if (val64 != valt) { int i = 0; static const u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ 0x0081810000818100ULL, /* FE=1, SE=0 */ 0x0042420000424200ULL, /* FE=0, SE=1 */ 0 /* FE=0, SE=0 */ }; while (i < 4) { writeq((value[i] | valr), &bar0->swapper_ctrl); writeq(valt, &bar0->xmsi_address); val64 = readq(&bar0->xmsi_address); if (val64 == valt) break; i++; } if (i == 4) { unsigned long long x = val64; DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr reads:0x%llx\n", x); return FAILURE; } } val64 = readq(&bar0->swapper_ctrl); val64 &= 0xFFFF000000000000ULL; #ifdef __BIG_ENDIAN /* * The device by default set to a big endian format, so a * big endian driver need not set anything. */ val64 |= (SWAPPER_CTRL_TXP_FE | SWAPPER_CTRL_TXP_SE | SWAPPER_CTRL_TXD_R_FE | SWAPPER_CTRL_TXD_W_FE | SWAPPER_CTRL_TXF_R_FE | SWAPPER_CTRL_RXD_R_FE | SWAPPER_CTRL_RXD_W_FE | SWAPPER_CTRL_RXF_W_FE | SWAPPER_CTRL_XMSI_FE | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); if (sp->config.intr_type == INTA) val64 |= SWAPPER_CTRL_XMSI_SE; writeq(val64, &bar0->swapper_ctrl); #else /* * Initially we enable all bits to make it accessible by the * driver, then we selectively enable only those bits that * we want to set. */ val64 |= (SWAPPER_CTRL_TXP_FE | SWAPPER_CTRL_TXP_SE | SWAPPER_CTRL_TXD_R_FE | SWAPPER_CTRL_TXD_R_SE | SWAPPER_CTRL_TXD_W_FE | SWAPPER_CTRL_TXD_W_SE | SWAPPER_CTRL_TXF_R_FE | SWAPPER_CTRL_RXD_R_FE | SWAPPER_CTRL_RXD_R_SE | SWAPPER_CTRL_RXD_W_FE | SWAPPER_CTRL_RXD_W_SE | SWAPPER_CTRL_RXF_W_FE | SWAPPER_CTRL_XMSI_FE | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); if (sp->config.intr_type == INTA) val64 |= SWAPPER_CTRL_XMSI_SE; writeq(val64, &bar0->swapper_ctrl); #endif val64 = readq(&bar0->swapper_ctrl); /* * Verifying if endian settings are accurate by reading a * feedback register. */ val64 = readq(&bar0->pif_rd_swapper_fb); if (val64 != 0x0123456789ABCDEFULL) { /* Endian settings are incorrect, calls for another dekko. */ DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, feedback read %llx\n", dev->name, (unsigned long long)val64); return FAILURE; } return SUCCESS; } static int wait_for_msix_trans(struct s2io_nic *nic, int i) { struct XENA_dev_config __iomem *bar0 = nic->bar0; u64 val64; int ret = 0, cnt = 0; do { val64 = readq(&bar0->xmsi_access); if (!(val64 & s2BIT(15))) break; mdelay(1); cnt++; } while (cnt < 5); if (cnt == 5) { DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i); ret = 1; } return ret; } static void restore_xmsi_data(struct s2io_nic *nic) { struct XENA_dev_config __iomem *bar0 = nic->bar0; u64 val64; int i, msix_index; if (nic->device_type == XFRAME_I_DEVICE) return; for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { msix_index = (i) ? ((i-1) * 8 + 1) : 0; writeq(nic->msix_info[i].addr, &bar0->xmsi_address); writeq(nic->msix_info[i].data, &bar0->xmsi_data); val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6)); writeq(val64, &bar0->xmsi_access); if (wait_for_msix_trans(nic, msix_index)) { DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", __func__, msix_index); continue; } } } static void store_xmsi_data(struct s2io_nic *nic) { struct XENA_dev_config __iomem *bar0 = nic->bar0; u64 val64, addr, data; int i, msix_index; if (nic->device_type == XFRAME_I_DEVICE) return; /* Store and display */ for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { msix_index = (i) ? ((i-1) * 8 + 1) : 0; val64 = (s2BIT(15) | vBIT(msix_index, 26, 6)); writeq(val64, &bar0->xmsi_access); if (wait_for_msix_trans(nic, msix_index)) { DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", __func__, msix_index); continue; } addr = readq(&bar0->xmsi_address); data = readq(&bar0->xmsi_data); if (addr && data) { nic->msix_info[i].addr = addr; nic->msix_info[i].data = data; } } } static int s2io_enable_msi_x(struct s2io_nic *nic) { struct XENA_dev_config __iomem *bar0 = nic->bar0; u64 rx_mat; u16 msi_control; /* Temp variable */ int ret, i, j, msix_indx = 1; int size; struct stat_block *stats = nic->mac_control.stats_info; struct swStat *swstats = &stats->sw_stat; size = nic->num_entries * sizeof(struct msix_entry); nic->entries = kzalloc(size, GFP_KERNEL); if (!nic->entries) { DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", __func__); swstats->mem_alloc_fail_cnt++; return -ENOMEM; } swstats->mem_allocated += size; size = nic->num_entries * sizeof(struct s2io_msix_entry); nic->s2io_entries = kzalloc(size, GFP_KERNEL); if (!nic->s2io_entries) { DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", __func__); swstats->mem_alloc_fail_cnt++; kfree(nic->entries); swstats->mem_freed += (nic->num_entries * sizeof(struct msix_entry)); return -ENOMEM; } swstats->mem_allocated += size; nic->entries[0].entry = 0; nic->s2io_entries[0].entry = 0; nic->s2io_entries[0].in_use = MSIX_FLG; nic->s2io_entries[0].type = MSIX_ALARM_TYPE; nic->s2io_entries[0].arg = &nic->mac_control.fifos; for (i = 1; i < nic->num_entries; i++) { nic->entries[i].entry = ((i - 1) * 8) + 1; nic->s2io_entries[i].entry = ((i - 1) * 8) + 1; nic->s2io_entries[i].arg = NULL; nic->s2io_entries[i].in_use = 0; } rx_mat = readq(&bar0->rx_mat); for (j = 0; j < nic->config.rx_ring_num; j++) { rx_mat |= RX_MAT_SET(j, msix_indx); nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j]; nic->s2io_entries[j+1].type = MSIX_RING_TYPE; nic->s2io_entries[j+1].in_use = MSIX_FLG; msix_indx += 8; } writeq(rx_mat, &bar0->rx_mat); readq(&bar0->rx_mat); ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries); /* We fail init if error or we get less vectors than min required */ if (ret) { DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n"); kfree(nic->entries); swstats->mem_freed += nic->num_entries * sizeof(struct msix_entry); kfree(nic->s2io_entries); swstats->mem_freed += nic->num_entries * sizeof(struct s2io_msix_entry); nic->entries = NULL; nic->s2io_entries = NULL; return -ENOMEM; } /* * To enable MSI-X, MSI also needs to be enabled, due to a bug * in the herc NIC. (Temp change, needs to be removed later) */ pci_read_config_word(nic->pdev, 0x42, &msi_control); msi_control |= 0x1; /* Enable MSI */ pci_write_config_word(nic->pdev, 0x42, msi_control); return 0; } /* Handle software interrupt used during MSI(X) test */ static irqreturn_t s2io_test_intr(int irq, void *dev_id) { struct s2io_nic *sp = dev_id; sp->msi_detected = 1; wake_up(&sp->msi_wait); return IRQ_HANDLED; } /* Test interrupt path by forcing a a software IRQ */ static int s2io_test_msi(struct s2io_nic *sp) { struct pci_dev *pdev = sp->pdev; struct XENA_dev_config __iomem *bar0 = sp->bar0; int err; u64 val64, saved64; err = request_irq(sp->entries[1].vector, s2io_test_intr, 0, sp->name, sp); if (err) { DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n", sp->dev->name, pci_name(pdev), pdev->irq); return err; } init_waitqueue_head(&sp->msi_wait); sp->msi_detected = 0; saved64 = val64 = readq(&bar0->scheduled_int_ctrl); val64 |= SCHED_INT_CTRL_ONE_SHOT; val64 |= SCHED_INT_CTRL_TIMER_EN; val64 |= SCHED_INT_CTRL_INT2MSI(1); writeq(val64, &bar0->scheduled_int_ctrl); wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10); if (!sp->msi_detected) { /* MSI(X) test failed, go back to INTx mode */ DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated " "using MSI(X) during test\n", sp->dev->name, pci_name(pdev)); err = -EOPNOTSUPP; } free_irq(sp->entries[1].vector, sp); writeq(saved64, &bar0->scheduled_int_ctrl); return err; } static void remove_msix_isr(struct s2io_nic *sp) { int i; u16 msi_control; for (i = 0; i < sp->num_entries; i++) { if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) { int vector = sp->entries[i].vector; void *arg = sp->s2io_entries[i].arg; free_irq(vector, arg); } } kfree(sp->entries); kfree(sp->s2io_entries); sp->entries = NULL; sp->s2io_entries = NULL; pci_read_config_word(sp->pdev, 0x42, &msi_control); msi_control &= 0xFFFE; /* Disable MSI */ pci_write_config_word(sp->pdev, 0x42, msi_control); pci_disable_msix(sp->pdev); } static void remove_inta_isr(struct s2io_nic *sp) { free_irq(sp->pdev->irq, sp->dev); } /* ********************************************************* * * Functions defined below concern the OS part of the driver * * ********************************************************* */ /** * s2io_open - open entry point of the driver * @dev : pointer to the device structure. * Description: * This function is the open entry point of the driver. It mainly calls a * function to allocate Rx buffers and inserts them into the buffer * descriptors and then enables the Rx part of the NIC. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ static int s2io_open(struct net_device *dev) { struct s2io_nic *sp = netdev_priv(dev); struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; int err = 0; /* * Make sure you have link off by default every time * Nic is initialized */ netif_carrier_off(dev); sp->last_link_state = 0; /* Initialize H/W and enable interrupts */ err = s2io_card_up(sp); if (err) { DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", dev->name); goto hw_init_failed; } if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) { DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); s2io_card_down(sp); err = -ENODEV; goto hw_init_failed; } s2io_start_all_tx_queue(sp); return 0; hw_init_failed: if (sp->config.intr_type == MSI_X) { if (sp->entries) { kfree(sp->entries); swstats->mem_freed += sp->num_entries * sizeof(struct msix_entry); } if (sp->s2io_entries) { kfree(sp->s2io_entries); swstats->mem_freed += sp->num_entries * sizeof(struct s2io_msix_entry); } } return err; } /** * s2io_close -close entry point of the driver * @dev : device pointer. * Description: * This is the stop entry point of the driver. It needs to undo exactly * whatever was done by the open entry point,thus it's usually referred to * as the close function.Among other things this function mainly stops the * Rx side of the NIC and frees all the Rx buffers in the Rx rings. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ static int s2io_close(struct net_device *dev) { struct s2io_nic *sp = netdev_priv(dev); struct config_param *config = &sp->config; u64 tmp64; int offset; /* Return if the device is already closed * * Can happen when s2io_card_up failed in change_mtu * */ if (!is_s2io_card_up(sp)) return 0; s2io_stop_all_tx_queue(sp); /* delete all populated mac entries */ for (offset = 1; offset < config->max_mc_addr; offset++) { tmp64 = do_s2io_read_unicast_mc(sp, offset); if (tmp64 != S2IO_DISABLE_MAC_ENTRY) do_s2io_delete_unicast_mc(sp, tmp64); } s2io_card_down(sp); return 0; } /** * s2io_xmit - Tx entry point of te driver * @skb : the socket buffer containing the Tx data. * @dev : device pointer. * Description : * This function is the Tx entry point of the driver. S2IO NIC supports * certain protocol assist features on Tx side, namely CSO, S/G, LSO. * NOTE: when device can't queue the pkt,just the trans_start variable will * not be upadted. * Return value: * 0 on success & 1 on failure. */ static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev) { struct s2io_nic *sp = netdev_priv(dev); u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; register u64 val64; struct TxD *txdp; struct TxFIFO_element __iomem *tx_fifo; unsigned long flags = 0; u16 vlan_tag = 0; struct fifo_info *fifo = NULL; int do_spin_lock = 1; int offload_type; int enable_per_list_interrupt = 0; struct config_param *config = &sp->config; struct mac_info *mac_control = &sp->mac_control; struct stat_block *stats = mac_control->stats_info; struct swStat *swstats = &stats->sw_stat; DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name); if (unlikely(skb->len <= 0)) { DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } if (!is_s2io_card_up(sp)) { DBG_PRINT(TX_DBG, "%s: Card going down for reset\n", dev->name); dev_kfree_skb(skb); return NETDEV_TX_OK; } queue = 0; if (vlan_tx_tag_present(skb)) vlan_tag = vlan_tx_tag_get(skb); if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) { if (skb->protocol == htons(ETH_P_IP)) { struct iphdr *ip; struct tcphdr *th; ip = ip_hdr(skb); if (!ip_is_fragment(ip)) { th = (struct tcphdr *)(((unsigned char *)ip) + ip->ihl*4); if (ip->protocol == IPPROTO_TCP) { queue_len = sp->total_tcp_fifos; queue = (ntohs(th->source) + ntohs(th->dest)) & sp->fifo_selector[queue_len - 1]; if (queue >= queue_len) queue = queue_len - 1; } else if (ip->protocol == IPPROTO_UDP) { queue_len = sp->total_udp_fifos; queue = (ntohs(th->source) + ntohs(th->dest)) & sp->fifo_selector[queue_len - 1]; if (queue >= queue_len) queue = queue_len - 1; queue += sp->udp_fifo_idx; if (skb->len > 1024) enable_per_list_interrupt = 1; do_spin_lock = 0; } } } } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING) /* get fifo number based on skb->priority value */ queue = config->fifo_mapping [skb->priority & (MAX_TX_FIFOS - 1)]; fifo = &mac_control->fifos[queue]; if (do_spin_lock) spin_lock_irqsave(&fifo->tx_lock, flags); else { if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags))) return NETDEV_TX_LOCKED; } if (sp->config.multiq) { if (__netif_subqueue_stopped(dev, fifo->fifo_no)) { spin_unlock_irqrestore(&fifo->tx_lock, flags); return NETDEV_TX_BUSY; } } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) { if (netif_queue_stopped(dev)) { spin_unlock_irqrestore(&fifo->tx_lock, flags); return NETDEV_TX_BUSY; } } put_off = (u16)fifo->tx_curr_put_info.offset; get_off = (u16)fifo->tx_curr_get_info.offset; txdp = fifo->list_info[put_off].list_virt_addr; queue_len = fifo->tx_curr_put_info.fifo_len + 1; /* Avoid "put" pointer going beyond "get" pointer */ if (txdp->Host_Control || ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n"); s2io_stop_tx_queue(sp, fifo->fifo_no); dev_kfree_skb(skb); spin_unlock_irqrestore(&fifo->tx_lock, flags); return NETDEV_TX_OK; } offload_type = s2io_offload_type(skb); if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { txdp->Control_1 |= TXD_TCP_LSO_EN; txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb)); } if (skb->ip_summed == CHECKSUM_PARTIAL) { txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN | TXD_TX_CKO_UDP_EN); } txdp->Control_1 |= TXD_GATHER_CODE_FIRST; txdp->Control_1 |= TXD_LIST_OWN_XENA; txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no); if (enable_per_list_interrupt) if (put_off & (queue_len >> 5)) txdp->Control_2 |= TXD_INT_TYPE_PER_LIST; if (vlan_tag) { txdp->Control_2 |= TXD_VLAN_ENABLE; txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag); } frg_len = skb_headlen(skb); if (offload_type == SKB_GSO_UDP) { int ufo_size; ufo_size = s2io_udp_mss(skb); ufo_size &= ~7; txdp->Control_1 |= TXD_UFO_EN; txdp->Control_1 |= TXD_UFO_MSS(ufo_size); txdp->Control_1 |= TXD_BUFFER0_SIZE(8); #ifdef __BIG_ENDIAN /* both variants do cpu_to_be64(be32_to_cpu(...)) */ fifo->ufo_in_band_v[put_off] = (__force u64)skb_shinfo(skb)->ip6_frag_id; #else fifo->ufo_in_band_v[put_off] = (__force u64)skb_shinfo(skb)->ip6_frag_id << 32; #endif txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v; txdp->Buffer_Pointer = pci_map_single(sp->pdev, fifo->ufo_in_band_v, sizeof(u64), PCI_DMA_TODEVICE); if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) goto pci_map_failed; txdp++; } txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE); if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) goto pci_map_failed; txdp->Host_Control = (unsigned long)skb; txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len); if (offload_type == SKB_GSO_UDP) txdp->Control_1 |= TXD_UFO_EN; frg_cnt = skb_shinfo(skb)->nr_frags; /* For fragmented SKB. */ for (i = 0; i < frg_cnt; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; /* A '0' length fragment will be ignored */ if (!skb_frag_size(frag)) continue; txdp++; txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag)); if (offload_type == SKB_GSO_UDP) txdp->Control_1 |= TXD_UFO_EN; } txdp->Control_1 |= TXD_GATHER_CODE_LAST; if (offload_type == SKB_GSO_UDP) frg_cnt++; /* as Txd0 was used for inband header */ tx_fifo = mac_control->tx_FIFO_start[queue]; val64 = fifo->list_info[put_off].list_phy_addr; writeq(val64, &tx_fifo->TxDL_Pointer); val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | TX_FIFO_LAST_LIST); if (offload_type) val64 |= TX_FIFO_SPECIAL_FUNC; writeq(val64, &tx_fifo->List_Control); mmiowb(); put_off++; if (put_off == fifo->tx_curr_put_info.fifo_len + 1) put_off = 0; fifo->tx_curr_put_info.offset = put_off; /* Avoid "put" pointer going beyond "get" pointer */ if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { swstats->fifo_full_cnt++; DBG_PRINT(TX_DBG, "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", put_off, get_off); s2io_stop_tx_queue(sp, fifo->fifo_no); } swstats->mem_allocated += skb->truesize; spin_unlock_irqrestore(&fifo->tx_lock, flags); if (sp->config.intr_type == MSI_X) tx_intr_handler(fifo); return NETDEV_TX_OK; pci_map_failed: swstats->pci_map_fail_cnt++; s2io_stop_tx_queue(sp, fifo->fifo_no); swstats->mem_freed += skb->truesize; dev_kfree_skb(skb); spin_unlock_irqrestore(&fifo->tx_lock, flags); return NETDEV_TX_OK; } static void s2io_alarm_handle(unsigned long data) { struct s2io_nic *sp = (struct s2io_nic *)data; struct net_device *dev = sp->dev; s2io_handle_errors(dev); mod_timer(&sp->alarm_timer, jiffies + HZ / 2); } static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id) { struct ring_info *ring = (struct ring_info *)dev_id; struct s2io_nic *sp = ring->nic; struct XENA_dev_config __iomem *bar0 = sp->bar0; if (unlikely(!is_s2io_card_up(sp))) return IRQ_HANDLED; if (sp->config.napi) { u8 __iomem *addr = NULL; u8 val8 = 0; addr = (u8 __iomem *)&bar0->xmsi_mask_reg; addr += (7 - ring->ring_no); val8 = (ring->ring_no == 0) ? 0x7f : 0xff; writeb(val8, addr); val8 = readb(addr); napi_schedule(&ring->napi); } else { rx_intr_handler(ring, 0); s2io_chk_rx_buffers(sp, ring); } return IRQ_HANDLED; } static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id) { int i; struct fifo_info *fifos = (struct fifo_info *)dev_id; struct s2io_nic *sp = fifos->nic; struct XENA_dev_config __iomem *bar0 = sp->bar0; struct config_param *config = &sp->config; u64 reason; if (unlikely(!is_s2io_card_up(sp))) return IRQ_NONE; reason = readq(&bar0->general_int_status); if (unlikely(reason == S2IO_MINUS_ONE)) /* Nothing much can be done. Get out */ return IRQ_HANDLED; if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) { writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); if (reason & GEN_INTR_TXPIC) s2io_txpic_intr_handle(sp); if (reason & GEN_INTR_TXTRAFFIC) writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); for (i = 0; i < config->tx_fifo_num; i++) tx_intr_handler(&fifos[i]); writeq(sp->general_int_mask, &bar0->general_int_mask); readl(&bar0->general_int_status); return IRQ_HANDLED; } /* The interrupt was not raised by us */ return IRQ_NONE; } static void s2io_txpic_intr_handle(struct s2io_nic *sp) { struct XENA_dev_config __iomem *bar0 = sp->bar0; u64 val64; val64 = readq(&bar0->pic_int_status); if (val64 & PIC_INT_GPIO) { val64 = readq(&bar0->gpio_int_reg); if ((val64 & GPIO_INT_REG_LINK_DOWN) && (val64 & GPIO_INT_REG_LINK_UP)) { /* * This is unstable state so clear both up/down * interrupt and adapter to re-evaluate the link state. */ val64 |= GPIO_INT_REG_LINK_DOWN; val64 |= GPIO_INT_REG_LINK_UP; writeq(val64, &bar0->gpio_int_reg); val64 = readq(&bar0->gpio_int_mask); val64 &= ~(GPIO_INT_MASK_LINK_UP | GPIO_INT_MASK_LINK_DOWN); writeq(val64, &bar0->gpio_int_mask); } else if (val64 & GPIO_INT_REG_LINK_UP) { val64 = readq(&bar0->adapter_status); /* Enable Adapter */ val64 = readq(&bar0->adapter_control); val64 |= ADAPTER_CNTL_EN; writeq(val64, &bar0->adapter_control); val64 |= ADAPTER_LED_ON; writeq(val64, &bar0->adapter_control); if (!sp->device_enabled_once) sp->device_enabled_once = 1; s2io_link(sp, LINK_UP); /* * unmask link down interrupt and mask link-up * intr */ val64 = readq(&bar0->gpio_int_mask); val64 &= ~GPIO_INT_MASK_LINK_DOWN; val64 |= GPIO_INT_MASK_LINK_UP; writeq(val64, &bar0->gpio_int_mask); } else if (val64 & GPIO_INT_REG_LINK_DOWN) { val64 = readq(&bar0->adapter_status); s2io_link(sp, LINK_DOWN); /* Link is down so unmaks link up interrupt */ val64 = readq(&bar0->gpio_int_mask); val64 &= ~GPIO_INT_MASK_LINK_UP; val64 |= GPIO_INT_MASK_LINK_DOWN; writeq(val64, &bar0->gpio_int_mask); /* turn off LED */ val64 = readq(&bar0->adapter_control); val64 = val64 & (~ADAPTER_LED_ON); writeq(val64, &bar0->adapter_control); } } val64 = readq(&bar0->gpio_int_mask); } /** * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter * @value: alarm bits * @addr: address value * @cnt: counter variable * Description: Check for alarm and increment the counter * Return Value: * 1 - if alarm bit set * 0 - if alarm bit is not set */ static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr, unsigned long long *cnt) { u64 val64; val64 = readq(addr); if (val64 & value) { writeq(val64, addr); (*cnt)++; return 1; } return 0; } /** * s2io_handle_errors - Xframe error indication handler * @nic: device private variable * Description: Handle alarms such as loss of link, single or * double ECC errors, critical and serious errors. * Return Value: * NONE */ static void s2io_handle_errors(void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct s2io_nic *sp = netdev_priv(dev); struct XENA_dev_config __iomem *bar0 = sp->bar0; u64 temp64 = 0, val64 = 0; int i = 0; struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat; struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat; if (!is_s2io_card_up(sp)) return; if (pci_channel_offline(sp->pdev)) return; memset(&sw_stat->ring_full_cnt, 0, sizeof(sw_stat->ring_full_cnt)); /* Handling the XPAK counters update */ if (stats->xpak_timer_count < 72000) { /* waiting for an hour */ stats->xpak_timer_count++; } else { s2io_updt_xpak_counter(dev); /* reset the count to zero */ stats->xpak_timer_count = 0; } /* Handling link status change error Intr */ if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) { val64 = readq(&bar0->mac_rmac_err_reg); writeq(val64, &bar0->mac_rmac_err_reg); if (val64 & RMAC_LINK_STATE_CHANGE_INT) schedule_work(&sp->set_link_task); } /* In case of a serious error, the device will be Reset. */ if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source, &sw_stat->serious_err_cnt)) goto reset; /* Check for data parity error */ if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg, &sw_stat->parity_err_cnt)) goto reset; /* Check for ring full counter */ if (sp->device_type == XFRAME_II_DEVICE) { val64 = readq(&bar0->ring_bump_counter1); for (i = 0; i < 4; i++) { temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); temp64 >>= 64 - ((i+1)*16); sw_stat->ring_full_cnt[i] += temp64; } val64 = readq(&bar0->ring_bump_counter2); for (i = 0; i < 4; i++) { temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); temp64 >>= 64 - ((i+1)*16); sw_stat->ring_full_cnt[i+4] += temp64; } } val64 = readq(&bar0->txdma_int_status); /*check for pfc_err*/ if (val64 & TXDMA_PFC_INT) { if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | PFC_MISC_0_ERR | PFC_MISC_1_ERR | PFC_PCIX_ERR, &bar0->pfc_err_reg, &sw_stat->pfc_err_cnt)) goto reset; do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg, &sw_stat->pfc_err_cnt); } /*check for tda_err*/ if (val64 & TXDMA_TDA_INT) { if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | TDA_SM1_ERR_ALARM, &bar0->tda_err_reg, &sw_stat->tda_err_cnt)) goto reset; do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR, &bar0->tda_err_reg, &sw_stat->tda_err_cnt); } /*check for pcc_err*/ if (val64 & TXDMA_PCC_INT) { if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | PCC_N_SERR | PCC_6_COF_OV_ERR | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt)) goto reset; do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR, &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt); } /*check for tti_err*/ if (val64 & TXDMA_TTI_INT) { if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg, &sw_stat->tti_err_cnt)) goto reset; do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR, &bar0->tti_err_reg, &sw_stat->tti_err_cnt); } /*check for lso_err*/ if (val64 & TXDMA_LSO_INT) { if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM, &bar0->lso_err_reg, &sw_stat->lso_err_cnt)) goto reset; do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, &bar0->lso_err_reg, &sw_stat->lso_err_cnt); } /*check for tpa_err*/ if (val64 & TXDMA_TPA_INT) { if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg, &sw_stat->tpa_err_cnt)) goto reset; do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg, &sw_stat->tpa_err_cnt); } /*check for sm_err*/ if (val64 & TXDMA_SM_INT) { if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg, &sw_stat->sm_err_cnt)) goto reset; } val64 = readq(&bar0->mac_int_status); if (val64 & MAC_INT_STATUS_TMAC_INT) { if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR, &bar0->mac_tmac_err_reg, &sw_stat->mac_tmac_err_cnt)) goto reset; do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, &bar0->mac_tmac_err_reg, &sw_stat->mac_tmac_err_cnt); } val64 = readq(&bar0->xgxs_int_status); if (val64 & XGXS_INT_STATUS_TXGXS) { if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR, &bar0->xgxs_txgxs_err_reg, &sw_stat->xgxs_txgxs_err_cnt)) goto reset; do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, &bar0->xgxs_txgxs_err_reg, &sw_stat->xgxs_txgxs_err_cnt); } val64 = readq(&bar0->rxdma_int_status); if (val64 & RXDMA_INT_RC_INT_M) { if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR | RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM, &bar0->rc_err_reg, &sw_stat->rc_err_cnt)) goto reset; do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg, &sw_stat->rc_err_cnt); if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg, &sw_stat->prc_pcix_err_cnt)) goto reset; do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg, &sw_stat->prc_pcix_err_cnt); } if (val64 & RXDMA_INT_RPA_INT_M) { if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR, &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt)) goto reset; do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt); } if (val64 & RXDMA_INT_RDA_INT_M) { if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR, &bar0->rda_err_reg, &sw_stat->rda_err_cnt)) goto reset; do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR | RDA_PCIX_ERR, &bar0->rda_err_reg, &sw_stat->rda_err_cnt); } if (val64 & RXDMA_INT_RTI_INT_M) { if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg, &sw_stat->rti_err_cnt)) goto reset; do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, &bar0->rti_err_reg, &sw_stat->rti_err_cnt); } val64 = readq(&bar0->mac_int_status); if (val64 & MAC_INT_STATUS_RMAC_INT) { if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR, &bar0->mac_rmac_err_reg, &sw_stat->mac_rmac_err_cnt)) goto reset; do_s2io_chk_alarm_bit(RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR | RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg, &sw_stat->mac_rmac_err_cnt); } val64 = readq(&bar0->xgxs_int_status); if (val64 & XGXS_INT_STATUS_RXGXS) { if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, &bar0->xgxs_rxgxs_err_reg, &sw_stat->xgxs_rxgxs_err_cnt)) goto reset; } val64 = readq(&bar0->mc_int_status); if (val64 & MC_INT_STATUS_MC_INT) { if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg, &sw_stat->mc_err_cnt)) goto reset; /* Handling Ecc errors */ if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) { writeq(val64, &bar0->mc_err_reg); if (val64 & MC_ERR_REG_ECC_ALL_DBL) { sw_stat->double_ecc_errs++; if (sp->device_type != XFRAME_II_DEVICE) { /* * Reset XframeI only if critical error */ if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 | MC_ERR_REG_MIRI_ECC_DB_ERR_1)) goto reset; } } else sw_stat->single_ecc_errs++; } } return; reset: s2io_stop_all_tx_queue(sp); schedule_work(&sp->rst_timer_task); sw_stat->soft_reset_cnt++; } /** * s2io_isr - ISR handler of the device . * @irq: the irq of the device. * @dev_id: a void pointer to the dev structure of the NIC. * Description: This function is the ISR handler of the device. It * identifies the reason for the interrupt and calls the relevant * service routines. As a contongency measure, this ISR allocates the * recv buffers, if their numbers are below the panic value which is * presently set to 25% of the original number of rcv buffers allocated. * Return value: * IRQ_HANDLED: will be returned if IRQ was handled by this routine * IRQ_NONE: will be returned if interrupt is not from our device */ static irqreturn_t s2io_isr(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct s2io_nic *sp = netdev_priv(dev); struct XENA_dev_config __iomem *bar0 = sp->bar0; int i; u64 reason = 0; struct mac_info *mac_control; struct config_param *config; /* Pretend we handled any irq's from a disconnected card */ if (pci_channel_offline(sp->pdev)) return IRQ_NONE; if (!is_s2io_card_up(sp)) return IRQ_NONE; config = &sp->config; mac_control = &sp->mac_control; /* * Identify the cause for interrupt and call the appropriate * interrupt handler. Causes for the interrupt could be; * 1. Rx of packet. * 2. Tx complete. * 3. Link down. */ reason = readq(&bar0->general_int_status); if (unlikely(reason == S2IO_MINUS_ONE)) return IRQ_HANDLED; /* Nothing much can be done. Get out */ if (reason & (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) { writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); if (config->napi) { if (reason & GEN_INTR_RXTRAFFIC) { napi_schedule(&sp->napi); writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask); writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); readl(&bar0->rx_traffic_int); } } else { /* * rx_traffic_int reg is an R1 register, writing all 1's * will ensure that the actual interrupt causing bit * get's cleared and hence a read can be avoided. */ if (reason & GEN_INTR_RXTRAFFIC) writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); for (i = 0; i < config->rx_ring_num; i++) { struct ring_info *ring = &mac_control->rings[i]; rx_intr_handler(ring, 0); } } /* * tx_traffic_int reg is an R1 register, writing all 1's * will ensure that the actual interrupt causing bit get's * cleared and hence a read can be avoided. */ if (reason & GEN_INTR_TXTRAFFIC) writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); for (i = 0; i < config->tx_fifo_num; i++) tx_intr_handler(&mac_control->fifos[i]); if (reason & GEN_INTR_TXPIC) s2io_txpic_intr_handle(sp); /* * Reallocate the buffers from the interrupt handler itself. */ if (!config->napi) { for (i = 0; i < config->rx_ring_num; i++) { struct ring_info *ring = &mac_control->rings[i]; s2io_chk_rx_buffers(sp, ring); } } writeq(sp->general_int_mask, &bar0->general_int_mask); readl(&bar0->general_int_status); return IRQ_HANDLED; } else if (!reason) { /* The interrupt was not raised by us */ return IRQ_NONE; } return IRQ_HANDLED; } /** * s2io_updt_stats - */ static void s2io_updt_stats(struct s2io_nic *sp) { struct XENA_dev_config __iomem *bar0 = sp->bar0; u64 val64; int cnt = 0; if (is_s2io_card_up(sp)) { /* Apprx 30us on a 133 MHz bus */ val64 = SET_UPDT_CLICKS(10) | STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN; writeq(val64, &bar0->stat_cfg); do { udelay(100); val64 = readq(&bar0->stat_cfg); if (!(val64 & s2BIT(0))) break; cnt++; if (cnt == 5) break; /* Updt failed */ } while (1); } } /** * s2io_get_stats - Updates the device statistics structure. * @dev : pointer to the device structure. * Description: * This function updates the device statistics structure in the s2io_nic * structure and returns a pointer to the same. * Return value: * pointer to the updated net_device_stats structure. */ static struct net_device_stats *s2io_get_stats(struct net_device *dev) { struct s2io_nic *sp = netdev_priv(dev); struct mac_info *mac_control = &sp->mac_control; struct stat_block *stats = mac_control->stats_info; u64 delta; /* Configure Stats for immediate updt */ s2io_updt_stats(sp); /* A device reset will cause the on-adapter statistics to be zero'ed. * This can be done while running by changing the MTU. To prevent the * system from having the stats zero'ed, the driver keeps a copy of the * last update to the system (which is also zero'ed on reset). This * enables the driver to accurately know the delta between the last * update and the current update. */ delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets; sp->stats.rx_packets += delta; dev->stats.rx_packets += delta; delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 | le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets; sp->stats.tx_packets += delta; dev->stats.tx_packets += delta; delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes; sp->stats.rx_bytes += delta; dev->stats.rx_bytes += delta; delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes; sp->stats.tx_bytes += delta; dev->stats.tx_bytes += delta; delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors; sp->stats.rx_errors += delta; dev->stats.rx_errors += delta; delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors; sp->stats.tx_errors += delta; dev->stats.tx_errors += delta; delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped; sp->stats.rx_dropped += delta; dev->stats.rx_dropped += delta; delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped; sp->stats.tx_dropped += delta; dev->stats.tx_dropped += delta; /* The adapter MAC interprets pause frames as multicast packets, but * does not pass them up. This erroneously increases the multicast * packet count and needs to be deducted when the multicast frame count * is queried. */ delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | le32_to_cpu(stats->rmac_vld_mcst_frms); delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms); delta -= sp->stats.multicast; sp->stats.multicast += delta; dev->stats.multicast += delta; delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | le32_to_cpu(stats->rmac_usized_frms)) + le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors; sp->stats.rx_length_errors += delta; dev->stats.rx_length_errors += delta; delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors; sp->stats.rx_crc_errors += delta; dev->stats.rx_crc_errors += delta; return &dev->stats; } /** * s2io_set_multicast - entry point for multicast address enable/disable. * @dev : pointer to the device structure * Description: * This function is a driver entry point which gets called by the kernel * whenever multicast addresses must be enabled/disabled. This also gets * called to set/reset promiscuous mode. Depending on the deivce flag, we * determine, if multicast address must be enabled or if promiscuous mode * is to be disabled etc. * Return value: * void. */ static void s2io_set_multicast(struct net_device *dev) { int i, j, prev_cnt; struct netdev_hw_addr *ha; struct s2io_nic *sp = netdev_priv(dev); struct XENA_dev_config __iomem *bar0 = sp->bar0; u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = 0xfeffffffffffULL; u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0; void __iomem *add; struct config_param *config = &sp->config; if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { /* Enable all Multicast addresses */ writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), &bar0->rmac_addr_data0_mem); writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), &bar0->rmac_addr_data1_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait till command completes */ wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET); sp->m_cast_flg = 1; sp->all_multi_pos = config->max_mc_addr - 1; } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { /* Disable all Multicast addresses */ writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), &bar0->rmac_addr_data0_mem); writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0), &bar0->rmac_addr_data1_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait till command completes */ wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET); sp->m_cast_flg = 0; sp->all_multi_pos = 0; } if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { /* Put the NIC into promiscuous mode */ add = &bar0->mac_cfg; val64 = readq(&bar0->mac_cfg); val64 |= MAC_CFG_RMAC_PROM_ENABLE; writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32)val64, add); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64 >> 32), (add + 4)); if (vlan_tag_strip != 1) { val64 = readq(&bar0->rx_pa_cfg); val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; writeq(val64, &bar0->rx_pa_cfg); sp->vlan_strip_flag = 0; } val64 = readq(&bar0->mac_cfg); sp->promisc_flg = 1; DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n", dev->name); } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { /* Remove the NIC from promiscuous mode */ add = &bar0->mac_cfg; val64 = readq(&bar0->mac_cfg); val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32)val64, add); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64 >> 32), (add + 4)); if (vlan_tag_strip != 0) { val64 = readq(&bar0->rx_pa_cfg); val64 |= RX_PA_CFG_STRIP_VLAN_TAG; writeq(val64, &bar0->rx_pa_cfg); sp->vlan_strip_flag = 1; } val64 = readq(&bar0->mac_cfg); sp->promisc_flg = 0; DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name); } /* Update individual M_CAST address list */ if ((!sp->m_cast_flg) && netdev_mc_count(dev)) { if (netdev_mc_count(dev) > (config->max_mc_addr - config->max_mac_addr)) { DBG_PRINT(ERR_DBG, "%s: No more Rx filters can be added - " "please enable ALL_MULTI instead\n", dev->name); return; } prev_cnt = sp->mc_addr_count; sp->mc_addr_count = netdev_mc_count(dev); /* Clear out the previous list of Mc in the H/W. */ for (i = 0; i < prev_cnt; i++) { writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), &bar0->rmac_addr_data0_mem); writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), &bar0->rmac_addr_data1_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET (config->mc_start_offset + i); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait for command completes */ if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) { DBG_PRINT(ERR_DBG, "%s: Adding Multicasts failed\n", dev->name); return; } } /* Create the new Rx filter list and update the same in H/W. */ i = 0; netdev_for_each_mc_addr(ha, dev) { mac_addr = 0; for (j = 0; j < ETH_ALEN; j++) { mac_addr |= ha->addr[j]; mac_addr <<= 8; } mac_addr >>= 8; writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), &bar0->rmac_addr_data0_mem); writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), &bar0->rmac_addr_data1_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET (i + config->mc_start_offset); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait for command completes */ if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) { DBG_PRINT(ERR_DBG, "%s: Adding Multicasts failed\n", dev->name); return; } i++; } } } /* read from CAM unicast & multicast addresses and store it in * def_mac_addr structure */ static void do_s2io_store_unicast_mc(struct s2io_nic *sp) { int offset; u64 mac_addr = 0x0; struct config_param *config = &sp->config; /* store unicast & multicast mac addresses */ for (offset = 0; offset < config->max_mc_addr; offset++) { mac_addr = do_s2io_read_unicast_mc(sp, offset); /* if read fails disable the entry */ if (mac_addr == FAILURE) mac_addr = S2IO_DISABLE_MAC_ENTRY; do_s2io_copy_mac_addr(sp, offset, mac_addr); } } /* restore unicast & multicast MAC to CAM from def_mac_addr structure */ static void do_s2io_restore_unicast_mc(struct s2io_nic *sp) { int offset; struct config_param *config = &sp->config; /* restore unicast mac address */ for (offset = 0; offset < config->max_mac_addr; offset++) do_s2io_prog_unicast(sp->dev, sp->def_mac_addr[offset].mac_addr); /* restore multicast mac address */ for (offset = config->mc_start_offset; offset < config->max_mc_addr; offset++) do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr); } /* add a multicast MAC address to CAM */ static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr) { int i; u64 mac_addr = 0; struct config_param *config = &sp->config; for (i = 0; i < ETH_ALEN; i++) { mac_addr <<= 8; mac_addr |= addr[i]; } if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY)) return SUCCESS; /* check if the multicast mac already preset in CAM */ for (i = config->mc_start_offset; i < config->max_mc_addr; i++) { u64 tmp64; tmp64 = do_s2io_read_unicast_mc(sp, i); if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ break; if (tmp64 == mac_addr) return SUCCESS; } if (i == config->max_mc_addr) { DBG_PRINT(ERR_DBG, "CAM full no space left for multicast MAC\n"); return FAILURE; } /* Update the internal structure with this new mac address */ do_s2io_copy_mac_addr(sp, i, mac_addr); return do_s2io_add_mac(sp, mac_addr, i); } /* add MAC address to CAM */ static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off) { u64 val64; struct XENA_dev_config __iomem *bar0 = sp->bar0; writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr), &bar0->rmac_addr_data0_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET(off); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait till command completes */ if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) { DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n"); return FAILURE; } return SUCCESS; } /* deletes a specified unicast/multicast mac entry from CAM */ static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr) { int offset; u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64; struct config_param *config = &sp->config; for (offset = 1; offset < config->max_mc_addr; offset++) { tmp64 = do_s2io_read_unicast_mc(sp, offset); if (tmp64 == addr) { /* disable the entry by writing 0xffffffffffffULL */ if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE) return FAILURE; /* store the new mac list from CAM */ do_s2io_store_unicast_mc(sp); return SUCCESS; } } DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n", (unsigned long long)addr); return FAILURE; } /* read mac entries from CAM */ static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset) { u64 tmp64 = 0xffffffffffff0000ULL, val64; struct XENA_dev_config __iomem *bar0 = sp->bar0; /* read mac addr */ val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET(offset); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait till command completes */ if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) { DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n"); return FAILURE; } tmp64 = readq(&bar0->rmac_addr_data0_mem); return tmp64 >> 16; } /** * s2io_set_mac_addr - driver entry point */ static int s2io_set_mac_addr(struct net_device *dev, void *p) { struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); /* store the MAC address in CAM */ return do_s2io_prog_unicast(dev, dev->dev_addr); } /** * do_s2io_prog_unicast - Programs the Xframe mac address * @dev : pointer to the device structure. * @addr: a uchar pointer to the new mac address which is to be set. * Description : This procedure will program the Xframe to receive * frames with new Mac Address * Return value: SUCCESS on success and an appropriate (-)ve integer * as defined in errno.h file on failure. */ static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr) { struct s2io_nic *sp = netdev_priv(dev); register u64 mac_addr = 0, perm_addr = 0; int i; u64 tmp64; struct config_param *config = &sp->config; /* * Set the new MAC address as the new unicast filter and reflect this * change on the device address registered with the OS. It will be * at offset 0. */ for (i = 0; i < ETH_ALEN; i++) { mac_addr <<= 8; mac_addr |= addr[i]; perm_addr <<= 8; perm_addr |= sp->def_mac_addr[0].mac_addr[i]; } /* check if the dev_addr is different than perm_addr */ if (mac_addr == perm_addr) return SUCCESS; /* check if the mac already preset in CAM */ for (i = 1; i < config->max_mac_addr; i++) { tmp64 = do_s2io_read_unicast_mc(sp, i); if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ break; if (tmp64 == mac_addr) { DBG_PRINT(INFO_DBG, "MAC addr:0x%llx already present in CAM\n", (unsigned long long)mac_addr); return SUCCESS; } } if (i == config->max_mac_addr) { DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n"); return FAILURE; } /* Update the internal structure with this new mac address */ do_s2io_copy_mac_addr(sp, i, mac_addr); return do_s2io_add_mac(sp, mac_addr, i); } /** * s2io_ethtool_sset - Sets different link parameters. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @info: pointer to the structure with parameters given by ethtool to set * link information. * Description: * The function sets different link parameters provided by the user onto * the NIC. * Return value: * 0 on success. */ static int s2io_ethtool_sset(struct net_device *dev, struct ethtool_cmd *info) { struct s2io_nic *sp = netdev_priv(dev); if ((info->autoneg == AUTONEG_ENABLE) || (ethtool_cmd_speed(info) != SPEED_10000) || (info->duplex != DUPLEX_FULL)) return -EINVAL; else { s2io_close(sp->dev); s2io_open(sp->dev); } return 0; } /** * s2io_ethtol_gset - Return link specific information. * @sp : private member of the device structure, pointer to the * s2io_nic structure. * @info : pointer to the structure with parameters given by ethtool * to return link information. * Description: * Returns link specific information like speed, duplex etc.. to ethtool. * Return value : * return 0 on success. */ static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) { struct s2io_nic *sp = netdev_priv(dev); info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); info->port = PORT_FIBRE; /* info->transceiver */ info->transceiver = XCVR_EXTERNAL; if (netif_carrier_ok(sp->dev)) { ethtool_cmd_speed_set(info, SPEED_10000); info->duplex = DUPLEX_FULL; } else { ethtool_cmd_speed_set(info, -1); info->duplex = -1; } info->autoneg = AUTONEG_DISABLE; return 0; } /** * s2io_ethtool_gdrvinfo - Returns driver specific information. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @info : pointer to the structure with parameters given by ethtool to * return driver information. * Description: * Returns driver specefic information like name, version etc.. to ethtool. * Return value: * void */ static void s2io_ethtool_gdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct s2io_nic *sp = netdev_priv(dev); strlcpy(info->driver, s2io_driver_name, sizeof(info->driver)); strlcpy(info->version, s2io_driver_version, sizeof(info->version)); strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info)); info->regdump_len = XENA_REG_SPACE; info->eedump_len = XENA_EEPROM_SPACE; } /** * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. * @sp: private member of the device structure, which is a pointer to the * s2io_nic structure. * @regs : pointer to the structure with parameters given by ethtool for * dumping the registers. * @reg_space: The input argumnet into which all the registers are dumped. * Description: * Dumps the entire register space of xFrame NIC into the user given * buffer area. * Return value : * void . */ static void s2io_ethtool_gregs(struct net_device *dev, struct ethtool_regs *regs, void *space) { int i; u64 reg; u8 *reg_space = (u8 *)space; struct s2io_nic *sp = netdev_priv(dev); regs->len = XENA_REG_SPACE; regs->version = sp->pdev->subsystem_device; for (i = 0; i < regs->len; i += 8) { reg = readq(sp->bar0 + i); memcpy((reg_space + i), ®, 8); } } /* * s2io_set_led - control NIC led */ static void s2io_set_led(struct s2io_nic *sp, bool on) { struct XENA_dev_config __iomem *bar0 = sp->bar0; u16 subid = sp->pdev->subsystem_device; u64 val64; if ((sp->device_type == XFRAME_II_DEVICE) || ((subid & 0xFF) >= 0x07)) { val64 = readq(&bar0->gpio_control); if (on) val64 |= GPIO_CTRL_GPIO_0; else val64 &= ~GPIO_CTRL_GPIO_0; writeq(val64, &bar0->gpio_control); } else { val64 = readq(&bar0->adapter_control); if (on) val64 |= ADAPTER_LED_ON; else val64 &= ~ADAPTER_LED_ON; writeq(val64, &bar0->adapter_control); } } /** * s2io_ethtool_set_led - To physically identify the nic on the system. * @dev : network device * @state: led setting * * Description: Used to physically identify the NIC on the system. * The Link LED will blink for a time specified by the user for * identification. * NOTE: The Link has to be Up to be able to blink the LED. Hence * identification is possible only if it's link is up. */ static int s2io_ethtool_set_led(struct net_device *dev, enum ethtool_phys_id_state state) { struct s2io_nic *sp = netdev_priv(dev); struct XENA_dev_config __iomem *bar0 = sp->bar0; u16 subid = sp->pdev->subsystem_device; if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) { u64 val64 = readq(&bar0->adapter_control); if (!(val64 & ADAPTER_CNTL_EN)) { pr_err("Adapter Link down, cannot blink LED\n"); return -EAGAIN; } } switch (state) { case ETHTOOL_ID_ACTIVE: sp->adapt_ctrl_org = readq(&bar0->gpio_control); return 1; /* cycle on/off once per second */ case ETHTOOL_ID_ON: s2io_set_led(sp, true); break; case ETHTOOL_ID_OFF: s2io_set_led(sp, false); break; case ETHTOOL_ID_INACTIVE: if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) writeq(sp->adapt_ctrl_org, &bar0->gpio_control); } return 0; } static void s2io_ethtool_gringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct s2io_nic *sp = netdev_priv(dev); int i, tx_desc_count = 0, rx_desc_count = 0; if (sp->rxd_mode == RXD_MODE_1) { ering->rx_max_pending = MAX_RX_DESC_1; ering->rx_jumbo_max_pending = MAX_RX_DESC_1; } else { ering->rx_max_pending = MAX_RX_DESC_2; ering->rx_jumbo_max_pending = MAX_RX_DESC_2; } ering->tx_max_pending = MAX_TX_DESC; for (i = 0; i < sp->config.rx_ring_num; i++) rx_desc_count += sp->config.rx_cfg[i].num_rxd; ering->rx_pending = rx_desc_count; ering->rx_jumbo_pending = rx_desc_count; for (i = 0; i < sp->config.tx_fifo_num; i++) tx_desc_count += sp->config.tx_cfg[i].fifo_len; ering->tx_pending = tx_desc_count; DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds); } /** * s2io_ethtool_getpause_data -Pause frame frame generation and reception. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @ep : pointer to the structure with pause parameters given by ethtool. * Description: * Returns the Pause frame generation and reception capability of the NIC. * Return value: * void */ static void s2io_ethtool_getpause_data(struct net_device *dev, struct ethtool_pauseparam *ep) { u64 val64; struct s2io_nic *sp = netdev_priv(dev); struct XENA_dev_config __iomem *bar0 = sp->bar0; val64 = readq(&bar0->rmac_pause_cfg); if (val64 & RMAC_PAUSE_GEN_ENABLE) ep->tx_pause = true; if (val64 & RMAC_PAUSE_RX_ENABLE) ep->rx_pause = true; ep->autoneg = false; } /** * s2io_ethtool_setpause_data - set/reset pause frame generation. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @ep : pointer to the structure with pause parameters given by ethtool. * Description: * It can be used to set or reset Pause frame generation or reception * support of the NIC. * Return value: * int, returns 0 on Success */ static int s2io_ethtool_setpause_data(struct net_device *dev, struct ethtool_pauseparam *ep) { u64 val64; struct s2io_nic *sp = netdev_priv(dev); struct XENA_dev_config __iomem *bar0 = sp->bar0; val64 = readq(&bar0->rmac_pause_cfg); if (ep->tx_pause) val64 |= RMAC_PAUSE_GEN_ENABLE; else val64 &= ~RMAC_PAUSE_GEN_ENABLE; if (ep->rx_pause) val64 |= RMAC_PAUSE_RX_ENABLE; else val64 &= ~RMAC_PAUSE_RX_ENABLE; writeq(val64, &bar0->rmac_pause_cfg); return 0; } /** * read_eeprom - reads 4 bytes of data from user given offset. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @off : offset at which the data must be written * @data : Its an output parameter where the data read at the given * offset is stored. * Description: * Will read 4 bytes of data from the user given offset and return the * read data. * NOTE: Will allow to read only part of the EEPROM visible through the * I2C bus. * Return value: * -1 on failure and 0 on success. */ #define S2IO_DEV_ID 5 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data) { int ret = -1; u32 exit_cnt = 0; u64 val64; struct XENA_dev_config __iomem *bar0 = sp->bar0; if (sp->device_type == XFRAME_I_DEVICE) { val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ | I2C_CONTROL_CNTL_START; SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); while (exit_cnt < 5) { val64 = readq(&bar0->i2c_control); if (I2C_CONTROL_CNTL_END(val64)) { *data = I2C_CONTROL_GET_DATA(val64); ret = 0; break; } msleep(50); exit_cnt++; } } if (sp->device_type == XFRAME_II_DEVICE) { val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | SPI_CONTROL_BYTECNT(0x3) | SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off); SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); val64 |= SPI_CONTROL_REQ; SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); while (exit_cnt < 5) { val64 = readq(&bar0->spi_control); if (val64 & SPI_CONTROL_NACK) { ret = 1; break; } else if (val64 & SPI_CONTROL_DONE) { *data = readq(&bar0->spi_data); *data &= 0xffffff; ret = 0; break; } msleep(50); exit_cnt++; } } return ret; } /** * write_eeprom - actually writes the relevant part of the data value. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @off : offset at which the data must be written * @data : The data that is to be written * @cnt : Number of bytes of the data that are actually to be written into * the Eeprom. (max of 3) * Description: * Actually writes the relevant part of the data value into the Eeprom * through the I2C bus. * Return value: * 0 on success, -1 on failure. */ static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt) { int exit_cnt = 0, ret = -1; u64 val64; struct XENA_dev_config __iomem *bar0 = sp->bar0; if (sp->device_type == XFRAME_I_DEVICE) { val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) | I2C_CONTROL_CNTL_START; SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); while (exit_cnt < 5) { val64 = readq(&bar0->i2c_control); if (I2C_CONTROL_CNTL_END(val64)) { if (!(val64 & I2C_CONTROL_NACK)) ret = 0; break; } msleep(50); exit_cnt++; } } if (sp->device_type == XFRAME_II_DEVICE) { int write_cnt = (cnt == 8) ? 0 : cnt; writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data); val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | SPI_CONTROL_BYTECNT(write_cnt) | SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off); SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); val64 |= SPI_CONTROL_REQ; SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); while (exit_cnt < 5) { val64 = readq(&bar0->spi_control); if (val64 & SPI_CONTROL_NACK) { ret = 1; break; } else if (val64 & SPI_CONTROL_DONE) { ret = 0; break; } msleep(50); exit_cnt++; } } return ret; } static void s2io_vpd_read(struct s2io_nic *nic) { u8 *vpd_data; u8 data; int i = 0, cnt, len, fail = 0; int vpd_addr = 0x80; struct swStat *swstats = &nic->mac_control.stats_info->sw_stat; if (nic->device_type == XFRAME_II_DEVICE) { strcpy(nic->product_name, "Xframe II 10GbE network adapter"); vpd_addr = 0x80; } else { strcpy(nic->product_name, "Xframe I 10GbE network adapter"); vpd_addr = 0x50; } strcpy(nic->serial_num, "NOT AVAILABLE"); vpd_data = kmalloc(256, GFP_KERNEL); if (!vpd_data) { swstats->mem_alloc_fail_cnt++; return; } swstats->mem_allocated += 256; for (i = 0; i < 256; i += 4) { pci_write_config_byte(nic->pdev, (vpd_addr + 2), i); pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data); pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0); for (cnt = 0; cnt < 5; cnt++) { msleep(2); pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data); if (data == 0x80) break; } if (cnt >= 5) { DBG_PRINT(ERR_DBG, "Read of VPD data failed\n"); fail = 1; break; } pci_read_config_dword(nic->pdev, (vpd_addr + 4), (u32 *)&vpd_data[i]); } if (!fail) { /* read serial number of adapter */ for (cnt = 0; cnt < 252; cnt++) { if ((vpd_data[cnt] == 'S') && (vpd_data[cnt+1] == 'N')) { len = vpd_data[cnt+2]; if (len < min(VPD_STRING_LEN, 256-cnt-2)) { memcpy(nic->serial_num, &vpd_data[cnt + 3], len); memset(nic->serial_num+len, 0, VPD_STRING_LEN-len); break; } } } } if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) { len = vpd_data[1]; memcpy(nic->product_name, &vpd_data[3], len); nic->product_name[len] = 0; } kfree(vpd_data); swstats->mem_freed += 256; } /** * s2io_ethtool_geeprom - reads the value stored in the Eeprom. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @eeprom : pointer to the user level structure provided by ethtool, * containing all relevant information. * @data_buf : user defined value to be written into Eeprom. * Description: Reads the values stored in the Eeprom at given offset * for a given length. Stores these values int the input argument data * buffer 'data_buf' and returns these to the caller (ethtool.) * Return value: * int 0 on success */ static int s2io_ethtool_geeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 * data_buf) { u32 i, valid; u64 data; struct s2io_nic *sp = netdev_priv(dev); eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; for (i = 0; i < eeprom->len; i += 4) { if (read_eeprom(sp, (eeprom->offset + i), &data)) { DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); return -EFAULT; } valid = INV(data); memcpy((data_buf + i), &valid, 4); } return 0; } /** * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @eeprom : pointer to the user level structure provided by ethtool, * containing all relevant information. * @data_buf ; user defined value to be written into Eeprom. * Description: * Tries to write the user provided value in the Eeprom, at the offset * given by the user. * Return value: * 0 on success, -EFAULT on failure. */ static int s2io_ethtool_seeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data_buf) { int len = eeprom->len, cnt = 0; u64 valid = 0, data; struct s2io_nic *sp = netdev_priv(dev); if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { DBG_PRINT(ERR_DBG, "ETHTOOL_WRITE_EEPROM Err: " "Magic value is wrong, it is 0x%x should be 0x%x\n", (sp->pdev->vendor | (sp->pdev->device << 16)), eeprom->magic); return -EFAULT; } while (len) { data = (u32)data_buf[cnt] & 0x000000FF; if (data) valid = (u32)(data << 24); else valid = data; if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { DBG_PRINT(ERR_DBG, "ETHTOOL_WRITE_EEPROM Err: " "Cannot write into the specified offset\n"); return -EFAULT; } cnt++; len--; } return 0; } /** * s2io_register_test - reads and writes into all clock domains. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @data : variable that returns the result of each of the test conducted b * by the driver. * Description: * Read and write into all clock domains. The NIC has 3 clock domains, * see that registers in all the three regions are accessible. * Return value: * 0 on success. */ static int s2io_register_test(struct s2io_nic *sp, uint64_t *data) { struct XENA_dev_config __iomem *bar0 = sp->bar0; u64 val64 = 0, exp_val; int fail = 0; val64 = readq(&bar0->pif_rd_swapper_fb); if (val64 != 0x123456789abcdefULL) { fail = 1; DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1); } val64 = readq(&bar0->rmac_pause_cfg); if (val64 != 0xc000ffff00000000ULL) { fail = 1; DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2); } val64 = readq(&bar0->rx_queue_cfg); if (sp->device_type == XFRAME_II_DEVICE) exp_val = 0x0404040404040404ULL; else exp_val = 0x0808080808080808ULL; if (val64 != exp_val) { fail = 1; DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3); } val64 = readq(&bar0->xgxs_efifo_cfg); if (val64 != 0x000000001923141EULL) { fail = 1; DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4); } val64 = 0x5A5A5A5A5A5A5A5AULL; writeq(val64, &bar0->xmsi_data); val64 = readq(&bar0->xmsi_data); if (val64 != 0x5A5A5A5A5A5A5A5AULL) { fail = 1; DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1); } val64 = 0xA5A5A5A5A5A5A5A5ULL; writeq(val64, &bar0->xmsi_data); val64 = readq(&bar0->xmsi_data); if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { fail = 1; DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2); } *data = fail; return fail; } /** * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @data:variable that returns the result of each of the test conducted by * the driver. * Description: * Verify that EEPROM in the xena can be programmed using I2C_CONTROL * register. * Return value: * 0 on success. */ static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data) { int fail = 0; u64 ret_data, org_4F0, org_7F0; u8 saved_4F0 = 0, saved_7F0 = 0; struct net_device *dev = sp->dev; /* Test Write Error at offset 0 */ /* Note that SPI interface allows write access to all areas * of EEPROM. Hence doing all negative testing only for Xframe I. */ if (sp->device_type == XFRAME_I_DEVICE) if (!write_eeprom(sp, 0, 0, 3)) fail = 1; /* Save current values at offsets 0x4F0 and 0x7F0 */ if (!read_eeprom(sp, 0x4F0, &org_4F0)) saved_4F0 = 1; if (!read_eeprom(sp, 0x7F0, &org_7F0)) saved_7F0 = 1; /* Test Write at offset 4f0 */ if (write_eeprom(sp, 0x4F0, 0x012345, 3)) fail = 1; if (read_eeprom(sp, 0x4F0, &ret_data)) fail = 1; if (ret_data != 0x012345) { DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. " "Data written %llx Data read %llx\n", dev->name, (unsigned long long)0x12345, (unsigned long long)ret_data); fail = 1; } /* Reset the EEPROM data go FFFF */ write_eeprom(sp, 0x4F0, 0xFFFFFF, 3); /* Test Write Request Error at offset 0x7c */ if (sp->device_type == XFRAME_I_DEVICE) if (!write_eeprom(sp, 0x07C, 0, 3)) fail = 1; /* Test Write Request at offset 0x7f0 */ if (write_eeprom(sp, 0x7F0, 0x012345, 3)) fail = 1; if (read_eeprom(sp, 0x7F0, &ret_data)) fail = 1; if (ret_data != 0x012345) { DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. " "Data written %llx Data read %llx\n", dev->name, (unsigned long long)0x12345, (unsigned long long)ret_data); fail = 1; } /* Reset the EEPROM data go FFFF */ write_eeprom(sp, 0x7F0, 0xFFFFFF, 3); if (sp->device_type == XFRAME_I_DEVICE) { /* Test Write Error at offset 0x80 */ if (!write_eeprom(sp, 0x080, 0, 3)) fail = 1; /* Test Write Error at offset 0xfc */ if (!write_eeprom(sp, 0x0FC, 0, 3)) fail = 1; /* Test Write Error at offset 0x100 */ if (!write_eeprom(sp, 0x100, 0, 3)) fail = 1; /* Test Write Error at offset 4ec */ if (!write_eeprom(sp, 0x4EC, 0, 3)) fail = 1; } /* Restore values at offsets 0x4F0 and 0x7F0 */ if (saved_4F0) write_eeprom(sp, 0x4F0, org_4F0, 3); if (saved_7F0) write_eeprom(sp, 0x7F0, org_7F0, 3); *data = fail; return fail; } /** * s2io_bist_test - invokes the MemBist test of the card . * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @data:variable that returns the result of each of the test conducted by * the driver. * Description: * This invokes the MemBist test of the card. We give around * 2 secs time for the Test to complete. If it's still not complete * within this peiod, we consider that the test failed. * Return value: * 0 on success and -1 on failure. */ static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data) { u8 bist = 0; int cnt = 0, ret = -1; pci_read_config_byte(sp->pdev, PCI_BIST, &bist); bist |= PCI_BIST_START; pci_write_config_word(sp->pdev, PCI_BIST, bist); while (cnt < 20) { pci_read_config_byte(sp->pdev, PCI_BIST, &bist); if (!(bist & PCI_BIST_START)) { *data = (bist & PCI_BIST_CODE_MASK); ret = 0; break; } msleep(100); cnt++; } return ret; } /** * s2io_link_test - verifies the link state of the nic * @sp ; private member of the device structure, which is a pointer to the * s2io_nic structure. * @data: variable that returns the result of each of the test conducted by * the driver. * Description: * The function verifies the link state of the NIC and updates the input * argument 'data' appropriately. * Return value: * 0 on success. */ static int s2io_link_test(struct s2io_nic *sp, uint64_t *data) { struct XENA_dev_config __iomem *bar0 = sp->bar0; u64 val64; val64 = readq(&bar0->adapter_status); if (!(LINK_IS_UP(val64))) *data = 1; else *data = 0; return *data; } /** * s2io_rldram_test - offline test for access to the RldRam chip on the NIC * @sp: private member of the device structure, which is a pointer to the * s2io_nic structure. * @data: variable that returns the result of each of the test * conducted by the driver. * Description: * This is one of the offline test that tests the read and write * access to the RldRam chip on the NIC. * Return value: * 0 on success. */ static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data) { struct XENA_dev_config __iomem *bar0 = sp->bar0; u64 val64; int cnt, iteration = 0, test_fail = 0; val64 = readq(&bar0->adapter_control); val64 &= ~ADAPTER_ECC_EN; writeq(val64, &bar0->adapter_control); val64 = readq(&bar0->mc_rldram_test_ctrl); val64 |= MC_RLDRAM_TEST_MODE; SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); val64 = readq(&bar0->mc_rldram_mrs); val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); val64 |= MC_RLDRAM_MRS_ENABLE; SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); while (iteration < 2) { val64 = 0x55555555aaaa0000ULL; if (iteration == 1) val64 ^= 0xFFFFFFFFFFFF0000ULL; writeq(val64, &bar0->mc_rldram_test_d0); val64 = 0xaaaa5a5555550000ULL; if (iteration == 1) val64 ^= 0xFFFFFFFFFFFF0000ULL; writeq(val64, &bar0->mc_rldram_test_d1); val64 = 0x55aaaaaaaa5a0000ULL; if (iteration == 1) val64 ^= 0xFFFFFFFFFFFF0000ULL; writeq(val64, &bar0->mc_rldram_test_d2); val64 = (u64) (0x0000003ffffe0100ULL); writeq(val64, &bar0->mc_rldram_test_add); val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE | MC_RLDRAM_TEST_GO; SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); for (cnt = 0; cnt < 5; cnt++) { val64 = readq(&bar0->mc_rldram_test_ctrl); if (val64 & MC_RLDRAM_TEST_DONE) break; msleep(200); } if (cnt == 5) break; val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); for (cnt = 0; cnt < 5; cnt++) { val64 = readq(&bar0->mc_rldram_test_ctrl); if (val64 & MC_RLDRAM_TEST_DONE) break; msleep(500); } if (cnt == 5) break; val64 = readq(&bar0->mc_rldram_test_ctrl); if (!(val64 & MC_RLDRAM_TEST_PASS)) test_fail = 1; iteration++; } *data = test_fail; /* Bring the adapter out of test mode */ SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF); return test_fail; } /** * s2io_ethtool_test - conducts 6 tsets to determine the health of card. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @ethtest : pointer to a ethtool command specific structure that will be * returned to the user. * @data : variable that returns the result of each of the test * conducted by the driver. * Description: * This function conducts 6 tests ( 4 offline and 2 online) to determine * the health of the card. * Return value: * void */ static void s2io_ethtool_test(struct net_device *dev, struct ethtool_test *ethtest, uint64_t *data) { struct s2io_nic *sp = netdev_priv(dev); int orig_state = netif_running(sp->dev); if (ethtest->flags == ETH_TEST_FL_OFFLINE) { /* Offline Tests. */ if (orig_state) s2io_close(sp->dev); if (s2io_register_test(sp, &data[0])) ethtest->flags |= ETH_TEST_FL_FAILED; s2io_reset(sp); if (s2io_rldram_test(sp, &data[3])) ethtest->flags |= ETH_TEST_FL_FAILED; s2io_reset(sp); if (s2io_eeprom_test(sp, &data[1])) ethtest->flags |= ETH_TEST_FL_FAILED; if (s2io_bist_test(sp, &data[4])) ethtest->flags |= ETH_TEST_FL_FAILED; if (orig_state) s2io_open(sp->dev); data[2] = 0; } else { /* Online Tests. */ if (!orig_state) { DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n", dev->name); data[0] = -1; data[1] = -1; data[2] = -1; data[3] = -1; data[4] = -1; } if (s2io_link_test(sp, &data[2])) ethtest->flags |= ETH_TEST_FL_FAILED; data[0] = 0; data[1] = 0; data[3] = 0; data[4] = 0; } } static void s2io_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *tmp_stats) { int i = 0, k; struct s2io_nic *sp = netdev_priv(dev); struct stat_block *stats = sp->mac_control.stats_info; struct swStat *swstats = &stats->sw_stat; struct xpakStat *xstats = &stats->xpak_stat; s2io_updt_stats(sp); tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 | le32_to_cpu(stats->tmac_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | le32_to_cpu(stats->tmac_data_octets); tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 | le32_to_cpu(stats->tmac_mcst_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 | le32_to_cpu(stats->tmac_bcst_frms); tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 | le32_to_cpu(stats->tmac_ttl_octets); tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 | le32_to_cpu(stats->tmac_ucst_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 | le32_to_cpu(stats->tmac_nucst_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | le32_to_cpu(stats->tmac_any_err_frms); tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets); tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets); tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 | le32_to_cpu(stats->tmac_vld_ip); tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 | le32_to_cpu(stats->tmac_drop_ip); tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 | le32_to_cpu(stats->tmac_icmp); tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 | le32_to_cpu(stats->tmac_rst_tcp); tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp); tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 | le32_to_cpu(stats->tmac_udp); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | le32_to_cpu(stats->rmac_vld_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | le32_to_cpu(stats->rmac_data_octets); tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | le32_to_cpu(stats->rmac_vld_mcst_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 | le32_to_cpu(stats->rmac_vld_bcst_frms); tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms); tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 | le32_to_cpu(stats->rmac_ttl_octets); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32 | le32_to_cpu(stats->rmac_accepted_ucst_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow) << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 | le32_to_cpu(stats->rmac_discarded_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_drop_events_oflow) << 32 | le32_to_cpu(stats->rmac_drop_events); tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets); tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | le32_to_cpu(stats->rmac_usized_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 | le32_to_cpu(stats->rmac_osized_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 | le32_to_cpu(stats->rmac_frag_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 | le32_to_cpu(stats->rmac_jabber_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 | le32_to_cpu(stats->rmac_ip); tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets); tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 | le32_to_cpu(stats->rmac_drop_ip); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 | le32_to_cpu(stats->rmac_icmp); tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 | le32_to_cpu(stats->rmac_udp); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 | le32_to_cpu(stats->rmac_err_drp_udp); tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym); tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0); tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1); tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2); tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3); tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4); tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5); tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6); tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7); tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0); tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1); tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2); tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3); tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4); tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5); tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6); tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 | le32_to_cpu(stats->rmac_pause_cnt); tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt); tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt); tmp_stats[i++] = (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 | le32_to_cpu(stats->rmac_accepted_ip); tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp); tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt); tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt); tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt); tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt); tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt); tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt); tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt); tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt); tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt); tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt); tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt); tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt); tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt); tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt); tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt); tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt); tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt); tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt); /* Enhanced statistics exist only for Hercules */ if (sp->device_type == XFRAME_II_DEVICE) { tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1519_4095_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_4096_8191_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_8192_max_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms); tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms); tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard); tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard); tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard); tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard); tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard); tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard); tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard); tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt); } tmp_stats[i++] = 0; tmp_stats[i++] = swstats->single_ecc_errs; tmp_stats[i++] = swstats->double_ecc_errs; tmp_stats[i++] = swstats->parity_err_cnt; tmp_stats[i++] = swstats->serious_err_cnt; tmp_stats[i++] = swstats->soft_reset_cnt; tmp_stats[i++] = swstats->fifo_full_cnt; for (k = 0; k < MAX_RX_RINGS; k++) tmp_stats[i++] = swstats->ring_full_cnt[k]; tmp_stats[i++] = xstats->alarm_transceiver_temp_high; tmp_stats[i++] = xstats->alarm_transceiver_temp_low; tmp_stats[i++] = xstats->alarm_laser_bias_current_high; tmp_stats[i++] = xstats->alarm_laser_bias_current_low; tmp_stats[i++] = xstats->alarm_laser_output_power_high; tmp_stats[i++] = xstats->alarm_laser_output_power_low; tmp_stats[i++] = xstats->warn_transceiver_temp_high; tmp_stats[i++] = xstats->warn_transceiver_temp_low; tmp_stats[i++] = xstats->warn_laser_bias_current_high; tmp_stats[i++] = xstats->warn_laser_bias_current_low; tmp_stats[i++] = xstats->warn_laser_output_power_high; tmp_stats[i++] = xstats->warn_laser_output_power_low; tmp_stats[i++] = swstats->clubbed_frms_cnt; tmp_stats[i++] = swstats->sending_both; tmp_stats[i++] = swstats->outof_sequence_pkts; tmp_stats[i++] = swstats->flush_max_pkts; if (swstats->num_aggregations) { u64 tmp = swstats->sum_avg_pkts_aggregated; int count = 0; /* * Since 64-bit divide does not work on all platforms, * do repeated subtraction. */ while (tmp >= swstats->num_aggregations) { tmp -= swstats->num_aggregations; count++; } tmp_stats[i++] = count; } else tmp_stats[i++] = 0; tmp_stats[i++] = swstats->mem_alloc_fail_cnt; tmp_stats[i++] = swstats->pci_map_fail_cnt; tmp_stats[i++] = swstats->watchdog_timer_cnt; tmp_stats[i++] = swstats->mem_allocated; tmp_stats[i++] = swstats->mem_freed; tmp_stats[i++] = swstats->link_up_cnt; tmp_stats[i++] = swstats->link_down_cnt; tmp_stats[i++] = swstats->link_up_time; tmp_stats[i++] = swstats->link_down_time; tmp_stats[i++] = swstats->tx_buf_abort_cnt; tmp_stats[i++] = swstats->tx_desc_abort_cnt; tmp_stats[i++] = swstats->tx_parity_err_cnt; tmp_stats[i++] = swstats->tx_link_loss_cnt; tmp_stats[i++] = swstats->tx_list_proc_err_cnt; tmp_stats[i++] = swstats->rx_parity_err_cnt; tmp_stats[i++] = swstats->rx_abort_cnt; tmp_stats[i++] = swstats->rx_parity_abort_cnt; tmp_stats[i++] = swstats->rx_rda_fail_cnt; tmp_stats[i++] = swstats->rx_unkn_prot_cnt; tmp_stats[i++] = swstats->rx_fcs_err_cnt; tmp_stats[i++] = swstats->rx_buf_size_err_cnt; tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt; tmp_stats[i++] = swstats->rx_unkn_err_cnt; tmp_stats[i++] = swstats->tda_err_cnt; tmp_stats[i++] = swstats->pfc_err_cnt; tmp_stats[i++] = swstats->pcc_err_cnt; tmp_stats[i++] = swstats->tti_err_cnt; tmp_stats[i++] = swstats->tpa_err_cnt; tmp_stats[i++] = swstats->sm_err_cnt; tmp_stats[i++] = swstats->lso_err_cnt; tmp_stats[i++] = swstats->mac_tmac_err_cnt; tmp_stats[i++] = swstats->mac_rmac_err_cnt; tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt; tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt; tmp_stats[i++] = swstats->rc_err_cnt; tmp_stats[i++] = swstats->prc_pcix_err_cnt; tmp_stats[i++] = swstats->rpa_err_cnt; tmp_stats[i++] = swstats->rda_err_cnt; tmp_stats[i++] = swstats->rti_err_cnt; tmp_stats[i++] = swstats->mc_err_cnt; } static int s2io_ethtool_get_regs_len(struct net_device *dev) { return XENA_REG_SPACE; } static int s2io_get_eeprom_len(struct net_device *dev) { return XENA_EEPROM_SPACE; } static int s2io_get_sset_count(struct net_device *dev, int sset) { struct s2io_nic *sp = netdev_priv(dev); switch (sset) { case ETH_SS_TEST: return S2IO_TEST_LEN; case ETH_SS_STATS: switch (sp->device_type) { case XFRAME_I_DEVICE: return XFRAME_I_STAT_LEN; case XFRAME_II_DEVICE: return XFRAME_II_STAT_LEN; default: return 0; } default: return -EOPNOTSUPP; } } static void s2io_ethtool_get_strings(struct net_device *dev, u32 stringset, u8 *data) { int stat_size = 0; struct s2io_nic *sp = netdev_priv(dev); switch (stringset) { case ETH_SS_TEST: memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); break; case ETH_SS_STATS: stat_size = sizeof(ethtool_xena_stats_keys); memcpy(data, ðtool_xena_stats_keys, stat_size); if (sp->device_type == XFRAME_II_DEVICE) { memcpy(data + stat_size, ðtool_enhanced_stats_keys, sizeof(ethtool_enhanced_stats_keys)); stat_size += sizeof(ethtool_enhanced_stats_keys); } memcpy(data + stat_size, ðtool_driver_stats_keys, sizeof(ethtool_driver_stats_keys)); } } static int s2io_set_features(struct net_device *dev, netdev_features_t features) { struct s2io_nic *sp = netdev_priv(dev); netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO; if (changed && netif_running(dev)) { int rc; s2io_stop_all_tx_queue(sp); s2io_card_down(sp); dev->features = features; rc = s2io_card_up(sp); if (rc) s2io_reset(sp); else s2io_start_all_tx_queue(sp); return rc ? rc : 1; } return 0; } static const struct ethtool_ops netdev_ethtool_ops = { .get_settings = s2io_ethtool_gset, .set_settings = s2io_ethtool_sset, .get_drvinfo = s2io_ethtool_gdrvinfo, .get_regs_len = s2io_ethtool_get_regs_len, .get_regs = s2io_ethtool_gregs, .get_link = ethtool_op_get_link, .get_eeprom_len = s2io_get_eeprom_len, .get_eeprom = s2io_ethtool_geeprom, .set_eeprom = s2io_ethtool_seeprom, .get_ringparam = s2io_ethtool_gringparam, .get_pauseparam = s2io_ethtool_getpause_data, .set_pauseparam = s2io_ethtool_setpause_data, .self_test = s2io_ethtool_test, .get_strings = s2io_ethtool_get_strings, .set_phys_id = s2io_ethtool_set_led, .get_ethtool_stats = s2io_get_ethtool_stats, .get_sset_count = s2io_get_sset_count, }; /** * s2io_ioctl - Entry point for the Ioctl * @dev : Device pointer. * @ifr : An IOCTL specefic structure, that can contain a pointer to * a proprietary structure used to pass information to the driver. * @cmd : This is used to distinguish between the different commands that * can be passed to the IOCTL functions. * Description: * Currently there are no special functionality supported in IOCTL, hence * function always return EOPNOTSUPPORTED */ static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { return -EOPNOTSUPP; } /** * s2io_change_mtu - entry point to change MTU size for the device. * @dev : device pointer. * @new_mtu : the new MTU size for the device. * Description: A driver entry point to change MTU size for the device. * Before changing the MTU the device must be stopped. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ static int s2io_change_mtu(struct net_device *dev, int new_mtu) { struct s2io_nic *sp = netdev_priv(dev); int ret = 0; if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name); return -EPERM; } dev->mtu = new_mtu; if (netif_running(dev)) { s2io_stop_all_tx_queue(sp); s2io_card_down(sp); ret = s2io_card_up(sp); if (ret) { DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", __func__); return ret; } s2io_wake_all_tx_queue(sp); } else { /* Device is down */ struct XENA_dev_config __iomem *bar0 = sp->bar0; u64 val64 = new_mtu; writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); } return ret; } /** * s2io_set_link - Set the LInk status * @data: long pointer to device private structue * Description: Sets the link status for the adapter */ static void s2io_set_link(struct work_struct *work) { struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task); struct net_device *dev = nic->dev; struct XENA_dev_config __iomem *bar0 = nic->bar0; register u64 val64; u16 subid; rtnl_lock(); if (!netif_running(dev)) goto out_unlock; if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) { /* The card is being reset, no point doing anything */ goto out_unlock; } subid = nic->pdev->subsystem_device; if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { /* * Allow a small delay for the NICs self initiated * cleanup to complete. */ msleep(100); } val64 = readq(&bar0->adapter_status); if (LINK_IS_UP(val64)) { if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) { if (verify_xena_quiescence(nic)) { val64 = readq(&bar0->adapter_control); val64 |= ADAPTER_CNTL_EN; writeq(val64, &bar0->adapter_control); if (CARDS_WITH_FAULTY_LINK_INDICATORS( nic->device_type, subid)) { val64 = readq(&bar0->gpio_control); val64 |= GPIO_CTRL_GPIO_0; writeq(val64, &bar0->gpio_control); val64 = readq(&bar0->gpio_control); } else { val64 |= ADAPTER_LED_ON; writeq(val64, &bar0->adapter_control); } nic->device_enabled_once = true; } else { DBG_PRINT(ERR_DBG, "%s: Error: device is not Quiescent\n", dev->name); s2io_stop_all_tx_queue(nic); } } val64 = readq(&bar0->adapter_control); val64 |= ADAPTER_LED_ON; writeq(val64, &bar0->adapter_control); s2io_link(nic, LINK_UP); } else { if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, subid)) { val64 = readq(&bar0->gpio_control); val64 &= ~GPIO_CTRL_GPIO_0; writeq(val64, &bar0->gpio_control); val64 = readq(&bar0->gpio_control); } /* turn off LED */ val64 = readq(&bar0->adapter_control); val64 = val64 & (~ADAPTER_LED_ON); writeq(val64, &bar0->adapter_control); s2io_link(nic, LINK_DOWN); } clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state)); out_unlock: rtnl_unlock(); } static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp, struct buffAdd *ba, struct sk_buff **skb, u64 *temp0, u64 *temp1, u64 *temp2, int size) { struct net_device *dev = sp->dev; struct swStat *stats = &sp->mac_control.stats_info->sw_stat; if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) { struct RxD1 *rxdp1 = (struct RxD1 *)rxdp; /* allocate skb */ if (*skb) { DBG_PRINT(INFO_DBG, "SKB is not NULL\n"); /* * As Rx frame are not going to be processed, * using same mapped address for the Rxd * buffer pointer */ rxdp1->Buffer0_ptr = *temp0; } else { *skb = netdev_alloc_skb(dev, size); if (!(*skb)) { DBG_PRINT(INFO_DBG, "%s: Out of memory to allocate %s\n", dev->name, "1 buf mode SKBs"); stats->mem_alloc_fail_cnt++; return -ENOMEM ; } stats->mem_allocated += (*skb)->truesize; /* storing the mapped addr in a temp variable * such it will be used for next rxd whose * Host Control is NULL */ rxdp1->Buffer0_ptr = *temp0 = pci_map_single(sp->pdev, (*skb)->data, size - NET_IP_ALIGN, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr)) goto memalloc_failed; rxdp->Host_Control = (unsigned long) (*skb); } } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) { struct RxD3 *rxdp3 = (struct RxD3 *)rxdp; /* Two buffer Mode */ if (*skb) { rxdp3->Buffer2_ptr = *temp2; rxdp3->Buffer0_ptr = *temp0; rxdp3->Buffer1_ptr = *temp1; } else { *skb = netdev_alloc_skb(dev, size); if (!(*skb)) { DBG_PRINT(INFO_DBG, "%s: Out of memory to allocate %s\n", dev->name, "2 buf mode SKBs"); stats->mem_alloc_fail_cnt++; return -ENOMEM; } stats->mem_allocated += (*skb)->truesize; rxdp3->Buffer2_ptr = *temp2 = pci_map_single(sp->pdev, (*skb)->data, dev->mtu + 4, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr)) goto memalloc_failed; rxdp3->Buffer0_ptr = *temp0 = pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer0_ptr)) { pci_unmap_single(sp->pdev, (dma_addr_t)rxdp3->Buffer2_ptr, dev->mtu + 4, PCI_DMA_FROMDEVICE); goto memalloc_failed; } rxdp->Host_Control = (unsigned long) (*skb); /* Buffer-1 will be dummy buffer not used */ rxdp3->Buffer1_ptr = *temp1 = pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer1_ptr)) { pci_unmap_single(sp->pdev, (dma_addr_t)rxdp3->Buffer0_ptr, BUF0_LEN, PCI_DMA_FROMDEVICE); pci_unmap_single(sp->pdev, (dma_addr_t)rxdp3->Buffer2_ptr, dev->mtu + 4, PCI_DMA_FROMDEVICE); goto memalloc_failed; } } } return 0; memalloc_failed: stats->pci_map_fail_cnt++; stats->mem_freed += (*skb)->truesize; dev_kfree_skb(*skb); return -ENOMEM; } static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp, int size) { struct net_device *dev = sp->dev; if (sp->rxd_mode == RXD_MODE_1) { rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); } else if (sp->rxd_mode == RXD_MODE_3B) { rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4); } } static int rxd_owner_bit_reset(struct s2io_nic *sp) { int i, j, k, blk_cnt = 0, size; struct config_param *config = &sp->config; struct mac_info *mac_control = &sp->mac_control; struct net_device *dev = sp->dev; struct RxD_t *rxdp = NULL; struct sk_buff *skb = NULL; struct buffAdd *ba = NULL; u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0; /* Calculate the size based on ring mode */ size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + HEADER_802_2_SIZE + HEADER_SNAP_SIZE; if (sp->rxd_mode == RXD_MODE_1) size += NET_IP_ALIGN; else if (sp->rxd_mode == RXD_MODE_3B) size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4; for (i = 0; i < config->rx_ring_num; i++) { struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; struct ring_info *ring = &mac_control->rings[i]; blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1); for (j = 0; j < blk_cnt; j++) { for (k = 0; k < rxd_count[sp->rxd_mode]; k++) { rxdp = ring->rx_blocks[j].rxds[k].virt_addr; if (sp->rxd_mode == RXD_MODE_3B) ba = &ring->ba[j][k]; if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb, &temp0_64, &temp1_64, &temp2_64, size) == -ENOMEM) { return 0; } set_rxd_buffer_size(sp, rxdp, size); wmb(); /* flip the Ownership bit to Hardware */ rxdp->Control_1 |= RXD_OWN_XENA; } } } return 0; } static int s2io_add_isr(struct s2io_nic *sp) { int ret = 0; struct net_device *dev = sp->dev; int err = 0; if (sp->config.intr_type == MSI_X) ret = s2io_enable_msi_x(sp); if (ret) { DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name); sp->config.intr_type = INTA; } /* * Store the values of the MSIX table in * the struct s2io_nic structure */ store_xmsi_data(sp); /* After proper initialization of H/W, register ISR */ if (sp->config.intr_type == MSI_X) { int i, msix_rx_cnt = 0; for (i = 0; i < sp->num_entries; i++) { if (sp->s2io_entries[i].in_use == MSIX_FLG) { if (sp->s2io_entries[i].type == MSIX_RING_TYPE) { sprintf(sp->desc[i], "%s:MSI-X-%d-RX", dev->name, i); err = request_irq(sp->entries[i].vector, s2io_msix_ring_handle, 0, sp->desc[i], sp->s2io_entries[i].arg); } else if (sp->s2io_entries[i].type == MSIX_ALARM_TYPE) { sprintf(sp->desc[i], "%s:MSI-X-%d-TX", dev->name, i); err = request_irq(sp->entries[i].vector, s2io_msix_fifo_handle, 0, sp->desc[i], sp->s2io_entries[i].arg); } /* if either data or addr is zero print it. */ if (!(sp->msix_info[i].addr && sp->msix_info[i].data)) { DBG_PRINT(ERR_DBG, "%s @Addr:0x%llx Data:0x%llx\n", sp->desc[i], (unsigned long long) sp->msix_info[i].addr, (unsigned long long) ntohl(sp->msix_info[i].data)); } else msix_rx_cnt++; if (err) { remove_msix_isr(sp); DBG_PRINT(ERR_DBG, "%s:MSI-X-%d registration " "failed\n", dev->name, i); DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name); sp->config.intr_type = INTA; break; } sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS; } } if (!err) { pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt); DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled through alarm vector\n"); } } if (sp->config.intr_type == INTA) { err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED, sp->name, dev); if (err) { DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", dev->name); return -1; } } return 0; } static void s2io_rem_isr(struct s2io_nic *sp) { if (sp->config.intr_type == MSI_X) remove_msix_isr(sp); else remove_inta_isr(sp); } static void do_s2io_card_down(struct s2io_nic *sp, int do_io) { int cnt = 0; struct XENA_dev_config __iomem *bar0 = sp->bar0; register u64 val64 = 0; struct config_param *config; config = &sp->config; if (!is_s2io_card_up(sp)) return; del_timer_sync(&sp->alarm_timer); /* If s2io_set_link task is executing, wait till it completes. */ while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) msleep(50); clear_bit(__S2IO_STATE_CARD_UP, &sp->state); /* Disable napi */ if (sp->config.napi) { int off = 0; if (config->intr_type == MSI_X) { for (; off < sp->config.rx_ring_num; off++) napi_disable(&sp->mac_control.rings[off].napi); } else napi_disable(&sp->napi); } /* disable Tx and Rx traffic on the NIC */ if (do_io) stop_nic(sp); s2io_rem_isr(sp); /* stop the tx queue, indicate link down */ s2io_link(sp, LINK_DOWN); /* Check if the device is Quiescent and then Reset the NIC */ while (do_io) { /* As per the HW requirement we need to replenish the * receive buffer to avoid the ring bump. Since there is * no intention of processing the Rx frame at this pointwe are * just setting the ownership bit of rxd in Each Rx * ring to HW and set the appropriate buffer size * based on the ring mode */ rxd_owner_bit_reset(sp); val64 = readq(&bar0->adapter_status); if (verify_xena_quiescence(sp)) { if (verify_pcc_quiescent(sp, sp->device_enabled_once)) break; } msleep(50); cnt++; if (cnt == 10) { DBG_PRINT(ERR_DBG, "Device not Quiescent - " "adapter status reads 0x%llx\n", (unsigned long long)val64); break; } } if (do_io) s2io_reset(sp); /* Free all Tx buffers */ free_tx_buffers(sp); /* Free all Rx buffers */ free_rx_buffers(sp); clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state)); } static void s2io_card_down(struct s2io_nic *sp) { do_s2io_card_down(sp, 1); } static int s2io_card_up(struct s2io_nic *sp) { int i, ret = 0; struct config_param *config; struct mac_info *mac_control; struct net_device *dev = sp->dev; u16 interruptible; /* Initialize the H/W I/O registers */ ret = init_nic(sp); if (ret != 0) { DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", dev->name); if (ret != -EIO) s2io_reset(sp); return ret; } /* * Initializing the Rx buffers. For now we are considering only 1 * Rx ring and initializing buffers into 30 Rx blocks */ config = &sp->config; mac_control = &sp->mac_control; for (i = 0; i < config->rx_ring_num; i++) { struct ring_info *ring = &mac_control->rings[i]; ring->mtu = dev->mtu; ring->lro = !!(dev->features & NETIF_F_LRO); ret = fill_rx_buffers(sp, ring, 1); if (ret) { DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", dev->name); s2io_reset(sp); free_rx_buffers(sp); return -ENOMEM; } DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, ring->rx_bufs_left); } /* Initialise napi */ if (config->napi) { if (config->intr_type == MSI_X) { for (i = 0; i < sp->config.rx_ring_num; i++) napi_enable(&sp->mac_control.rings[i].napi); } else { napi_enable(&sp->napi); } } /* Maintain the state prior to the open */ if (sp->promisc_flg) sp->promisc_flg = 0; if (sp->m_cast_flg) { sp->m_cast_flg = 0; sp->all_multi_pos = 0; } /* Setting its receive mode */ s2io_set_multicast(dev); if (dev->features & NETIF_F_LRO) { /* Initialize max aggregatable pkts per session based on MTU */ sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu; /* Check if we can use (if specified) user provided value */ if (lro_max_pkts < sp->lro_max_aggr_per_sess) sp->lro_max_aggr_per_sess = lro_max_pkts; } /* Enable Rx Traffic and interrupts on the NIC */ if (start_nic(sp)) { DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); s2io_reset(sp); free_rx_buffers(sp); return -ENODEV; } /* Add interrupt service routine */ if (s2io_add_isr(sp) != 0) { if (sp->config.intr_type == MSI_X) s2io_rem_isr(sp); s2io_reset(sp); free_rx_buffers(sp); return -ENODEV; } S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2)); set_bit(__S2IO_STATE_CARD_UP, &sp->state); /* Enable select interrupts */ en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS); if (sp->config.intr_type != INTA) { interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR; en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); } else { interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; interruptible |= TX_PIC_INTR; en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); } return 0; } /** * s2io_restart_nic - Resets the NIC. * @data : long pointer to the device private structure * Description: * This function is scheduled to be run by the s2io_tx_watchdog * function after 0.5 secs to reset the NIC. The idea is to reduce * the run time of the watch dog routine which is run holding a * spin lock. */ static void s2io_restart_nic(struct work_struct *work) { struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task); struct net_device *dev = sp->dev; rtnl_lock(); if (!netif_running(dev)) goto out_unlock; s2io_card_down(sp); if (s2io_card_up(sp)) { DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name); } s2io_wake_all_tx_queue(sp); DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name); out_unlock: rtnl_unlock(); } /** * s2io_tx_watchdog - Watchdog for transmit side. * @dev : Pointer to net device structure * Description: * This function is triggered if the Tx Queue is stopped * for a pre-defined amount of time when the Interface is still up. * If the Interface is jammed in such a situation, the hardware is * reset (by s2io_close) and restarted again (by s2io_open) to * overcome any problem that might have been caused in the hardware. * Return value: * void */ static void s2io_tx_watchdog(struct net_device *dev) { struct s2io_nic *sp = netdev_priv(dev); struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; if (netif_carrier_ok(dev)) { swstats->watchdog_timer_cnt++; schedule_work(&sp->rst_timer_task); swstats->soft_reset_cnt++; } } /** * rx_osm_handler - To perform some OS related operations on SKB. * @sp: private member of the device structure,pointer to s2io_nic structure. * @skb : the socket buffer pointer. * @len : length of the packet * @cksum : FCS checksum of the frame. * @ring_no : the ring from which this RxD was extracted. * Description: * This function is called by the Rx interrupt serivce routine to perform * some OS related operations on the SKB before passing it to the upper * layers. It mainly checks if the checksum is OK, if so adds it to the * SKBs cksum variable, increments the Rx packet count and passes the SKB * to the upper layer. If the checksum is wrong, it increments the Rx * packet error count, frees the SKB and returns error. * Return value: * SUCCESS on success and -1 on failure. */ static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp) { struct s2io_nic *sp = ring_data->nic; struct net_device *dev = ring_data->dev; struct sk_buff *skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control); int ring_no = ring_data->ring_no; u16 l3_csum, l4_csum; unsigned long long err = rxdp->Control_1 & RXD_T_CODE; struct lro *uninitialized_var(lro); u8 err_mask; struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; skb->dev = dev; if (err) { /* Check for parity error */ if (err & 0x1) swstats->parity_err_cnt++; err_mask = err >> 48; switch (err_mask) { case 1: swstats->rx_parity_err_cnt++; break; case 2: swstats->rx_abort_cnt++; break; case 3: swstats->rx_parity_abort_cnt++; break; case 4: swstats->rx_rda_fail_cnt++; break; case 5: swstats->rx_unkn_prot_cnt++; break; case 6: swstats->rx_fcs_err_cnt++; break; case 7: swstats->rx_buf_size_err_cnt++; break; case 8: swstats->rx_rxd_corrupt_cnt++; break; case 15: swstats->rx_unkn_err_cnt++; break; } /* * Drop the packet if bad transfer code. Exception being * 0x5, which could be due to unsupported IPv6 extension header. * In this case, we let stack handle the packet. * Note that in this case, since checksum will be incorrect, * stack will validate the same. */ if (err_mask != 0x5) { DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n", dev->name, err_mask); dev->stats.rx_crc_errors++; swstats->mem_freed += skb->truesize; dev_kfree_skb(skb); ring_data->rx_bufs_left -= 1; rxdp->Host_Control = 0; return 0; } } rxdp->Host_Control = 0; if (sp->rxd_mode == RXD_MODE_1) { int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2); skb_put(skb, len); } else if (sp->rxd_mode == RXD_MODE_3B) { int get_block = ring_data->rx_curr_get_info.block_index; int get_off = ring_data->rx_curr_get_info.offset; int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2); int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2); unsigned char *buff = skb_push(skb, buf0_len); struct buffAdd *ba = &ring_data->ba[get_block][get_off]; memcpy(buff, ba->ba_0, buf0_len); skb_put(skb, buf2_len); } if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) || (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) && (dev->features & NETIF_F_RXCSUM)) { l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { /* * NIC verifies if the Checksum of the received * frame is Ok or not and accordingly returns * a flag in the RxD. */ skb->ip_summed = CHECKSUM_UNNECESSARY; if (ring_data->lro) { u32 tcp_len = 0; u8 *tcp; int ret = 0; ret = s2io_club_tcp_session(ring_data, skb->data, &tcp, &tcp_len, &lro, rxdp, sp); switch (ret) { case 3: /* Begin anew */ lro->parent = skb; goto aggregate; case 1: /* Aggregate */ lro_append_pkt(sp, lro, skb, tcp_len); goto aggregate; case 4: /* Flush session */ lro_append_pkt(sp, lro, skb, tcp_len); queue_rx_frame(lro->parent, lro->vlan_tag); clear_lro_session(lro); swstats->flush_max_pkts++; goto aggregate; case 2: /* Flush both */ lro->parent->data_len = lro->frags_len; swstats->sending_both++; queue_rx_frame(lro->parent, lro->vlan_tag); clear_lro_session(lro); goto send_up; case 0: /* sessions exceeded */ case -1: /* non-TCP or not L2 aggregatable */ case 5: /* * First pkt in session not * L3/L4 aggregatable */ break; default: DBG_PRINT(ERR_DBG, "%s: Samadhana!!\n", __func__); BUG(); } } } else { /* * Packet with erroneous checksum, let the * upper layers deal with it. */ skb_checksum_none_assert(skb); } } else skb_checksum_none_assert(skb); swstats->mem_freed += skb->truesize; send_up: skb_record_rx_queue(skb, ring_no); queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2)); aggregate: sp->mac_control.rings[ring_no].rx_bufs_left -= 1; return SUCCESS; } /** * s2io_link - stops/starts the Tx queue. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @link : inidicates whether link is UP/DOWN. * Description: * This function stops/starts the Tx queue depending on whether the link * status of the NIC is is down or up. This is called by the Alarm * interrupt handler whenever a link change interrupt comes up. * Return value: * void. */ static void s2io_link(struct s2io_nic *sp, int link) { struct net_device *dev = sp->dev; struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; if (link != sp->last_link_state) { init_tti(sp, link); if (link == LINK_DOWN) { DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); s2io_stop_all_tx_queue(sp); netif_carrier_off(dev); if (swstats->link_up_cnt) swstats->link_up_time = jiffies - sp->start_time; swstats->link_down_cnt++; } else { DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); if (swstats->link_down_cnt) swstats->link_down_time = jiffies - sp->start_time; swstats->link_up_cnt++; netif_carrier_on(dev); s2io_wake_all_tx_queue(sp); } } sp->last_link_state = link; sp->start_time = jiffies; } /** * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * Description: * This function initializes a few of the PCI and PCI-X configuration registers * with recommended values. * Return value: * void */ static void s2io_init_pci(struct s2io_nic *sp) { u16 pci_cmd = 0, pcix_cmd = 0; /* Enable Data Parity Error Recovery in PCI-X command register. */ pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pcix_cmd)); pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, (pcix_cmd | 1)); pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pcix_cmd)); /* Set the PErr Response bit in PCI command register. */ pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); pci_write_config_word(sp->pdev, PCI_COMMAND, (pci_cmd | PCI_COMMAND_PARITY)); pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); } static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type, u8 *dev_multiq) { int i; if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) { DBG_PRINT(ERR_DBG, "Requested number of tx fifos " "(%d) not supported\n", tx_fifo_num); if (tx_fifo_num < 1) tx_fifo_num = 1; else tx_fifo_num = MAX_TX_FIFOS; DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num); } if (multiq) *dev_multiq = multiq; if (tx_steering_type && (1 == tx_fifo_num)) { if (tx_steering_type != TX_DEFAULT_STEERING) DBG_PRINT(ERR_DBG, "Tx steering is not supported with " "one fifo. Disabling Tx steering.\n"); tx_steering_type = NO_STEERING; } if ((tx_steering_type < NO_STEERING) || (tx_steering_type > TX_DEFAULT_STEERING)) { DBG_PRINT(ERR_DBG, "Requested transmit steering not supported\n"); DBG_PRINT(ERR_DBG, "Disabling transmit steering\n"); tx_steering_type = NO_STEERING; } if (rx_ring_num > MAX_RX_RINGS) { DBG_PRINT(ERR_DBG, "Requested number of rx rings not supported\n"); DBG_PRINT(ERR_DBG, "Default to %d rx rings\n", MAX_RX_RINGS); rx_ring_num = MAX_RX_RINGS; } if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) { DBG_PRINT(ERR_DBG, "Wrong intr_type requested. " "Defaulting to INTA\n"); *dev_intr_type = INTA; } if ((*dev_intr_type == MSI_X) && ((pdev->device != PCI_DEVICE_ID_HERC_WIN) && (pdev->device != PCI_DEVICE_ID_HERC_UNI))) { DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. " "Defaulting to INTA\n"); *dev_intr_type = INTA; } if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) { DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n"); DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n"); rx_ring_mode = 1; } for (i = 0; i < MAX_RX_RINGS; i++) if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) { DBG_PRINT(ERR_DBG, "Requested rx ring size not " "supported\nDefaulting to %d\n", MAX_RX_BLOCKS_PER_RING); rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING; } return SUCCESS; } /** * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS * or Traffic class respectively. * @nic: device private variable * Description: The function configures the receive steering to * desired receive ring. * Return Value: SUCCESS on success and * '-1' on failure (endian settings incorrect). */ static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring) { struct XENA_dev_config __iomem *bar0 = nic->bar0; register u64 val64 = 0; if (ds_codepoint > 63) return FAILURE; val64 = RTS_DS_MEM_DATA(ring); writeq(val64, &bar0->rts_ds_mem_data); val64 = RTS_DS_MEM_CTRL_WE | RTS_DS_MEM_CTRL_STROBE_NEW_CMD | RTS_DS_MEM_CTRL_OFFSET(ds_codepoint); writeq(val64, &bar0->rts_ds_mem_ctrl); return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl, RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED, S2IO_BIT_RESET); } static const struct net_device_ops s2io_netdev_ops = { .ndo_open = s2io_open, .ndo_stop = s2io_close, .ndo_get_stats = s2io_get_stats, .ndo_start_xmit = s2io_xmit, .ndo_validate_addr = eth_validate_addr, .ndo_set_rx_mode = s2io_set_multicast, .ndo_do_ioctl = s2io_ioctl, .ndo_set_mac_address = s2io_set_mac_addr, .ndo_change_mtu = s2io_change_mtu, .ndo_set_features = s2io_set_features, .ndo_tx_timeout = s2io_tx_watchdog, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = s2io_netpoll, #endif }; /** * s2io_init_nic - Initialization of the adapter . * @pdev : structure containing the PCI related information of the device. * @pre: List of PCI devices supported by the driver listed in s2io_tbl. * Description: * The function initializes an adapter identified by the pci_dec structure. * All OS related initialization including memory and device structure and * initlaization of the device private variable is done. Also the swapper * control register is initialized to enable read and write into the I/O * registers of the device. * Return value: * returns 0 on success and negative on failure. */ static int s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) { struct s2io_nic *sp; struct net_device *dev; int i, j, ret; int dma_flag = false; u32 mac_up, mac_down; u64 val64 = 0, tmp64 = 0; struct XENA_dev_config __iomem *bar0 = NULL; u16 subid; struct config_param *config; struct mac_info *mac_control; int mode; u8 dev_intr_type = intr_type; u8 dev_multiq = 0; ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq); if (ret) return ret; ret = pci_enable_device(pdev); if (ret) { DBG_PRINT(ERR_DBG, "%s: pci_enable_device failed\n", __func__); return ret; } if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__); dma_flag = true; if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { DBG_PRINT(ERR_DBG, "Unable to obtain 64bit DMA " "for consistent allocations\n"); pci_disable_device(pdev); return -ENOMEM; } } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__); } else { pci_disable_device(pdev); return -ENOMEM; } ret = pci_request_regions(pdev, s2io_driver_name); if (ret) { DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n", __func__, ret); pci_disable_device(pdev); return -ENODEV; } if (dev_multiq) dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num); else dev = alloc_etherdev(sizeof(struct s2io_nic)); if (dev == NULL) { pci_disable_device(pdev); pci_release_regions(pdev); return -ENODEV; } pci_set_master(pdev); pci_set_drvdata(pdev, dev); SET_NETDEV_DEV(dev, &pdev->dev); /* Private member variable initialized to s2io NIC structure */ sp = netdev_priv(dev); sp->dev = dev; sp->pdev = pdev; sp->high_dma_flag = dma_flag; sp->device_enabled_once = false; if (rx_ring_mode == 1) sp->rxd_mode = RXD_MODE_1; if (rx_ring_mode == 2) sp->rxd_mode = RXD_MODE_3B; sp->config.intr_type = dev_intr_type; if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || (pdev->device == PCI_DEVICE_ID_HERC_UNI)) sp->device_type = XFRAME_II_DEVICE; else sp->device_type = XFRAME_I_DEVICE; /* Initialize some PCI/PCI-X fields of the NIC. */ s2io_init_pci(sp); /* * Setting the device configuration parameters. * Most of these parameters can be specified by the user during * module insertion as they are module loadable parameters. If * these parameters are not not specified during load time, they * are initialized with default values. */ config = &sp->config; mac_control = &sp->mac_control; config->napi = napi; config->tx_steering_type = tx_steering_type; /* Tx side parameters. */ if (config->tx_steering_type == TX_PRIORITY_STEERING) config->tx_fifo_num = MAX_TX_FIFOS; else config->tx_fifo_num = tx_fifo_num; /* Initialize the fifos used for tx steering */ if (config->tx_fifo_num < 5) { if (config->tx_fifo_num == 1) sp->total_tcp_fifos = 1; else sp->total_tcp_fifos = config->tx_fifo_num - 1; sp->udp_fifo_idx = config->tx_fifo_num - 1; sp->total_udp_fifos = 1; sp->other_fifo_idx = sp->total_tcp_fifos - 1; } else { sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM - FIFO_OTHER_MAX_NUM); sp->udp_fifo_idx = sp->total_tcp_fifos; sp->total_udp_fifos = FIFO_UDP_MAX_NUM; sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM; } config->multiq = dev_multiq; for (i = 0; i < config->tx_fifo_num; i++) { struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; tx_cfg->fifo_len = tx_fifo_len[i]; tx_cfg->fifo_priority = i; } /* mapping the QoS priority to the configured fifos */ for (i = 0; i < MAX_TX_FIFOS; i++) config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i]; /* map the hashing selector table to the configured fifos */ for (i = 0; i < config->tx_fifo_num; i++) sp->fifo_selector[i] = fifo_selector[i]; config->tx_intr_type = TXD_INT_TYPE_UTILZ; for (i = 0; i < config->tx_fifo_num; i++) { struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); if (tx_cfg->fifo_len < 65) { config->tx_intr_type = TXD_INT_TYPE_PER_LIST; break; } } /* + 2 because one Txd for skb->data and one Txd for UFO */ config->max_txds = MAX_SKB_FRAGS + 2; /* Rx side parameters. */ config->rx_ring_num = rx_ring_num; for (i = 0; i < config->rx_ring_num; i++) { struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; struct ring_info *ring = &mac_control->rings[i]; rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1); rx_cfg->ring_priority = i; ring->rx_bufs_left = 0; ring->rxd_mode = sp->rxd_mode; ring->rxd_count = rxd_count[sp->rxd_mode]; ring->pdev = sp->pdev; ring->dev = sp->dev; } for (i = 0; i < rx_ring_num; i++) { struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; rx_cfg->ring_org = RING_ORG_BUFF1; rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); } /* Setting Mac Control parameters */ mac_control->rmac_pause_time = rmac_pause_time; mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; /* initialize the shared memory used by the NIC and the host */ if (init_shared_mem(sp)) { DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name); ret = -ENOMEM; goto mem_alloc_failed; } sp->bar0 = pci_ioremap_bar(pdev, 0); if (!sp->bar0) { DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n", dev->name); ret = -ENOMEM; goto bar0_remap_failed; } sp->bar1 = pci_ioremap_bar(pdev, 2); if (!sp->bar1) { DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n", dev->name); ret = -ENOMEM; goto bar1_remap_failed; } /* Initializing the BAR1 address as the start of the FIFO pointer. */ for (j = 0; j < MAX_TX_FIFOS; j++) { mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000); } /* Driver entry points */ dev->netdev_ops = &s2io_netdev_ops; SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_RXCSUM | NETIF_F_LRO; dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; if (sp->device_type & XFRAME_II_DEVICE) { dev->hw_features |= NETIF_F_UFO; if (ufo) dev->features |= NETIF_F_UFO; } if (sp->high_dma_flag == true) dev->features |= NETIF_F_HIGHDMA; dev->watchdog_timeo = WATCH_DOG_TIMEOUT; INIT_WORK(&sp->rst_timer_task, s2io_restart_nic); INIT_WORK(&sp->set_link_task, s2io_set_link); pci_save_state(sp->pdev); /* Setting swapper control on the NIC, for proper reset operation */ if (s2io_set_swapper(sp)) { DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n", dev->name); ret = -EAGAIN; goto set_swap_failed; } /* Verify if the Herc works on the slot its placed into */ if (sp->device_type & XFRAME_II_DEVICE) { mode = s2io_verify_pci_mode(sp); if (mode < 0) { DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n", __func__); ret = -EBADSLT; goto set_swap_failed; } } if (sp->config.intr_type == MSI_X) { sp->num_entries = config->rx_ring_num + 1; ret = s2io_enable_msi_x(sp); if (!ret) { ret = s2io_test_msi(sp); /* rollback MSI-X, will re-enable during add_isr() */ remove_msix_isr(sp); } if (ret) { DBG_PRINT(ERR_DBG, "MSI-X requested but failed to enable\n"); sp->config.intr_type = INTA; } } if (config->intr_type == MSI_X) { for (i = 0; i < config->rx_ring_num ; i++) { struct ring_info *ring = &mac_control->rings[i]; netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64); } } else { netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64); } /* Not needed for Herc */ if (sp->device_type & XFRAME_I_DEVICE) { /* * Fix for all "FFs" MAC address problems observed on * Alpha platforms */ fix_mac_address(sp); s2io_reset(sp); } /* * MAC address initialization. * For now only one mac address will be read and used. */ bar0 = sp->bar0; val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET); writeq(val64, &bar0->rmac_addr_cmd_mem); wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET); tmp64 = readq(&bar0->rmac_addr_data0_mem); mac_down = (u32)tmp64; mac_up = (u32) (tmp64 >> 32); sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); /* Set the factory defined MAC address initially */ dev->addr_len = ETH_ALEN; memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); /* initialize number of multicast & unicast MAC entries variables */ if (sp->device_type == XFRAME_I_DEVICE) { config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES; config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES; config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET; } else if (sp->device_type == XFRAME_II_DEVICE) { config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES; config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES; config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET; } /* store mac addresses from CAM to s2io_nic structure */ do_s2io_store_unicast_mc(sp); /* Configure MSIX vector for number of rings configured plus one */ if ((sp->device_type == XFRAME_II_DEVICE) && (config->intr_type == MSI_X)) sp->num_entries = config->rx_ring_num + 1; /* Store the values of the MSIX table in the s2io_nic structure */ store_xmsi_data(sp); /* reset Nic and bring it to known state */ s2io_reset(sp); /* * Initialize link state flags * and the card state parameter */ sp->state = 0; /* Initialize spinlocks */ for (i = 0; i < sp->config.tx_fifo_num; i++) { struct fifo_info *fifo = &mac_control->fifos[i]; spin_lock_init(&fifo->tx_lock); } /* * SXE-002: Configure link and activity LED to init state * on driver load. */ subid = sp->pdev->subsystem_device; if ((subid & 0xFF) >= 0x07) { val64 = readq(&bar0->gpio_control); val64 |= 0x0000800000000000ULL; writeq(val64, &bar0->gpio_control); val64 = 0x0411040400000000ULL; writeq(val64, (void __iomem *)bar0 + 0x2700); val64 = readq(&bar0->gpio_control); } sp->rx_csum = 1; /* Rx chksum verify enabled by default */ if (register_netdev(dev)) { DBG_PRINT(ERR_DBG, "Device registration failed\n"); ret = -ENODEV; goto register_failed; } s2io_vpd_read(sp); DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n"); DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name, sp->product_name, pdev->revision); DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name, s2io_driver_version); DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr); DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num); if (sp->device_type & XFRAME_II_DEVICE) { mode = s2io_print_pci_mode(sp); if (mode < 0) { ret = -EBADSLT; unregister_netdev(dev); goto set_swap_failed; } } switch (sp->rxd_mode) { case RXD_MODE_1: DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n", dev->name); break; case RXD_MODE_3B: DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n", dev->name); break; } switch (sp->config.napi) { case 0: DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name); break; case 1: DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name); break; } DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name, sp->config.tx_fifo_num); DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name, sp->config.rx_ring_num); switch (sp->config.intr_type) { case INTA: DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name); break; case MSI_X: DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name); break; } if (sp->config.multiq) { for (i = 0; i < sp->config.tx_fifo_num; i++) { struct fifo_info *fifo = &mac_control->fifos[i]; fifo->multiq = config->multiq; } DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n", dev->name); } else DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n", dev->name); switch (sp->config.tx_steering_type) { case NO_STEERING: DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n", dev->name); break; case TX_PRIORITY_STEERING: DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for transmit\n", dev->name); break; case TX_DEFAULT_STEERING: DBG_PRINT(ERR_DBG, "%s: Default steering enabled for transmit\n", dev->name); } DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n", dev->name); if (ufo) DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO) enabled\n", dev->name); /* Initialize device name */ sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name); if (vlan_tag_strip) sp->vlan_strip_flag = 1; else sp->vlan_strip_flag = 0; /* * Make Link state as off at this point, when the Link change * interrupt comes the state will be automatically changed to * the right state. */ netif_carrier_off(dev); return 0; register_failed: set_swap_failed: iounmap(sp->bar1); bar1_remap_failed: iounmap(sp->bar0); bar0_remap_failed: mem_alloc_failed: free_shared_mem(sp); pci_disable_device(pdev); pci_release_regions(pdev); free_netdev(dev); return ret; } /** * s2io_rem_nic - Free the PCI device * @pdev: structure containing the PCI related information of the device. * Description: This function is called by the Pci subsystem to release a * PCI device and free up all resource held up by the device. This could * be in response to a Hot plug event or when the driver is to be removed * from memory. */ static void s2io_rem_nic(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct s2io_nic *sp; if (dev == NULL) { DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); return; } sp = netdev_priv(dev); cancel_work_sync(&sp->rst_timer_task); cancel_work_sync(&sp->set_link_task); unregister_netdev(dev); free_shared_mem(sp); iounmap(sp->bar0); iounmap(sp->bar1); pci_release_regions(pdev); free_netdev(dev); pci_disable_device(pdev); } /** * s2io_starter - Entry point for the driver * Description: This function is the entry point for the driver. It verifies * the module loadable parameters and initializes PCI configuration space. */ static int __init s2io_starter(void) { return pci_register_driver(&s2io_driver); } /** * s2io_closer - Cleanup routine for the driver * Description: This function is the cleanup routine for the driver. It * unregisters the driver. */ static __exit void s2io_closer(void) { pci_unregister_driver(&s2io_driver); DBG_PRINT(INIT_DBG, "cleanup done\n"); } module_init(s2io_starter); module_exit(s2io_closer); static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip, struct tcphdr **tcp, struct RxD_t *rxdp, struct s2io_nic *sp) { int ip_off; u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len; if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) { DBG_PRINT(INIT_DBG, "%s: Non-TCP frames not supported for LRO\n", __func__); return -1; } /* Checking for DIX type or DIX type with VLAN */ if ((l2_type == 0) || (l2_type == 4)) { ip_off = HEADER_ETHERNET_II_802_3_SIZE; /* * If vlan stripping is disabled and the frame is VLAN tagged, * shift the offset by the VLAN header size bytes. */ if ((!sp->vlan_strip_flag) && (rxdp->Control_1 & RXD_FRAME_VLAN_TAG)) ip_off += HEADER_VLAN_SIZE; } else { /* LLC, SNAP etc are considered non-mergeable */ return -1; } *ip = (struct iphdr *)(buffer + ip_off); ip_len = (u8)((*ip)->ihl); ip_len <<= 2; *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len); return 0; } static int check_for_socket_match(struct lro *lro, struct iphdr *ip, struct tcphdr *tcp) { DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) || (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest)) return -1; return 0; } static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp) { return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2); } static void initiate_new_session(struct lro *lro, u8 *l2h, struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag) { DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); lro->l2h = l2h; lro->iph = ip; lro->tcph = tcp; lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq); lro->tcp_ack = tcp->ack_seq; lro->sg_num = 1; lro->total_len = ntohs(ip->tot_len); lro->frags_len = 0; lro->vlan_tag = vlan_tag; /* * Check if we saw TCP timestamp. * Other consistency checks have already been done. */ if (tcp->doff == 8) { __be32 *ptr; ptr = (__be32 *)(tcp+1); lro->saw_ts = 1; lro->cur_tsval = ntohl(*(ptr+1)); lro->cur_tsecr = *(ptr+2); } lro->in_use = 1; } static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro) { struct iphdr *ip = lro->iph; struct tcphdr *tcp = lro->tcph; struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); /* Update L3 header */ csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len)); ip->tot_len = htons(lro->total_len); /* Update L4 header */ tcp->ack_seq = lro->tcp_ack; tcp->window = lro->window; /* Update tsecr field if this session has timestamps enabled */ if (lro->saw_ts) { __be32 *ptr = (__be32 *)(tcp + 1); *(ptr+2) = lro->cur_tsecr; } /* Update counters required for calculation of * average no. of packets aggregated. */ swstats->sum_avg_pkts_aggregated += lro->sg_num; swstats->num_aggregations++; } static void aggregate_new_rx(struct lro *lro, struct iphdr *ip, struct tcphdr *tcp, u32 l4_pyld) { DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); lro->total_len += l4_pyld; lro->frags_len += l4_pyld; lro->tcp_next_seq += l4_pyld; lro->sg_num++; /* Update ack seq no. and window ad(from this pkt) in LRO object */ lro->tcp_ack = tcp->ack_seq; lro->window = tcp->window; if (lro->saw_ts) { __be32 *ptr; /* Update tsecr and tsval from this packet */ ptr = (__be32 *)(tcp+1); lro->cur_tsval = ntohl(*(ptr+1)); lro->cur_tsecr = *(ptr + 2); } } static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len) { u8 *ptr; DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); if (!tcp_pyld_len) { /* Runt frame or a pure ack */ return -1; } if (ip->ihl != 5) /* IP has options */ return -1; /* If we see CE codepoint in IP header, packet is not mergeable */ if (INET_ECN_is_ce(ipv4_get_dsfield(ip))) return -1; /* If we see ECE or CWR flags in TCP header, packet is not mergeable */ if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin || tcp->ece || tcp->cwr || !tcp->ack) { /* * Currently recognize only the ack control word and * any other control field being set would result in * flushing the LRO session */ return -1; } /* * Allow only one TCP timestamp option. Don't aggregate if * any other options are detected. */ if (tcp->doff != 5 && tcp->doff != 8) return -1; if (tcp->doff == 8) { ptr = (u8 *)(tcp + 1); while (*ptr == TCPOPT_NOP) ptr++; if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP) return -1; /* Ensure timestamp value increases monotonically */ if (l_lro) if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2)))) return -1; /* timestamp echo reply should be non-zero */ if (*((__be32 *)(ptr+6)) == 0) return -1; } return 0; } static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp, struct s2io_nic *sp) { struct iphdr *ip; struct tcphdr *tcph; int ret = 0, i; u16 vlan_tag = 0; struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp, rxdp, sp); if (ret) return ret; DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr); vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2); tcph = (struct tcphdr *)*tcp; *tcp_len = get_l4_pyld_length(ip, tcph); for (i = 0; i < MAX_LRO_SESSIONS; i++) { struct lro *l_lro = &ring_data->lro0_n[i]; if (l_lro->in_use) { if (check_for_socket_match(l_lro, ip, tcph)) continue; /* Sock pair matched */ *lro = l_lro; if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) { DBG_PRINT(INFO_DBG, "%s: Out of sequence. " "expected 0x%x, actual 0x%x\n", __func__, (*lro)->tcp_next_seq, ntohl(tcph->seq)); swstats->outof_sequence_pkts++; ret = 2; break; } if (!verify_l3_l4_lro_capable(l_lro, ip, tcph, *tcp_len)) ret = 1; /* Aggregate */ else ret = 2; /* Flush both */ break; } } if (ret == 0) { /* Before searching for available LRO objects, * check if the pkt is L3/L4 aggregatable. If not * don't create new LRO session. Just send this * packet up. */ if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) return 5; for (i = 0; i < MAX_LRO_SESSIONS; i++) { struct lro *l_lro = &ring_data->lro0_n[i]; if (!(l_lro->in_use)) { *lro = l_lro; ret = 3; /* Begin anew */ break; } } } if (ret == 0) { /* sessions exceeded */ DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n", __func__); *lro = NULL; return ret; } switch (ret) { case 3: initiate_new_session(*lro, buffer, ip, tcph, *tcp_len, vlan_tag); break; case 2: update_L3L4_header(sp, *lro); break; case 1: aggregate_new_rx(*lro, ip, tcph, *tcp_len); if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) { update_L3L4_header(sp, *lro); ret = 4; /* Flush the LRO */ } break; default: DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__); break; } return ret; } static void clear_lro_session(struct lro *lro) { static u16 lro_struct_size = sizeof(struct lro); memset(lro, 0, lro_struct_size); } static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag) { struct net_device *dev = skb->dev; struct s2io_nic *sp = netdev_priv(dev); skb->protocol = eth_type_trans(skb, dev); if (vlan_tag && sp->vlan_strip_flag) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); if (sp->config.napi) netif_receive_skb(skb); else netif_rx(skb); } static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro, struct sk_buff *skb, u32 tcp_len) { struct sk_buff *first = lro->parent; struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; first->len += tcp_len; first->data_len = lro->frags_len; skb_pull(skb, (skb->len - tcp_len)); if (skb_shinfo(first)->frag_list) lro->last_frag->next = skb; else skb_shinfo(first)->frag_list = skb; first->truesize += skb->truesize; lro->last_frag = skb; swstats->clubbed_frms_cnt++; } /** * s2io_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device * @state: The current pci connection state * * This function is called after a PCI bus error affecting * this device has been detected. */ static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct s2io_nic *sp = netdev_priv(netdev); netif_device_detach(netdev); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; if (netif_running(netdev)) { /* Bring down the card, while avoiding PCI I/O */ do_s2io_card_down(sp, 0); } pci_disable_device(pdev); return PCI_ERS_RESULT_NEED_RESET; } /** * s2io_io_slot_reset - called after the pci bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch, as if from a cold-boot. * At this point, the card has exprienced a hard reset, * followed by fixups by BIOS, and has its config space * set up identically to what it was at cold boot. */ static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct s2io_nic *sp = netdev_priv(netdev); if (pci_enable_device(pdev)) { pr_err("Cannot re-enable PCI device after reset.\n"); return PCI_ERS_RESULT_DISCONNECT; } pci_set_master(pdev); s2io_reset(sp); return PCI_ERS_RESULT_RECOVERED; } /** * s2io_io_resume - called when traffic can start flowing again. * @pdev: Pointer to PCI device * * This callback is called when the error recovery driver tells * us that its OK to resume normal operation. */ static void s2io_io_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct s2io_nic *sp = netdev_priv(netdev); if (netif_running(netdev)) { if (s2io_card_up(sp)) { pr_err("Can't bring device back up after reset.\n"); return; } if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) { s2io_card_down(sp); pr_err("Can't restore mac addr after reset.\n"); return; } } netif_device_attach(netdev); netif_tx_wake_all_queues(netdev); }