/* ** hp100.c ** HP CASCADE Architecture Driver for 100VG-AnyLan Network Adapters ** ** $Id: hp100.c,v 1.58 2001/09/24 18:03:01 perex Exp perex $ ** ** Based on the HP100 driver written by Jaroslav Kysela <perex@jcu.cz> ** Extended for new busmaster capable chipsets by ** Siegfried "Frieder" Loeffler (dg1sek) <floeff@mathematik.uni-stuttgart.de> ** ** Maintained by: Jaroslav Kysela <perex@perex.cz> ** ** This driver has only been tested with ** -- HP J2585B 10/100 Mbit/s PCI Busmaster ** -- HP J2585A 10/100 Mbit/s PCI ** -- HP J2970A 10 Mbit/s PCI Combo 10base-T/BNC ** -- HP J2973A 10 Mbit/s PCI 10base-T ** -- HP J2573 10/100 ISA ** -- Compex ReadyLink ENET100-VG4 10/100 Mbit/s PCI / EISA ** -- Compex FreedomLine 100/VG 10/100 Mbit/s ISA / EISA / PCI ** ** but it should also work with the other CASCADE based adapters. ** ** TODO: ** - J2573 seems to hang sometimes when in shared memory mode. ** - Mode for Priority TX ** - Check PCI registers, performance might be improved? ** - To reduce interrupt load in busmaster, one could switch off ** the interrupts that are used to refill the queues whenever the ** queues are filled up to more than a certain threshold. ** - some updates for EISA version of card ** ** ** This code is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This code is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ** ** 1.57c -> 1.58 ** - used indent to change coding-style ** - added KTI DP-200 EISA ID ** - ioremap is also used for low (<1MB) memory (multi-architecture support) ** ** 1.57b -> 1.57c - Arnaldo Carvalho de Melo <acme@conectiva.com.br> ** - release resources on failure in init_module ** ** 1.57 -> 1.57b - Jean II ** - fix spinlocks, SMP is now working ! ** ** 1.56 -> 1.57 ** - updates for new PCI interface for 2.1 kernels ** ** 1.55 -> 1.56 ** - removed printk in misc. interrupt and update statistics to allow ** monitoring of card status ** - timing changes in xmit routines, relogin to 100VG hub added when ** driver does reset ** - included fix for Compex FreedomLine PCI adapter ** ** 1.54 -> 1.55 ** - fixed bad initialization in init_module ** - added Compex FreedomLine adapter ** - some fixes in card initialization ** ** 1.53 -> 1.54 ** - added hardware multicast filter support (doesn't work) ** - little changes in hp100_sense_lan routine ** - added support for Coax and AUI (J2970) ** - fix for multiple cards and hp100_mode parameter (insmod) ** - fix for shared IRQ ** ** 1.52 -> 1.53 ** - fixed bug in multicast support ** */ #define HP100_DEFAULT_PRIORITY_TX 0 #undef HP100_DEBUG #undef HP100_DEBUG_B /* Trace */ #undef HP100_DEBUG_BM /* Debug busmaster code (PDL stuff) */ #undef HP100_DEBUG_TRAINING /* Debug login-to-hub procedure */ #undef HP100_DEBUG_TX #undef HP100_DEBUG_IRQ #undef HP100_DEBUG_RX #undef HP100_MULTICAST_FILTER /* Need to be debugged... */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/interrupt.h> #include <linux/eisa.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/spinlock.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/bitops.h> #include <linux/jiffies.h> #include <asm/io.h> #include "hp100.h" /* * defines */ #define HP100_BUS_ISA 0 #define HP100_BUS_EISA 1 #define HP100_BUS_PCI 2 #define HP100_REGION_SIZE 0x20 /* for ioports */ #define HP100_SIG_LEN 8 /* same as EISA_SIG_LEN */ #define HP100_MAX_PACKET_SIZE (1536+4) #define HP100_MIN_PACKET_SIZE 60 #ifndef HP100_DEFAULT_RX_RATIO /* default - 75% onboard memory on the card are used for RX packets */ #define HP100_DEFAULT_RX_RATIO 75 #endif #ifndef HP100_DEFAULT_PRIORITY_TX /* default - don't enable transmit outgoing packets as priority */ #define HP100_DEFAULT_PRIORITY_TX 0 #endif /* * structures */ struct hp100_private { spinlock_t lock; char id[HP100_SIG_LEN]; u_short chip; u_short soft_model; u_int memory_size; u_int virt_memory_size; u_short rx_ratio; /* 1 - 99 */ u_short priority_tx; /* != 0 - priority tx */ u_short mode; /* PIO, Shared Mem or Busmaster */ u_char bus; struct pci_dev *pci_dev; short mem_mapped; /* memory mapped access */ void __iomem *mem_ptr_virt; /* virtual memory mapped area, maybe NULL */ unsigned long mem_ptr_phys; /* physical memory mapped area */ short lan_type; /* 10Mb/s, 100Mb/s or -1 (error) */ int hub_status; /* was login to hub successful? */ u_char mac1_mode; u_char mac2_mode; u_char hash_bytes[8]; /* Rings for busmaster mode: */ hp100_ring_t *rxrhead; /* Head (oldest) index into rxring */ hp100_ring_t *rxrtail; /* Tail (newest) index into rxring */ hp100_ring_t *txrhead; /* Head (oldest) index into txring */ hp100_ring_t *txrtail; /* Tail (newest) index into txring */ hp100_ring_t rxring[MAX_RX_PDL]; hp100_ring_t txring[MAX_TX_PDL]; u_int *page_vaddr_algn; /* Aligned virtual address of allocated page */ u_long whatever_offset; /* Offset to bus/phys/dma address */ int rxrcommit; /* # Rx PDLs committed to adapter */ int txrcommit; /* # Tx PDLs committed to adapter */ }; /* * variables */ #ifdef CONFIG_ISA static const char *hp100_isa_tbl[] = { "HWPF150", /* HP J2573 rev A */ "HWP1950", /* HP J2573 */ }; #endif #ifdef CONFIG_EISA static struct eisa_device_id hp100_eisa_tbl[] = { { "HWPF180" }, /* HP J2577 rev A */ { "HWP1920" }, /* HP 27248B */ { "HWP1940" }, /* HP J2577 */ { "HWP1990" }, /* HP J2577 */ { "CPX0301" }, /* ReadyLink ENET100-VG4 */ { "CPX0401" }, /* FreedomLine 100/VG */ { "" } /* Mandatory final entry ! */ }; MODULE_DEVICE_TABLE(eisa, hp100_eisa_tbl); #endif #ifdef CONFIG_PCI static DEFINE_PCI_DEVICE_TABLE(hp100_pci_tbl) = { {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_J2585A, PCI_ANY_ID, PCI_ANY_ID,}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_J2585B, PCI_ANY_ID, PCI_ANY_ID,}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_J2970A, PCI_ANY_ID, PCI_ANY_ID,}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_J2973A, PCI_ANY_ID, PCI_ANY_ID,}, {PCI_VENDOR_ID_COMPEX, PCI_DEVICE_ID_COMPEX_ENET100VG4, PCI_ANY_ID, PCI_ANY_ID,}, {PCI_VENDOR_ID_COMPEX2, PCI_DEVICE_ID_COMPEX2_100VG, PCI_ANY_ID, PCI_ANY_ID,}, /* {PCI_VENDOR_ID_KTI, PCI_DEVICE_ID_KTI_DP200, PCI_ANY_ID, PCI_ANY_ID }, */ {} /* Terminating entry */ }; MODULE_DEVICE_TABLE(pci, hp100_pci_tbl); #endif static int hp100_rx_ratio = HP100_DEFAULT_RX_RATIO; static int hp100_priority_tx = HP100_DEFAULT_PRIORITY_TX; static int hp100_mode = 1; module_param(hp100_rx_ratio, int, 0); module_param(hp100_priority_tx, int, 0); module_param(hp100_mode, int, 0); /* * prototypes */ static int hp100_probe1(struct net_device *dev, int ioaddr, u_char bus, struct pci_dev *pci_dev); static int hp100_open(struct net_device *dev); static int hp100_close(struct net_device *dev); static netdev_tx_t hp100_start_xmit(struct sk_buff *skb, struct net_device *dev); static netdev_tx_t hp100_start_xmit_bm(struct sk_buff *skb, struct net_device *dev); static void hp100_rx(struct net_device *dev); static struct net_device_stats *hp100_get_stats(struct net_device *dev); static void hp100_misc_interrupt(struct net_device *dev); static void hp100_update_stats(struct net_device *dev); static void hp100_clear_stats(struct hp100_private *lp, int ioaddr); static void hp100_set_multicast_list(struct net_device *dev); static irqreturn_t hp100_interrupt(int irq, void *dev_id); static void hp100_start_interface(struct net_device *dev); static void hp100_stop_interface(struct net_device *dev); static void hp100_load_eeprom(struct net_device *dev, u_short ioaddr); static int hp100_sense_lan(struct net_device *dev); static int hp100_login_to_vg_hub(struct net_device *dev, u_short force_relogin); static int hp100_down_vg_link(struct net_device *dev); static void hp100_cascade_reset(struct net_device *dev, u_short enable); static void hp100_BM_shutdown(struct net_device *dev); static void hp100_mmuinit(struct net_device *dev); static void hp100_init_pdls(struct net_device *dev); static int hp100_init_rxpdl(struct net_device *dev, register hp100_ring_t * ringptr, register u_int * pdlptr); static int hp100_init_txpdl(struct net_device *dev, register hp100_ring_t * ringptr, register u_int * pdlptr); static void hp100_rxfill(struct net_device *dev); static void hp100_hwinit(struct net_device *dev); static void hp100_clean_txring(struct net_device *dev); #ifdef HP100_DEBUG static void hp100_RegisterDump(struct net_device *dev); #endif /* Conversion to new PCI API : * Convert an address in a kernel buffer to a bus/phys/dma address. * This work *only* for memory fragments part of lp->page_vaddr, * because it was properly DMA allocated via pci_alloc_consistent(), * so we just need to "retrieve" the original mapping to bus/phys/dma * address - Jean II */ static inline dma_addr_t virt_to_whatever(struct net_device *dev, u32 * ptr) { struct hp100_private *lp = netdev_priv(dev); return ((u_long) ptr) + lp->whatever_offset; } static inline u_int pdl_map_data(struct hp100_private *lp, void *data) { return pci_map_single(lp->pci_dev, data, MAX_ETHER_SIZE, PCI_DMA_FROMDEVICE); } /* TODO: This function should not really be needed in a good design... */ static void wait(void) { mdelay(1); } /* * probe functions * These functions should - if possible - avoid doing write operations * since this could cause problems when the card is not installed. */ /* * Read board id and convert to string. * Effectively same code as decode_eisa_sig */ static const char *hp100_read_id(int ioaddr) { int i; static char str[HP100_SIG_LEN]; unsigned char sig[4], sum; unsigned short rev; hp100_page(ID_MAC_ADDR); sum = 0; for (i = 0; i < 4; i++) { sig[i] = hp100_inb(BOARD_ID + i); sum += sig[i]; } sum += hp100_inb(BOARD_ID + i); if (sum != 0xff) return NULL; /* bad checksum */ str[0] = ((sig[0] >> 2) & 0x1f) + ('A' - 1); str[1] = (((sig[0] & 3) << 3) | (sig[1] >> 5)) + ('A' - 1); str[2] = (sig[1] & 0x1f) + ('A' - 1); rev = (sig[2] << 8) | sig[3]; sprintf(str + 3, "%04X", rev); return str; } #ifdef CONFIG_ISA static __init int hp100_isa_probe1(struct net_device *dev, int ioaddr) { const char *sig; int i; if (!request_region(ioaddr, HP100_REGION_SIZE, "hp100")) goto err; if (hp100_inw(HW_ID) != HP100_HW_ID_CASCADE) { release_region(ioaddr, HP100_REGION_SIZE); goto err; } sig = hp100_read_id(ioaddr); release_region(ioaddr, HP100_REGION_SIZE); if (sig == NULL) goto err; for (i = 0; i < ARRAY_SIZE(hp100_isa_tbl); i++) { if (!strcmp(hp100_isa_tbl[i], sig)) break; } if (i < ARRAY_SIZE(hp100_isa_tbl)) return hp100_probe1(dev, ioaddr, HP100_BUS_ISA, NULL); err: return -ENODEV; } /* * Probe for ISA board. * EISA and PCI are handled by device infrastructure. */ static int __init hp100_isa_probe(struct net_device *dev, int addr) { int err = -ENODEV; /* Probe for a specific ISA address */ if (addr > 0xff && addr < 0x400) err = hp100_isa_probe1(dev, addr); else if (addr != 0) err = -ENXIO; else { /* Probe all ISA possible port regions */ for (addr = 0x100; addr < 0x400; addr += 0x20) { err = hp100_isa_probe1(dev, addr); if (!err) break; } } return err; } #endif /* CONFIG_ISA */ #if !defined(MODULE) && defined(CONFIG_ISA) struct net_device * __init hp100_probe(int unit) { struct net_device *dev = alloc_etherdev(sizeof(struct hp100_private)); int err; if (!dev) return ERR_PTR(-ENODEV); #ifdef HP100_DEBUG_B hp100_outw(0x4200, TRACE); printk("hp100: %s: probe\n", dev->name); #endif if (unit >= 0) { sprintf(dev->name, "eth%d", unit); netdev_boot_setup_check(dev); } err = hp100_isa_probe(dev, dev->base_addr); if (err) goto out; return dev; out: free_netdev(dev); return ERR_PTR(err); } #endif /* !MODULE && CONFIG_ISA */ static const struct net_device_ops hp100_bm_netdev_ops = { .ndo_open = hp100_open, .ndo_stop = hp100_close, .ndo_start_xmit = hp100_start_xmit_bm, .ndo_get_stats = hp100_get_stats, .ndo_set_rx_mode = hp100_set_multicast_list, .ndo_change_mtu = eth_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static const struct net_device_ops hp100_netdev_ops = { .ndo_open = hp100_open, .ndo_stop = hp100_close, .ndo_start_xmit = hp100_start_xmit, .ndo_get_stats = hp100_get_stats, .ndo_set_rx_mode = hp100_set_multicast_list, .ndo_change_mtu = eth_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static int hp100_probe1(struct net_device *dev, int ioaddr, u_char bus, struct pci_dev *pci_dev) { int i; int err = -ENODEV; const char *eid; u_int chip; u_char uc; u_int memory_size = 0, virt_memory_size = 0; u_short local_mode, lsw; short mem_mapped; unsigned long mem_ptr_phys; void __iomem *mem_ptr_virt; struct hp100_private *lp; #ifdef HP100_DEBUG_B hp100_outw(0x4201, TRACE); printk("hp100: %s: probe1\n", dev->name); #endif /* memory region for programmed i/o */ if (!request_region(ioaddr, HP100_REGION_SIZE, "hp100")) goto out1; if (hp100_inw(HW_ID) != HP100_HW_ID_CASCADE) goto out2; chip = hp100_inw(PAGING) & HP100_CHIPID_MASK; #ifdef HP100_DEBUG if (chip == HP100_CHIPID_SHASTA) printk("hp100: %s: Shasta Chip detected. (This is a pre 802.12 chip)\n", dev->name); else if (chip == HP100_CHIPID_RAINIER) printk("hp100: %s: Rainier Chip detected. (This is a pre 802.12 chip)\n", dev->name); else if (chip == HP100_CHIPID_LASSEN) printk("hp100: %s: Lassen Chip detected.\n", dev->name); else printk("hp100: %s: Warning: Unknown CASCADE chip (id=0x%.4x).\n", dev->name, chip); #endif dev->base_addr = ioaddr; eid = hp100_read_id(ioaddr); if (eid == NULL) { /* bad checksum? */ printk(KERN_WARNING "hp100_probe: bad ID checksum at base port 0x%x\n", ioaddr); goto out2; } hp100_page(ID_MAC_ADDR); for (i = uc = 0; i < 7; i++) uc += hp100_inb(LAN_ADDR + i); if (uc != 0xff) { printk(KERN_WARNING "hp100_probe: bad lan address checksum at port 0x%x)\n", ioaddr); err = -EIO; goto out2; } /* Make sure, that all registers are correctly updated... */ hp100_load_eeprom(dev, ioaddr); wait(); /* * Determine driver operation mode * * Use the variable "hp100_mode" upon insmod or as kernel parameter to * force driver modes: * hp100_mode=1 -> default, use busmaster mode if configured. * hp100_mode=2 -> enable shared memory mode * hp100_mode=3 -> force use of i/o mapped mode. * hp100_mode=4 -> same as 1, but re-set the enable bit on the card. */ /* * LSW values: * 0x2278 -> J2585B, PnP shared memory mode * 0x2270 -> J2585B, shared memory mode, 0xdc000 * 0xa23c -> J2585B, I/O mapped mode * 0x2240 -> EISA COMPEX, BusMaster (Shasta Chip) * 0x2220 -> EISA HP, I/O (Shasta Chip) * 0x2260 -> EISA HP, BusMaster (Shasta Chip) */ #if 0 local_mode = 0x2270; hp100_outw(0xfefe, OPTION_LSW); hp100_outw(local_mode | HP100_SET_LB | HP100_SET_HB, OPTION_LSW); #endif /* hp100_mode value maybe used in future by another card */ local_mode = hp100_mode; if (local_mode < 1 || local_mode > 4) local_mode = 1; /* default */ #ifdef HP100_DEBUG printk("hp100: %s: original LSW = 0x%x\n", dev->name, hp100_inw(OPTION_LSW)); #endif if (local_mode == 3) { hp100_outw(HP100_MEM_EN | HP100_RESET_LB, OPTION_LSW); hp100_outw(HP100_IO_EN | HP100_SET_LB, OPTION_LSW); hp100_outw(HP100_BM_WRITE | HP100_BM_READ | HP100_RESET_HB, OPTION_LSW); printk("hp100: IO mapped mode forced.\n"); } else if (local_mode == 2) { hp100_outw(HP100_MEM_EN | HP100_SET_LB, OPTION_LSW); hp100_outw(HP100_IO_EN | HP100_SET_LB, OPTION_LSW); hp100_outw(HP100_BM_WRITE | HP100_BM_READ | HP100_RESET_HB, OPTION_LSW); printk("hp100: Shared memory mode requested.\n"); } else if (local_mode == 4) { if (chip == HP100_CHIPID_LASSEN) { hp100_outw(HP100_BM_WRITE | HP100_BM_READ | HP100_SET_HB, OPTION_LSW); hp100_outw(HP100_IO_EN | HP100_MEM_EN | HP100_RESET_LB, OPTION_LSW); printk("hp100: Busmaster mode requested.\n"); } local_mode = 1; } if (local_mode == 1) { /* default behaviour */ lsw = hp100_inw(OPTION_LSW); if ((lsw & HP100_IO_EN) && (~lsw & HP100_MEM_EN) && (~lsw & (HP100_BM_WRITE | HP100_BM_READ))) { #ifdef HP100_DEBUG printk("hp100: %s: IO_EN bit is set on card.\n", dev->name); #endif local_mode = 3; } else if (chip == HP100_CHIPID_LASSEN && (lsw & (HP100_BM_WRITE | HP100_BM_READ)) == (HP100_BM_WRITE | HP100_BM_READ)) { /* Conversion to new PCI API : * I don't have the doc, but I assume that the card * can map the full 32bit address space. * Also, we can have EISA Busmaster cards (not tested), * so beware !!! - Jean II */ if((bus == HP100_BUS_PCI) && (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32)))) { /* Gracefully fallback to shared memory */ goto busmasterfail; } printk("hp100: Busmaster mode enabled.\n"); hp100_outw(HP100_MEM_EN | HP100_IO_EN | HP100_RESET_LB, OPTION_LSW); } else { busmasterfail: #ifdef HP100_DEBUG printk("hp100: %s: Card not configured for BM or BM not supported with this card.\n", dev->name); printk("hp100: %s: Trying shared memory mode.\n", dev->name); #endif /* In this case, try shared memory mode */ local_mode = 2; hp100_outw(HP100_MEM_EN | HP100_SET_LB, OPTION_LSW); /* hp100_outw(HP100_IO_EN|HP100_RESET_LB, OPTION_LSW); */ } } #ifdef HP100_DEBUG printk("hp100: %s: new LSW = 0x%x\n", dev->name, hp100_inw(OPTION_LSW)); #endif /* Check for shared memory on the card, eventually remap it */ hp100_page(HW_MAP); mem_mapped = ((hp100_inw(OPTION_LSW) & (HP100_MEM_EN)) != 0); mem_ptr_phys = 0UL; mem_ptr_virt = NULL; memory_size = (8192 << ((hp100_inb(SRAM) >> 5) & 0x07)); virt_memory_size = 0; /* For memory mapped or busmaster mode, we want the memory address */ if (mem_mapped || (local_mode == 1)) { mem_ptr_phys = (hp100_inw(MEM_MAP_LSW) | (hp100_inw(MEM_MAP_MSW) << 16)); mem_ptr_phys &= ~0x1fff; /* 8k alignment */ if (bus == HP100_BUS_ISA && (mem_ptr_phys & ~0xfffff) != 0) { printk("hp100: Can only use programmed i/o mode.\n"); mem_ptr_phys = 0; mem_mapped = 0; local_mode = 3; /* Use programmed i/o */ } /* We do not need access to shared memory in busmaster mode */ /* However in slave mode we need to remap high (>1GB) card memory */ if (local_mode != 1) { /* = not busmaster */ /* We try with smaller memory sizes, if ioremap fails */ for (virt_memory_size = memory_size; virt_memory_size > 16383; virt_memory_size >>= 1) { if ((mem_ptr_virt = ioremap((u_long) mem_ptr_phys, virt_memory_size)) == NULL) { #ifdef HP100_DEBUG printk("hp100: %s: ioremap for 0x%x bytes high PCI memory at 0x%lx failed\n", dev->name, virt_memory_size, mem_ptr_phys); #endif } else { #ifdef HP100_DEBUG printk("hp100: %s: remapped 0x%x bytes high PCI memory at 0x%lx to %p.\n", dev->name, virt_memory_size, mem_ptr_phys, mem_ptr_virt); #endif break; } } if (mem_ptr_virt == NULL) { /* all ioremap tries failed */ printk("hp100: Failed to ioremap the PCI card memory. Will have to use i/o mapped mode.\n"); local_mode = 3; virt_memory_size = 0; } } } if (local_mode == 3) { /* io mapped forced */ mem_mapped = 0; mem_ptr_phys = 0; mem_ptr_virt = NULL; printk("hp100: Using (slow) programmed i/o mode.\n"); } /* Initialise the "private" data structure for this card. */ lp = netdev_priv(dev); spin_lock_init(&lp->lock); strlcpy(lp->id, eid, HP100_SIG_LEN); lp->chip = chip; lp->mode = local_mode; lp->bus = bus; lp->pci_dev = pci_dev; lp->priority_tx = hp100_priority_tx; lp->rx_ratio = hp100_rx_ratio; lp->mem_ptr_phys = mem_ptr_phys; lp->mem_ptr_virt = mem_ptr_virt; hp100_page(ID_MAC_ADDR); lp->soft_model = hp100_inb(SOFT_MODEL); lp->mac1_mode = HP100_MAC1MODE3; lp->mac2_mode = HP100_MAC2MODE3; memset(&lp->hash_bytes, 0x00, 8); dev->base_addr = ioaddr; lp->memory_size = memory_size; lp->virt_memory_size = virt_memory_size; lp->rx_ratio = hp100_rx_ratio; /* can be conf'd with insmod */ if (lp->mode == 1) /* busmaster */ dev->netdev_ops = &hp100_bm_netdev_ops; else dev->netdev_ops = &hp100_netdev_ops; /* Ask the card for which IRQ line it is configured */ if (bus == HP100_BUS_PCI) { dev->irq = pci_dev->irq; } else { hp100_page(HW_MAP); dev->irq = hp100_inb(IRQ_CHANNEL) & HP100_IRQMASK; if (dev->irq == 2) dev->irq = 9; } if (lp->mode == 1) /* busmaster */ dev->dma = 4; /* Ask the card for its MAC address and store it for later use. */ hp100_page(ID_MAC_ADDR); for (i = uc = 0; i < 6; i++) dev->dev_addr[i] = hp100_inb(LAN_ADDR + i); /* Reset statistics (counters) */ hp100_clear_stats(lp, ioaddr); /* If busmaster mode is wanted, a dma-capable memory area is needed for * the rx and tx PDLs * PCI cards can access the whole PC memory. Therefore GFP_DMA is not * needed for the allocation of the memory area. */ /* TODO: We do not need this with old cards, where PDLs are stored * in the cards shared memory area. But currently, busmaster has been * implemented/tested only with the lassen chip anyway... */ if (lp->mode == 1) { /* busmaster */ dma_addr_t page_baddr; /* Get physically continuous memory for TX & RX PDLs */ /* Conversion to new PCI API : * Pages are always aligned and zeroed, no need to it ourself. * Doc says should be OK for EISA bus as well - Jean II */ lp->page_vaddr_algn = pci_alloc_consistent(lp->pci_dev, MAX_RINGSIZE, &page_baddr); if (!lp->page_vaddr_algn) { err = -ENOMEM; goto out_mem_ptr; } lp->whatever_offset = ((u_long) page_baddr) - ((u_long) lp->page_vaddr_algn); #ifdef HP100_DEBUG_BM printk("hp100: %s: Reserved DMA memory from 0x%x to 0x%x\n", dev->name, (u_int) lp->page_vaddr_algn, (u_int) lp->page_vaddr_algn + MAX_RINGSIZE); #endif lp->rxrcommit = lp->txrcommit = 0; lp->rxrhead = lp->rxrtail = &(lp->rxring[0]); lp->txrhead = lp->txrtail = &(lp->txring[0]); } /* Initialise the card. */ /* (I'm not really sure if it's a good idea to do this during probing, but * like this it's assured that the lan connection type can be sensed * correctly) */ hp100_hwinit(dev); /* Try to find out which kind of LAN the card is connected to. */ lp->lan_type = hp100_sense_lan(dev); /* Print out a message what about what we think we have probed. */ printk("hp100: at 0x%x, IRQ %d, ", ioaddr, dev->irq); switch (bus) { case HP100_BUS_EISA: printk("EISA"); break; case HP100_BUS_PCI: printk("PCI"); break; default: printk("ISA"); break; } printk(" bus, %dk SRAM (rx/tx %d%%).\n", lp->memory_size >> 10, lp->rx_ratio); if (lp->mode == 2) { /* memory mapped */ printk("hp100: Memory area at 0x%lx-0x%lx", mem_ptr_phys, (mem_ptr_phys + (mem_ptr_phys > 0x100000 ? (u_long) lp->memory_size : 16 * 1024)) - 1); if (mem_ptr_virt) printk(" (virtual base %p)", mem_ptr_virt); printk(".\n"); /* Set for info when doing ifconfig */ dev->mem_start = mem_ptr_phys; dev->mem_end = mem_ptr_phys + lp->memory_size; } printk("hp100: "); if (lp->lan_type != HP100_LAN_ERR) printk("Adapter is attached to "); switch (lp->lan_type) { case HP100_LAN_100: printk("100Mb/s Voice Grade AnyLAN network.\n"); break; case HP100_LAN_10: printk("10Mb/s network (10baseT).\n"); break; case HP100_LAN_COAX: printk("10Mb/s network (coax).\n"); break; default: printk("Warning! Link down.\n"); } err = register_netdev(dev); if (err) goto out3; return 0; out3: if (local_mode == 1) pci_free_consistent(lp->pci_dev, MAX_RINGSIZE + 0x0f, lp->page_vaddr_algn, virt_to_whatever(dev, lp->page_vaddr_algn)); out_mem_ptr: if (mem_ptr_virt) iounmap(mem_ptr_virt); out2: release_region(ioaddr, HP100_REGION_SIZE); out1: return err; } /* This procedure puts the card into a stable init state */ static void hp100_hwinit(struct net_device *dev) { int ioaddr = dev->base_addr; struct hp100_private *lp = netdev_priv(dev); #ifdef HP100_DEBUG_B hp100_outw(0x4202, TRACE); printk("hp100: %s: hwinit\n", dev->name); #endif /* Initialise the card. -------------------------------------------- */ /* Clear all pending Ints and disable Ints */ hp100_page(PERFORMANCE); hp100_outw(0xfefe, IRQ_MASK); /* mask off all ints */ hp100_outw(0xffff, IRQ_STATUS); /* clear all pending ints */ hp100_outw(HP100_INT_EN | HP100_RESET_LB, OPTION_LSW); hp100_outw(HP100_TRI_INT | HP100_SET_HB, OPTION_LSW); if (lp->mode == 1) { hp100_BM_shutdown(dev); /* disables BM, puts cascade in reset */ wait(); } else { hp100_outw(HP100_INT_EN | HP100_RESET_LB, OPTION_LSW); hp100_cascade_reset(dev, 1); hp100_page(MAC_CTRL); hp100_andb(~(HP100_RX_EN | HP100_TX_EN), MAC_CFG_1); } /* Initiate EEPROM reload */ hp100_load_eeprom(dev, 0); wait(); /* Go into reset again. */ hp100_cascade_reset(dev, 1); /* Set Option Registers to a safe state */ hp100_outw(HP100_DEBUG_EN | HP100_RX_HDR | HP100_EE_EN | HP100_BM_WRITE | HP100_BM_READ | HP100_RESET_HB | HP100_FAKE_INT | HP100_INT_EN | HP100_MEM_EN | HP100_IO_EN | HP100_RESET_LB, OPTION_LSW); hp100_outw(HP100_TRI_INT | HP100_MMAP_DIS | HP100_SET_HB, OPTION_LSW); hp100_outb(HP100_PRIORITY_TX | HP100_ADV_NXT_PKT | HP100_TX_CMD | HP100_RESET_LB, OPTION_MSW); /* TODO: Configure MMU for Ram Test. */ /* TODO: Ram Test. */ /* Re-check if adapter is still at same i/o location */ /* (If the base i/o in eeprom has been changed but the */ /* registers had not been changed, a reload of the eeprom */ /* would move the adapter to the address stored in eeprom */ /* TODO: Code to implement. */ /* Until here it was code from HWdiscover procedure. */ /* Next comes code from mmuinit procedure of SCO BM driver which is * called from HWconfigure in the SCO driver. */ /* Initialise MMU, eventually switch on Busmaster Mode, initialise * multicast filter... */ hp100_mmuinit(dev); /* We don't turn the interrupts on here - this is done by start_interface. */ wait(); /* TODO: Do we really need this? */ /* Enable Hardware (e.g. unreset) */ hp100_cascade_reset(dev, 0); /* ------- initialisation complete ----------- */ /* Finally try to log in the Hub if there may be a VG connection. */ if ((lp->lan_type == HP100_LAN_100) || (lp->lan_type == HP100_LAN_ERR)) hp100_login_to_vg_hub(dev, 0); /* relogin */ } /* * mmuinit - Reinitialise Cascade MMU and MAC settings. * Note: Must already be in reset and leaves card in reset. */ static void hp100_mmuinit(struct net_device *dev) { int ioaddr = dev->base_addr; struct hp100_private *lp = netdev_priv(dev); int i; #ifdef HP100_DEBUG_B hp100_outw(0x4203, TRACE); printk("hp100: %s: mmuinit\n", dev->name); #endif #ifdef HP100_DEBUG if (0 != (hp100_inw(OPTION_LSW) & HP100_HW_RST)) { printk("hp100: %s: Not in reset when entering mmuinit. Fix me.\n", dev->name); return; } #endif /* Make sure IRQs are masked off and ack'ed. */ hp100_page(PERFORMANCE); hp100_outw(0xfefe, IRQ_MASK); /* mask off all ints */ hp100_outw(0xffff, IRQ_STATUS); /* ack IRQ */ /* * Enable Hardware * - Clear Debug En, Rx Hdr Pipe, EE En, I/O En, Fake Int and Intr En * - Set Tri-State Int, Bus Master Rd/Wr, and Mem Map Disable * - Clear Priority, Advance Pkt and Xmit Cmd */ hp100_outw(HP100_DEBUG_EN | HP100_RX_HDR | HP100_EE_EN | HP100_RESET_HB | HP100_IO_EN | HP100_FAKE_INT | HP100_INT_EN | HP100_RESET_LB, OPTION_LSW); hp100_outw(HP100_TRI_INT | HP100_SET_HB, OPTION_LSW); if (lp->mode == 1) { /* busmaster */ hp100_outw(HP100_BM_WRITE | HP100_BM_READ | HP100_MMAP_DIS | HP100_SET_HB, OPTION_LSW); } else if (lp->mode == 2) { /* memory mapped */ hp100_outw(HP100_BM_WRITE | HP100_BM_READ | HP100_RESET_HB, OPTION_LSW); hp100_outw(HP100_MMAP_DIS | HP100_RESET_HB, OPTION_LSW); hp100_outw(HP100_MEM_EN | HP100_SET_LB, OPTION_LSW); hp100_outw(HP100_IO_EN | HP100_SET_LB, OPTION_LSW); } else if (lp->mode == 3) { /* i/o mapped mode */ hp100_outw(HP100_MMAP_DIS | HP100_SET_HB | HP100_IO_EN | HP100_SET_LB, OPTION_LSW); } hp100_page(HW_MAP); hp100_outb(0, EARLYRXCFG); hp100_outw(0, EARLYTXCFG); /* * Enable Bus Master mode */ if (lp->mode == 1) { /* busmaster */ /* Experimental: Set some PCI configuration bits */ hp100_page(HW_MAP); hp100_andb(~HP100_PDL_USE3, MODECTRL1); /* BM engine read maximum */ hp100_andb(~HP100_TX_DUALQ, MODECTRL1); /* No Queue for Priority TX */ /* PCI Bus failures should result in a Misc. Interrupt */ hp100_orb(HP100_EN_BUS_FAIL, MODECTRL2); hp100_outw(HP100_BM_READ | HP100_BM_WRITE | HP100_SET_HB, OPTION_LSW); hp100_page(HW_MAP); /* Use Burst Mode and switch on PAGE_CK */ hp100_orb(HP100_BM_BURST_RD | HP100_BM_BURST_WR, BM); if ((lp->chip == HP100_CHIPID_RAINIER) || (lp->chip == HP100_CHIPID_SHASTA)) hp100_orb(HP100_BM_PAGE_CK, BM); hp100_orb(HP100_BM_MASTER, BM); } else { /* not busmaster */ hp100_page(HW_MAP); hp100_andb(~HP100_BM_MASTER, BM); } /* * Divide card memory into regions for Rx, Tx and, if non-ETR chip, PDLs */ hp100_page(MMU_CFG); if (lp->mode == 1) { /* only needed for Busmaster */ int xmit_stop, recv_stop; if ((lp->chip == HP100_CHIPID_RAINIER) || (lp->chip == HP100_CHIPID_SHASTA)) { int pdl_stop; /* * Each pdl is 508 bytes long. (63 frags * 4 bytes for address and * 4 bytes for header). We will leave NUM_RXPDLS * 508 (rounded * to the next higher 1k boundary) bytes for the rx-pdl's * Note: For non-etr chips the transmit stop register must be * programmed on a 1k boundary, i.e. bits 9:0 must be zero. */ pdl_stop = lp->memory_size; xmit_stop = (pdl_stop - 508 * (MAX_RX_PDL) - 16) & ~(0x03ff); recv_stop = (xmit_stop * (lp->rx_ratio) / 100) & ~(0x03ff); hp100_outw((pdl_stop >> 4) - 1, PDL_MEM_STOP); #ifdef HP100_DEBUG_BM printk("hp100: %s: PDL_STOP = 0x%x\n", dev->name, pdl_stop); #endif } else { /* ETR chip (Lassen) in busmaster mode */ xmit_stop = (lp->memory_size) - 1; recv_stop = ((lp->memory_size * lp->rx_ratio) / 100) & ~(0x03ff); } hp100_outw(xmit_stop >> 4, TX_MEM_STOP); hp100_outw(recv_stop >> 4, RX_MEM_STOP); #ifdef HP100_DEBUG_BM printk("hp100: %s: TX_STOP = 0x%x\n", dev->name, xmit_stop >> 4); printk("hp100: %s: RX_STOP = 0x%x\n", dev->name, recv_stop >> 4); #endif } else { /* Slave modes (memory mapped and programmed io) */ hp100_outw((((lp->memory_size * lp->rx_ratio) / 100) >> 4), RX_MEM_STOP); hp100_outw(((lp->memory_size - 1) >> 4), TX_MEM_STOP); #ifdef HP100_DEBUG printk("hp100: %s: TX_MEM_STOP: 0x%x\n", dev->name, hp100_inw(TX_MEM_STOP)); printk("hp100: %s: RX_MEM_STOP: 0x%x\n", dev->name, hp100_inw(RX_MEM_STOP)); #endif } /* Write MAC address into page 1 */ hp100_page(MAC_ADDRESS); for (i = 0; i < 6; i++) hp100_outb(dev->dev_addr[i], MAC_ADDR + i); /* Zero the multicast hash registers */ for (i = 0; i < 8; i++) hp100_outb(0x0, HASH_BYTE0 + i); /* Set up MAC defaults */ hp100_page(MAC_CTRL); /* Go to LAN Page and zero all filter bits */ /* Zero accept error, accept multicast, accept broadcast and accept */ /* all directed packet bits */ hp100_andb(~(HP100_RX_EN | HP100_TX_EN | HP100_ACC_ERRORED | HP100_ACC_MC | HP100_ACC_BC | HP100_ACC_PHY), MAC_CFG_1); hp100_outb(0x00, MAC_CFG_2); /* Zero the frame format bit. This works around a training bug in the */ /* new hubs. */ hp100_outb(0x00, VG_LAN_CFG_2); /* (use 802.3) */ if (lp->priority_tx) hp100_outb(HP100_PRIORITY_TX | HP100_SET_LB, OPTION_MSW); else hp100_outb(HP100_PRIORITY_TX | HP100_RESET_LB, OPTION_MSW); hp100_outb(HP100_ADV_NXT_PKT | HP100_TX_CMD | HP100_RESET_LB, OPTION_MSW); /* If busmaster, initialize the PDLs */ if (lp->mode == 1) hp100_init_pdls(dev); /* Go to performance page and initialize isr and imr registers */ hp100_page(PERFORMANCE); hp100_outw(0xfefe, IRQ_MASK); /* mask off all ints */ hp100_outw(0xffff, IRQ_STATUS); /* ack IRQ */ } /* * open/close functions */ static int hp100_open(struct net_device *dev) { struct hp100_private *lp = netdev_priv(dev); #ifdef HP100_DEBUG_B int ioaddr = dev->base_addr; #endif #ifdef HP100_DEBUG_B hp100_outw(0x4204, TRACE); printk("hp100: %s: open\n", dev->name); #endif /* New: if bus is PCI or EISA, interrupts might be shared interrupts */ if (request_irq(dev->irq, hp100_interrupt, lp->bus == HP100_BUS_PCI || lp->bus == HP100_BUS_EISA ? IRQF_SHARED : 0, dev->name, dev)) { printk("hp100: %s: unable to get IRQ %d\n", dev->name, dev->irq); return -EAGAIN; } dev->trans_start = jiffies; /* prevent tx timeout */ netif_start_queue(dev); lp->lan_type = hp100_sense_lan(dev); lp->mac1_mode = HP100_MAC1MODE3; lp->mac2_mode = HP100_MAC2MODE3; memset(&lp->hash_bytes, 0x00, 8); hp100_stop_interface(dev); hp100_hwinit(dev); hp100_start_interface(dev); /* sets mac modes, enables interrupts */ return 0; } /* The close function is called when the interface is to be brought down */ static int hp100_close(struct net_device *dev) { int ioaddr = dev->base_addr; struct hp100_private *lp = netdev_priv(dev); #ifdef HP100_DEBUG_B hp100_outw(0x4205, TRACE); printk("hp100: %s: close\n", dev->name); #endif hp100_page(PERFORMANCE); hp100_outw(0xfefe, IRQ_MASK); /* mask off all IRQs */ hp100_stop_interface(dev); if (lp->lan_type == HP100_LAN_100) lp->hub_status = hp100_login_to_vg_hub(dev, 0); netif_stop_queue(dev); free_irq(dev->irq, dev); #ifdef HP100_DEBUG printk("hp100: %s: close LSW = 0x%x\n", dev->name, hp100_inw(OPTION_LSW)); #endif return 0; } /* * Configure the PDL Rx rings and LAN */ static void hp100_init_pdls(struct net_device *dev) { struct hp100_private *lp = netdev_priv(dev); hp100_ring_t *ringptr; u_int *pageptr; /* Warning : increment by 4 - Jean II */ int i; #ifdef HP100_DEBUG_B int ioaddr = dev->base_addr; #endif #ifdef HP100_DEBUG_B hp100_outw(0x4206, TRACE); printk("hp100: %s: init pdls\n", dev->name); #endif if (!lp->page_vaddr_algn) printk("hp100: %s: Warning: lp->page_vaddr_algn not initialised!\n", dev->name); else { /* pageptr shall point into the DMA accessible memory region */ /* we use this pointer to status the upper limit of allocated */ /* memory in the allocated page. */ /* note: align the pointers to the pci cache line size */ memset(lp->page_vaddr_algn, 0, MAX_RINGSIZE); /* Zero Rx/Tx ring page */ pageptr = lp->page_vaddr_algn; lp->rxrcommit = 0; ringptr = lp->rxrhead = lp->rxrtail = &(lp->rxring[0]); /* Initialise Rx Ring */ for (i = MAX_RX_PDL - 1; i >= 0; i--) { lp->rxring[i].next = ringptr; ringptr = &(lp->rxring[i]); pageptr += hp100_init_rxpdl(dev, ringptr, pageptr); } /* Initialise Tx Ring */ lp->txrcommit = 0; ringptr = lp->txrhead = lp->txrtail = &(lp->txring[0]); for (i = MAX_TX_PDL - 1; i >= 0; i--) { lp->txring[i].next = ringptr; ringptr = &(lp->txring[i]); pageptr += hp100_init_txpdl(dev, ringptr, pageptr); } } } /* These functions "format" the entries in the pdl structure */ /* They return how much memory the fragments need. */ static int hp100_init_rxpdl(struct net_device *dev, register hp100_ring_t * ringptr, register u32 * pdlptr) { /* pdlptr is starting address for this pdl */ if (0 != (((unsigned long) pdlptr) & 0xf)) printk("hp100: %s: Init rxpdl: Unaligned pdlptr 0x%lx.\n", dev->name, (unsigned long) pdlptr); ringptr->pdl = pdlptr + 1; ringptr->pdl_paddr = virt_to_whatever(dev, pdlptr + 1); ringptr->skb = NULL; /* * Write address and length of first PDL Fragment (which is used for * storing the RX-Header * We use the 4 bytes _before_ the PDH in the pdl memory area to * store this information. (PDH is at offset 0x04) */ /* Note that pdlptr+1 and not pdlptr is the pointer to the PDH */ *(pdlptr + 2) = (u_int) virt_to_whatever(dev, pdlptr); /* Address Frag 1 */ *(pdlptr + 3) = 4; /* Length Frag 1 */ return roundup(MAX_RX_FRAG * 2 + 2, 4); } static int hp100_init_txpdl(struct net_device *dev, register hp100_ring_t * ringptr, register u32 * pdlptr) { if (0 != (((unsigned long) pdlptr) & 0xf)) printk("hp100: %s: Init txpdl: Unaligned pdlptr 0x%lx.\n", dev->name, (unsigned long) pdlptr); ringptr->pdl = pdlptr; /* +1; */ ringptr->pdl_paddr = virt_to_whatever(dev, pdlptr); /* +1 */ ringptr->skb = NULL; return roundup(MAX_TX_FRAG * 2 + 2, 4); } /* * hp100_build_rx_pdl allocates an skb_buff of maximum size plus two bytes * for possible odd word alignment rounding up to next dword and set PDL * address for fragment#2 * Returns: 0 if unable to allocate skb_buff * 1 if successful */ static int hp100_build_rx_pdl(hp100_ring_t * ringptr, struct net_device *dev) { #ifdef HP100_DEBUG_B int ioaddr = dev->base_addr; #endif #ifdef HP100_DEBUG_BM u_int *p; #endif #ifdef HP100_DEBUG_B hp100_outw(0x4207, TRACE); printk("hp100: %s: build rx pdl\n", dev->name); #endif /* Allocate skb buffer of maximum size */ /* Note: This depends on the alloc_skb functions allocating more * space than requested, i.e. aligning to 16bytes */ ringptr->skb = netdev_alloc_skb(dev, roundup(MAX_ETHER_SIZE + 2, 4)); if (NULL != ringptr->skb) { /* * Reserve 2 bytes at the head of the buffer to land the IP header * on a long word boundary (According to the Network Driver section * in the Linux KHG, this should help to increase performance.) */ skb_reserve(ringptr->skb, 2); ringptr->skb->data = (u_char *) skb_put(ringptr->skb, MAX_ETHER_SIZE); /* ringptr->pdl points to the beginning of the PDL, i.e. the PDH */ /* Note: 1st Fragment is used for the 4 byte packet status * (receive header). Its PDL entries are set up by init_rxpdl. So * here we only have to set up the PDL fragment entries for the data * part. Those 4 bytes will be stored in the DMA memory region * directly before the PDL. */ #ifdef HP100_DEBUG_BM printk("hp100: %s: build_rx_pdl: PDH@0x%x, skb->data (len %d) at 0x%x\n", dev->name, (u_int) ringptr->pdl, roundup(MAX_ETHER_SIZE + 2, 4), (unsigned int) ringptr->skb->data); #endif /* Conversion to new PCI API : map skbuf data to PCI bus. * Doc says it's OK for EISA as well - Jean II */ ringptr->pdl[0] = 0x00020000; /* Write PDH */ ringptr->pdl[3] = pdl_map_data(netdev_priv(dev), ringptr->skb->data); ringptr->pdl[4] = MAX_ETHER_SIZE; /* Length of Data */ #ifdef HP100_DEBUG_BM for (p = (ringptr->pdl); p < (ringptr->pdl + 5); p++) printk("hp100: %s: Adr 0x%.8x = 0x%.8x\n", dev->name, (u_int) p, (u_int) * p); #endif return 1; } /* else: */ /* alloc_skb failed (no memory) -> still can receive the header * fragment into PDL memory. make PDL safe by clearing msgptr and * making the PDL only 1 fragment (i.e. the 4 byte packet status) */ #ifdef HP100_DEBUG_BM printk("hp100: %s: build_rx_pdl: PDH@0x%x, No space for skb.\n", dev->name, (u_int) ringptr->pdl); #endif ringptr->pdl[0] = 0x00010000; /* PDH: Count=1 Fragment */ return 0; } /* * hp100_rxfill - attempt to fill the Rx Ring will empty skb's * * Makes assumption that skb's are always contiguous memory areas and * therefore PDLs contain only 2 physical fragments. * - While the number of Rx PDLs with buffers is less than maximum * a. Get a maximum packet size skb * b. Put the physical address of the buffer into the PDL. * c. Output physical address of PDL to adapter. */ static void hp100_rxfill(struct net_device *dev) { int ioaddr = dev->base_addr; struct hp100_private *lp = netdev_priv(dev); hp100_ring_t *ringptr; #ifdef HP100_DEBUG_B hp100_outw(0x4208, TRACE); printk("hp100: %s: rxfill\n", dev->name); #endif hp100_page(PERFORMANCE); while (lp->rxrcommit < MAX_RX_PDL) { /* ** Attempt to get a buffer and build a Rx PDL. */ ringptr = lp->rxrtail; if (0 == hp100_build_rx_pdl(ringptr, dev)) { return; /* None available, return */ } /* Hand this PDL over to the card */ /* Note: This needs performance page selected! */ #ifdef HP100_DEBUG_BM printk("hp100: %s: rxfill: Hand to card: pdl #%d @0x%x phys:0x%x, buffer: 0x%x\n", dev->name, lp->rxrcommit, (u_int) ringptr->pdl, (u_int) ringptr->pdl_paddr, (u_int) ringptr->pdl[3]); #endif hp100_outl((u32) ringptr->pdl_paddr, RX_PDA); lp->rxrcommit += 1; lp->rxrtail = ringptr->next; } } /* * BM_shutdown - shutdown bus mastering and leave chip in reset state */ static void hp100_BM_shutdown(struct net_device *dev) { int ioaddr = dev->base_addr; struct hp100_private *lp = netdev_priv(dev); unsigned long time; #ifdef HP100_DEBUG_B hp100_outw(0x4209, TRACE); printk("hp100: %s: bm shutdown\n", dev->name); #endif hp100_page(PERFORMANCE); hp100_outw(0xfefe, IRQ_MASK); /* mask off all ints */ hp100_outw(0xffff, IRQ_STATUS); /* Ack all ints */ /* Ensure Interrupts are off */ hp100_outw(HP100_INT_EN | HP100_RESET_LB, OPTION_LSW); /* Disable all MAC activity */ hp100_page(MAC_CTRL); hp100_andb(~(HP100_RX_EN | HP100_TX_EN), MAC_CFG_1); /* stop rx/tx */ /* If cascade MMU is not already in reset */ if (0 != (hp100_inw(OPTION_LSW) & HP100_HW_RST)) { /* Wait 1.3ms (10Mb max packet time) to ensure MAC is idle so * MMU pointers will not be reset out from underneath */ hp100_page(MAC_CTRL); for (time = 0; time < 5000; time++) { if ((hp100_inb(MAC_CFG_1) & (HP100_TX_IDLE | HP100_RX_IDLE)) == (HP100_TX_IDLE | HP100_RX_IDLE)) break; } /* Shutdown algorithm depends on the generation of Cascade */ if (lp->chip == HP100_CHIPID_LASSEN) { /* ETR shutdown/reset */ /* Disable Busmaster mode and wait for bit to go to zero. */ hp100_page(HW_MAP); hp100_andb(~HP100_BM_MASTER, BM); /* 100 ms timeout */ for (time = 0; time < 32000; time++) { if (0 == (hp100_inb(BM) & HP100_BM_MASTER)) break; } } else { /* Shasta or Rainier Shutdown/Reset */ /* To ensure all bus master inloading activity has ceased, * wait for no Rx PDAs or no Rx packets on card. */ hp100_page(PERFORMANCE); /* 100 ms timeout */ for (time = 0; time < 10000; time++) { /* RX_PDL: PDLs not executed. */ /* RX_PKT_CNT: RX'd packets on card. */ if ((hp100_inb(RX_PDL) == 0) && (hp100_inb(RX_PKT_CNT) == 0)) break; } if (time >= 10000) printk("hp100: %s: BM shutdown error.\n", dev->name); /* To ensure all bus master outloading activity has ceased, * wait until the Tx PDA count goes to zero or no more Tx space * available in the Tx region of the card. */ /* 100 ms timeout */ for (time = 0; time < 10000; time++) { if ((0 == hp100_inb(TX_PKT_CNT)) && (0 != (hp100_inb(TX_MEM_FREE) & HP100_AUTO_COMPARE))) break; } /* Disable Busmaster mode */ hp100_page(HW_MAP); hp100_andb(~HP100_BM_MASTER, BM); } /* end of shutdown procedure for non-etr parts */ hp100_cascade_reset(dev, 1); } hp100_page(PERFORMANCE); /* hp100_outw( HP100_BM_READ | HP100_BM_WRITE | HP100_RESET_HB, OPTION_LSW ); */ /* Busmaster mode should be shut down now. */ } static int hp100_check_lan(struct net_device *dev) { struct hp100_private *lp = netdev_priv(dev); if (lp->lan_type < 0) { /* no LAN type detected yet? */ hp100_stop_interface(dev); if ((lp->lan_type = hp100_sense_lan(dev)) < 0) { printk("hp100: %s: no connection found - check wire\n", dev->name); hp100_start_interface(dev); /* 10Mb/s RX packets maybe handled */ return -EIO; } if (lp->lan_type == HP100_LAN_100) lp->hub_status = hp100_login_to_vg_hub(dev, 0); /* relogin */ hp100_start_interface(dev); } return 0; } /* * transmit functions */ /* tx function for busmaster mode */ static netdev_tx_t hp100_start_xmit_bm(struct sk_buff *skb, struct net_device *dev) { unsigned long flags; int i, ok_flag; int ioaddr = dev->base_addr; struct hp100_private *lp = netdev_priv(dev); hp100_ring_t *ringptr; #ifdef HP100_DEBUG_B hp100_outw(0x4210, TRACE); printk("hp100: %s: start_xmit_bm\n", dev->name); #endif if (skb->len <= 0) goto drop; if (lp->chip == HP100_CHIPID_SHASTA && skb_padto(skb, ETH_ZLEN)) return NETDEV_TX_OK; /* Get Tx ring tail pointer */ if (lp->txrtail->next == lp->txrhead) { /* No memory. */ #ifdef HP100_DEBUG printk("hp100: %s: start_xmit_bm: No TX PDL available.\n", dev->name); #endif /* not waited long enough since last tx? */ if (time_before(jiffies, dev_trans_start(dev) + HZ)) goto drop; if (hp100_check_lan(dev)) goto drop; if (lp->lan_type == HP100_LAN_100 && lp->hub_status < 0) { /* we have a 100Mb/s adapter but it isn't connected to hub */ printk("hp100: %s: login to 100Mb/s hub retry\n", dev->name); hp100_stop_interface(dev); lp->hub_status = hp100_login_to_vg_hub(dev, 0); hp100_start_interface(dev); } else { spin_lock_irqsave(&lp->lock, flags); hp100_ints_off(); /* Useful ? Jean II */ i = hp100_sense_lan(dev); hp100_ints_on(); spin_unlock_irqrestore(&lp->lock, flags); if (i == HP100_LAN_ERR) printk("hp100: %s: link down detected\n", dev->name); else if (lp->lan_type != i) { /* cable change! */ /* it's very hard - all network settings must be changed!!! */ printk("hp100: %s: cable change 10Mb/s <-> 100Mb/s detected\n", dev->name); lp->lan_type = i; hp100_stop_interface(dev); if (lp->lan_type == HP100_LAN_100) lp->hub_status = hp100_login_to_vg_hub(dev, 0); hp100_start_interface(dev); } else { printk("hp100: %s: interface reset\n", dev->name); hp100_stop_interface(dev); if (lp->lan_type == HP100_LAN_100) lp->hub_status = hp100_login_to_vg_hub(dev, 0); hp100_start_interface(dev); } } goto drop; } /* * we have to turn int's off before modifying this, otherwise * a tx_pdl_cleanup could occur at the same time */ spin_lock_irqsave(&lp->lock, flags); ringptr = lp->txrtail; lp->txrtail = ringptr->next; /* Check whether packet has minimal packet size */ ok_flag = skb->len >= HP100_MIN_PACKET_SIZE; i = ok_flag ? skb->len : HP100_MIN_PACKET_SIZE; ringptr->skb = skb; ringptr->pdl[0] = ((1 << 16) | i); /* PDH: 1 Fragment & length */ if (lp->chip == HP100_CHIPID_SHASTA) { /* TODO:Could someone who has the EISA card please check if this works? */ ringptr->pdl[2] = i; } else { /* Lassen */ /* In the PDL, don't use the padded size but the real packet size: */ ringptr->pdl[2] = skb->len; /* 1st Frag: Length of frag */ } /* Conversion to new PCI API : map skbuf data to PCI bus. * Doc says it's OK for EISA as well - Jean II */ ringptr->pdl[1] = ((u32) pci_map_single(lp->pci_dev, skb->data, ringptr->pdl[2], PCI_DMA_TODEVICE)); /* 1st Frag: Adr. of data */ /* Hand this PDL to the card. */ hp100_outl(ringptr->pdl_paddr, TX_PDA_L); /* Low Prio. Queue */ lp->txrcommit++; dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; spin_unlock_irqrestore(&lp->lock, flags); return NETDEV_TX_OK; drop: dev_kfree_skb(skb); return NETDEV_TX_OK; } /* clean_txring checks if packets have been sent by the card by reading * the TX_PDL register from the performance page and comparing it to the * number of committed packets. It then frees the skb's of the packets that * obviously have been sent to the network. * * Needs the PERFORMANCE page selected. */ static void hp100_clean_txring(struct net_device *dev) { struct hp100_private *lp = netdev_priv(dev); int ioaddr = dev->base_addr; int donecount; #ifdef HP100_DEBUG_B hp100_outw(0x4211, TRACE); printk("hp100: %s: clean txring\n", dev->name); #endif /* How many PDLs have been transmitted? */ donecount = (lp->txrcommit) - hp100_inb(TX_PDL); #ifdef HP100_DEBUG if (donecount > MAX_TX_PDL) printk("hp100: %s: Warning: More PDLs transmitted than committed to card???\n", dev->name); #endif for (; 0 != donecount; donecount--) { #ifdef HP100_DEBUG_BM printk("hp100: %s: Free skb: data @0x%.8x txrcommit=0x%x TXPDL=0x%x, done=0x%x\n", dev->name, (u_int) lp->txrhead->skb->data, lp->txrcommit, hp100_inb(TX_PDL), donecount); #endif /* Conversion to new PCI API : NOP */ pci_unmap_single(lp->pci_dev, (dma_addr_t) lp->txrhead->pdl[1], lp->txrhead->pdl[2], PCI_DMA_TODEVICE); dev_kfree_skb_any(lp->txrhead->skb); lp->txrhead->skb = NULL; lp->txrhead = lp->txrhead->next; lp->txrcommit--; } } /* tx function for slave modes */ static netdev_tx_t hp100_start_xmit(struct sk_buff *skb, struct net_device *dev) { unsigned long flags; int i, ok_flag; int ioaddr = dev->base_addr; u_short val; struct hp100_private *lp = netdev_priv(dev); #ifdef HP100_DEBUG_B hp100_outw(0x4212, TRACE); printk("hp100: %s: start_xmit\n", dev->name); #endif if (skb->len <= 0) goto drop; if (hp100_check_lan(dev)) goto drop; /* If there is not enough free memory on the card... */ i = hp100_inl(TX_MEM_FREE) & 0x7fffffff; if (!(((i / 2) - 539) > (skb->len + 16) && (hp100_inb(TX_PKT_CNT) < 255))) { #ifdef HP100_DEBUG printk("hp100: %s: start_xmit: tx free mem = 0x%x\n", dev->name, i); #endif /* not waited long enough since last failed tx try? */ if (time_before(jiffies, dev_trans_start(dev) + HZ)) { #ifdef HP100_DEBUG printk("hp100: %s: trans_start timing problem\n", dev->name); #endif goto drop; } if (lp->lan_type == HP100_LAN_100 && lp->hub_status < 0) { /* we have a 100Mb/s adapter but it isn't connected to hub */ printk("hp100: %s: login to 100Mb/s hub retry\n", dev->name); hp100_stop_interface(dev); lp->hub_status = hp100_login_to_vg_hub(dev, 0); hp100_start_interface(dev); } else { spin_lock_irqsave(&lp->lock, flags); hp100_ints_off(); /* Useful ? Jean II */ i = hp100_sense_lan(dev); hp100_ints_on(); spin_unlock_irqrestore(&lp->lock, flags); if (i == HP100_LAN_ERR) printk("hp100: %s: link down detected\n", dev->name); else if (lp->lan_type != i) { /* cable change! */ /* it's very hard - all network setting must be changed!!! */ printk("hp100: %s: cable change 10Mb/s <-> 100Mb/s detected\n", dev->name); lp->lan_type = i; hp100_stop_interface(dev); if (lp->lan_type == HP100_LAN_100) lp->hub_status = hp100_login_to_vg_hub(dev, 0); hp100_start_interface(dev); } else { printk("hp100: %s: interface reset\n", dev->name); hp100_stop_interface(dev); if (lp->lan_type == HP100_LAN_100) lp->hub_status = hp100_login_to_vg_hub(dev, 0); hp100_start_interface(dev); mdelay(1); } } goto drop; } for (i = 0; i < 6000 && (hp100_inb(OPTION_MSW) & HP100_TX_CMD); i++) { #ifdef HP100_DEBUG_TX printk("hp100: %s: start_xmit: busy\n", dev->name); #endif } spin_lock_irqsave(&lp->lock, flags); hp100_ints_off(); val = hp100_inw(IRQ_STATUS); /* Ack / clear the interrupt TX_COMPLETE interrupt - this interrupt is set * when the current packet being transmitted on the wire is completed. */ hp100_outw(HP100_TX_COMPLETE, IRQ_STATUS); #ifdef HP100_DEBUG_TX printk("hp100: %s: start_xmit: irq_status=0x%.4x, irqmask=0x%.4x, len=%d\n", dev->name, val, hp100_inw(IRQ_MASK), (int) skb->len); #endif ok_flag = skb->len >= HP100_MIN_PACKET_SIZE; i = ok_flag ? skb->len : HP100_MIN_PACKET_SIZE; hp100_outw(i, DATA32); /* tell card the total packet length */ hp100_outw(i, FRAGMENT_LEN); /* and first/only fragment length */ if (lp->mode == 2) { /* memory mapped */ /* Note: The J2585B needs alignment to 32bits here! */ memcpy_toio(lp->mem_ptr_virt, skb->data, (skb->len + 3) & ~3); if (!ok_flag) memset_io(lp->mem_ptr_virt, 0, HP100_MIN_PACKET_SIZE - skb->len); } else { /* programmed i/o */ outsl(ioaddr + HP100_REG_DATA32, skb->data, (skb->len + 3) >> 2); if (!ok_flag) for (i = (skb->len + 3) & ~3; i < HP100_MIN_PACKET_SIZE; i += 4) hp100_outl(0, DATA32); } hp100_outb(HP100_TX_CMD | HP100_SET_LB, OPTION_MSW); /* send packet */ dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; hp100_ints_on(); spin_unlock_irqrestore(&lp->lock, flags); dev_kfree_skb_any(skb); #ifdef HP100_DEBUG_TX printk("hp100: %s: start_xmit: end\n", dev->name); #endif return NETDEV_TX_OK; drop: dev_kfree_skb(skb); return NETDEV_TX_OK; } /* * Receive Function (Non-Busmaster mode) * Called when an "Receive Packet" interrupt occurs, i.e. the receive * packet counter is non-zero. * For non-busmaster, this function does the whole work of transferring * the packet to the host memory and then up to higher layers via skb * and netif_rx. */ static void hp100_rx(struct net_device *dev) { int packets, pkt_len; int ioaddr = dev->base_addr; struct hp100_private *lp = netdev_priv(dev); u_int header; struct sk_buff *skb; #ifdef DEBUG_B hp100_outw(0x4213, TRACE); printk("hp100: %s: rx\n", dev->name); #endif /* First get indication of received lan packet */ /* RX_PKT_CND indicates the number of packets which have been fully */ /* received onto the card but have not been fully transferred of the card */ packets = hp100_inb(RX_PKT_CNT); #ifdef HP100_DEBUG_RX if (packets > 1) printk("hp100: %s: rx: waiting packets = %d\n", dev->name, packets); #endif while (packets-- > 0) { /* If ADV_NXT_PKT is still set, we have to wait until the card has */ /* really advanced to the next packet. */ for (pkt_len = 0; pkt_len < 6000 && (hp100_inb(OPTION_MSW) & HP100_ADV_NXT_PKT); pkt_len++) { #ifdef HP100_DEBUG_RX printk ("hp100: %s: rx: busy, remaining packets = %d\n", dev->name, packets); #endif } /* First we get the header, which contains information about the */ /* actual length of the received packet. */ if (lp->mode == 2) { /* memory mapped mode */ header = readl(lp->mem_ptr_virt); } else /* programmed i/o */ header = hp100_inl(DATA32); pkt_len = ((header & HP100_PKT_LEN_MASK) + 3) & ~3; #ifdef HP100_DEBUG_RX printk("hp100: %s: rx: new packet - length=%d, errors=0x%x, dest=0x%x\n", dev->name, header & HP100_PKT_LEN_MASK, (header >> 16) & 0xfff8, (header >> 16) & 7); #endif /* Now we allocate the skb and transfer the data into it. */ skb = netdev_alloc_skb(dev, pkt_len + 2); if (skb == NULL) { /* Not enough memory->drop packet */ #ifdef HP100_DEBUG printk("hp100: %s: rx: couldn't allocate a sk_buff of size %d\n", dev->name, pkt_len); #endif dev->stats.rx_dropped++; } else { /* skb successfully allocated */ u_char *ptr; skb_reserve(skb,2); /* ptr to start of the sk_buff data area */ skb_put(skb, pkt_len); ptr = skb->data; /* Now transfer the data from the card into that area */ if (lp->mode == 2) memcpy_fromio(ptr, lp->mem_ptr_virt,pkt_len); else /* io mapped */ insl(ioaddr + HP100_REG_DATA32, ptr, pkt_len >> 2); skb->protocol = eth_type_trans(skb, dev); #ifdef HP100_DEBUG_RX printk("hp100: %s: rx: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", dev->name, ptr[0], ptr[1], ptr[2], ptr[3], ptr[4], ptr[5], ptr[6], ptr[7], ptr[8], ptr[9], ptr[10], ptr[11]); #endif netif_rx(skb); dev->stats.rx_packets++; dev->stats.rx_bytes += pkt_len; } /* Indicate the card that we have got the packet */ hp100_outb(HP100_ADV_NXT_PKT | HP100_SET_LB, OPTION_MSW); switch (header & 0x00070000) { case (HP100_MULTI_ADDR_HASH << 16): case (HP100_MULTI_ADDR_NO_HASH << 16): dev->stats.multicast++; break; } } /* end of while(there are packets) loop */ #ifdef HP100_DEBUG_RX printk("hp100_rx: %s: end\n", dev->name); #endif } /* * Receive Function for Busmaster Mode */ static void hp100_rx_bm(struct net_device *dev) { int ioaddr = dev->base_addr; struct hp100_private *lp = netdev_priv(dev); hp100_ring_t *ptr; u_int header; int pkt_len; #ifdef HP100_DEBUG_B hp100_outw(0x4214, TRACE); printk("hp100: %s: rx_bm\n", dev->name); #endif #ifdef HP100_DEBUG if (0 == lp->rxrcommit) { printk("hp100: %s: rx_bm called although no PDLs were committed to adapter?\n", dev->name); return; } else /* RX_PKT_CNT states how many PDLs are currently formatted and available to * the cards BM engine */ if ((hp100_inw(RX_PKT_CNT) & 0x00ff) >= lp->rxrcommit) { printk("hp100: %s: More packets received than committed? RX_PKT_CNT=0x%x, commit=0x%x\n", dev->name, hp100_inw(RX_PKT_CNT) & 0x00ff, lp->rxrcommit); return; } #endif while ((lp->rxrcommit > hp100_inb(RX_PDL))) { /* * The packet was received into the pdl pointed to by lp->rxrhead ( * the oldest pdl in the ring */ /* First we get the header, which contains information about the */ /* actual length of the received packet. */ ptr = lp->rxrhead; header = *(ptr->pdl - 1); pkt_len = (header & HP100_PKT_LEN_MASK); /* Conversion to new PCI API : NOP */ pci_unmap_single(lp->pci_dev, (dma_addr_t) ptr->pdl[3], MAX_ETHER_SIZE, PCI_DMA_FROMDEVICE); #ifdef HP100_DEBUG_BM printk("hp100: %s: rx_bm: header@0x%x=0x%x length=%d, errors=0x%x, dest=0x%x\n", dev->name, (u_int) (ptr->pdl - 1), (u_int) header, pkt_len, (header >> 16) & 0xfff8, (header >> 16) & 7); printk("hp100: %s: RX_PDL_COUNT:0x%x TX_PDL_COUNT:0x%x, RX_PKT_CNT=0x%x PDH=0x%x, Data@0x%x len=0x%x\n", dev->name, hp100_inb(RX_PDL), hp100_inb(TX_PDL), hp100_inb(RX_PKT_CNT), (u_int) * (ptr->pdl), (u_int) * (ptr->pdl + 3), (u_int) * (ptr->pdl + 4)); #endif if ((pkt_len >= MIN_ETHER_SIZE) && (pkt_len <= MAX_ETHER_SIZE)) { if (ptr->skb == NULL) { printk("hp100: %s: rx_bm: skb null\n", dev->name); /* can happen if we only allocated room for the pdh due to memory shortage. */ dev->stats.rx_dropped++; } else { skb_trim(ptr->skb, pkt_len); /* Shorten it */ ptr->skb->protocol = eth_type_trans(ptr->skb, dev); netif_rx(ptr->skb); /* Up and away... */ dev->stats.rx_packets++; dev->stats.rx_bytes += pkt_len; } switch (header & 0x00070000) { case (HP100_MULTI_ADDR_HASH << 16): case (HP100_MULTI_ADDR_NO_HASH << 16): dev->stats.multicast++; break; } } else { #ifdef HP100_DEBUG printk("hp100: %s: rx_bm: Received bad packet (length=%d)\n", dev->name, pkt_len); #endif if (ptr->skb != NULL) dev_kfree_skb_any(ptr->skb); dev->stats.rx_errors++; } lp->rxrhead = lp->rxrhead->next; /* Allocate a new rx PDL (so lp->rxrcommit stays the same) */ if (0 == hp100_build_rx_pdl(lp->rxrtail, dev)) { /* No space for skb, header can still be received. */ #ifdef HP100_DEBUG printk("hp100: %s: rx_bm: No space for new PDL.\n", dev->name); #endif return; } else { /* successfully allocated new PDL - put it in ringlist at tail. */ hp100_outl((u32) lp->rxrtail->pdl_paddr, RX_PDA); lp->rxrtail = lp->rxrtail->next; } } } /* * statistics */ static struct net_device_stats *hp100_get_stats(struct net_device *dev) { unsigned long flags; int ioaddr = dev->base_addr; struct hp100_private *lp = netdev_priv(dev); #ifdef HP100_DEBUG_B hp100_outw(0x4215, TRACE); #endif spin_lock_irqsave(&lp->lock, flags); hp100_ints_off(); /* Useful ? Jean II */ hp100_update_stats(dev); hp100_ints_on(); spin_unlock_irqrestore(&lp->lock, flags); return &(dev->stats); } static void hp100_update_stats(struct net_device *dev) { int ioaddr = dev->base_addr; u_short val; #ifdef HP100_DEBUG_B hp100_outw(0x4216, TRACE); printk("hp100: %s: update-stats\n", dev->name); #endif /* Note: Statistics counters clear when read. */ hp100_page(MAC_CTRL); val = hp100_inw(DROPPED) & 0x0fff; dev->stats.rx_errors += val; dev->stats.rx_over_errors += val; val = hp100_inb(CRC); dev->stats.rx_errors += val; dev->stats.rx_crc_errors += val; val = hp100_inb(ABORT); dev->stats.tx_errors += val; dev->stats.tx_aborted_errors += val; hp100_page(PERFORMANCE); } static void hp100_misc_interrupt(struct net_device *dev) { #ifdef HP100_DEBUG_B int ioaddr = dev->base_addr; #endif #ifdef HP100_DEBUG_B int ioaddr = dev->base_addr; hp100_outw(0x4216, TRACE); printk("hp100: %s: misc_interrupt\n", dev->name); #endif /* Note: Statistics counters clear when read. */ dev->stats.rx_errors++; dev->stats.tx_errors++; } static void hp100_clear_stats(struct hp100_private *lp, int ioaddr) { unsigned long flags; #ifdef HP100_DEBUG_B hp100_outw(0x4217, TRACE); printk("hp100: %s: clear_stats\n", dev->name); #endif spin_lock_irqsave(&lp->lock, flags); hp100_page(MAC_CTRL); /* get all statistics bytes */ hp100_inw(DROPPED); hp100_inb(CRC); hp100_inb(ABORT); hp100_page(PERFORMANCE); spin_unlock_irqrestore(&lp->lock, flags); } /* * multicast setup */ /* * Set or clear the multicast filter for this adapter. */ static void hp100_set_multicast_list(struct net_device *dev) { unsigned long flags; int ioaddr = dev->base_addr; struct hp100_private *lp = netdev_priv(dev); #ifdef HP100_DEBUG_B hp100_outw(0x4218, TRACE); printk("hp100: %s: set_mc_list\n", dev->name); #endif spin_lock_irqsave(&lp->lock, flags); hp100_ints_off(); hp100_page(MAC_CTRL); hp100_andb(~(HP100_RX_EN | HP100_TX_EN), MAC_CFG_1); /* stop rx/tx */ if (dev->flags & IFF_PROMISC) { lp->mac2_mode = HP100_MAC2MODE6; /* promiscuous mode = get all good */ lp->mac1_mode = HP100_MAC1MODE6; /* packets on the net */ memset(&lp->hash_bytes, 0xff, 8); } else if (!netdev_mc_empty(dev) || (dev->flags & IFF_ALLMULTI)) { lp->mac2_mode = HP100_MAC2MODE5; /* multicast mode = get packets for */ lp->mac1_mode = HP100_MAC1MODE5; /* me, broadcasts and all multicasts */ #ifdef HP100_MULTICAST_FILTER /* doesn't work!!! */ if (dev->flags & IFF_ALLMULTI) { /* set hash filter to receive all multicast packets */ memset(&lp->hash_bytes, 0xff, 8); } else { int i, idx; u_char *addrs; struct netdev_hw_addr *ha; memset(&lp->hash_bytes, 0x00, 8); #ifdef HP100_DEBUG printk("hp100: %s: computing hash filter - mc_count = %i\n", dev->name, netdev_mc_count(dev)); #endif netdev_for_each_mc_addr(ha, dev) { addrs = ha->addr; #ifdef HP100_DEBUG printk("hp100: %s: multicast = %pM, ", dev->name, addrs); #endif for (i = idx = 0; i < 6; i++) { idx ^= *addrs++ & 0x3f; printk(":%02x:", idx); } #ifdef HP100_DEBUG printk("idx = %i\n", idx); #endif lp->hash_bytes[idx >> 3] |= (1 << (idx & 7)); } } #else memset(&lp->hash_bytes, 0xff, 8); #endif } else { lp->mac2_mode = HP100_MAC2MODE3; /* normal mode = get packets for me */ lp->mac1_mode = HP100_MAC1MODE3; /* and broadcasts */ memset(&lp->hash_bytes, 0x00, 8); } if (((hp100_inb(MAC_CFG_1) & 0x0f) != lp->mac1_mode) || (hp100_inb(MAC_CFG_2) != lp->mac2_mode)) { int i; hp100_outb(lp->mac2_mode, MAC_CFG_2); hp100_andb(HP100_MAC1MODEMASK, MAC_CFG_1); /* clear mac1 mode bits */ hp100_orb(lp->mac1_mode, MAC_CFG_1); /* and set the new mode */ hp100_page(MAC_ADDRESS); for (i = 0; i < 8; i++) hp100_outb(lp->hash_bytes[i], HASH_BYTE0 + i); #ifdef HP100_DEBUG printk("hp100: %s: mac1 = 0x%x, mac2 = 0x%x, multicast hash = %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name, lp->mac1_mode, lp->mac2_mode, lp->hash_bytes[0], lp->hash_bytes[1], lp->hash_bytes[2], lp->hash_bytes[3], lp->hash_bytes[4], lp->hash_bytes[5], lp->hash_bytes[6], lp->hash_bytes[7]); #endif if (lp->lan_type == HP100_LAN_100) { #ifdef HP100_DEBUG printk("hp100: %s: 100VG MAC settings have changed - relogin.\n", dev->name); #endif lp->hub_status = hp100_login_to_vg_hub(dev, 1); /* force a relogin to the hub */ } } else { int i; u_char old_hash_bytes[8]; hp100_page(MAC_ADDRESS); for (i = 0; i < 8; i++) old_hash_bytes[i] = hp100_inb(HASH_BYTE0 + i); if (memcmp(old_hash_bytes, &lp->hash_bytes, 8)) { for (i = 0; i < 8; i++) hp100_outb(lp->hash_bytes[i], HASH_BYTE0 + i); #ifdef HP100_DEBUG printk("hp100: %s: multicast hash = %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name, lp->hash_bytes[0], lp->hash_bytes[1], lp->hash_bytes[2], lp->hash_bytes[3], lp->hash_bytes[4], lp->hash_bytes[5], lp->hash_bytes[6], lp->hash_bytes[7]); #endif if (lp->lan_type == HP100_LAN_100) { #ifdef HP100_DEBUG printk("hp100: %s: 100VG MAC settings have changed - relogin.\n", dev->name); #endif lp->hub_status = hp100_login_to_vg_hub(dev, 1); /* force a relogin to the hub */ } } } hp100_page(MAC_CTRL); hp100_orb(HP100_RX_EN | HP100_RX_IDLE | /* enable rx */ HP100_TX_EN | HP100_TX_IDLE, MAC_CFG_1); /* enable tx */ hp100_page(PERFORMANCE); hp100_ints_on(); spin_unlock_irqrestore(&lp->lock, flags); } /* * hardware interrupt handling */ static irqreturn_t hp100_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *) dev_id; struct hp100_private *lp = netdev_priv(dev); int ioaddr; u_int val; if (dev == NULL) return IRQ_NONE; ioaddr = dev->base_addr; spin_lock(&lp->lock); hp100_ints_off(); #ifdef HP100_DEBUG_B hp100_outw(0x4219, TRACE); #endif /* hp100_page( PERFORMANCE ); */ val = hp100_inw(IRQ_STATUS); #ifdef HP100_DEBUG_IRQ printk("hp100: %s: mode=%x,IRQ_STAT=0x%.4x,RXPKTCNT=0x%.2x RXPDL=0x%.2x TXPKTCNT=0x%.2x TXPDL=0x%.2x\n", dev->name, lp->mode, (u_int) val, hp100_inb(RX_PKT_CNT), hp100_inb(RX_PDL), hp100_inb(TX_PKT_CNT), hp100_inb(TX_PDL)); #endif if (val == 0) { /* might be a shared interrupt */ spin_unlock(&lp->lock); hp100_ints_on(); return IRQ_NONE; } /* We're only interested in those interrupts we really enabled. */ /* val &= hp100_inw( IRQ_MASK ); */ /* * RX_PDL_FILL_COMPL is set whenever a RX_PDL has been executed. A RX_PDL * is considered executed whenever the RX_PDL data structure is no longer * needed. */ if (val & HP100_RX_PDL_FILL_COMPL) { if (lp->mode == 1) hp100_rx_bm(dev); else { printk("hp100: %s: rx_pdl_fill_compl interrupt although not busmaster?\n", dev->name); } } /* * The RX_PACKET interrupt is set, when the receive packet counter is * non zero. We use this interrupt for receiving in slave mode. In * busmaster mode, we use it to make sure we did not miss any rx_pdl_fill * interrupts. If rx_pdl_fill_compl is not set and rx_packet is set, then * we somehow have missed a rx_pdl_fill_compl interrupt. */ if (val & HP100_RX_PACKET) { /* Receive Packet Counter is non zero */ if (lp->mode != 1) /* non busmaster */ hp100_rx(dev); else if (!(val & HP100_RX_PDL_FILL_COMPL)) { /* Shouldn't happen - maybe we missed a RX_PDL_FILL Interrupt? */ hp100_rx_bm(dev); } } /* * Ack. that we have noticed the interrupt and thereby allow next one. * Note that this is now done after the slave rx function, since first * acknowledging and then setting ADV_NXT_PKT caused an extra interrupt * on the J2573. */ hp100_outw(val, IRQ_STATUS); /* * RX_ERROR is set when a packet is dropped due to no memory resources on * the card or when a RCV_ERR occurs. * TX_ERROR is set when a TX_ABORT condition occurs in the MAC->exists * only in the 802.3 MAC and happens when 16 collisions occur during a TX */ if (val & (HP100_TX_ERROR | HP100_RX_ERROR)) { #ifdef HP100_DEBUG_IRQ printk("hp100: %s: TX/RX Error IRQ\n", dev->name); #endif hp100_update_stats(dev); if (lp->mode == 1) { hp100_rxfill(dev); hp100_clean_txring(dev); } } /* * RX_PDA_ZERO is set when the PDA count goes from non-zero to zero. */ if ((lp->mode == 1) && (val & (HP100_RX_PDA_ZERO))) hp100_rxfill(dev); /* * HP100_TX_COMPLETE interrupt occurs when packet transmitted on wire * is completed */ if ((lp->mode == 1) && (val & (HP100_TX_COMPLETE))) hp100_clean_txring(dev); /* * MISC_ERROR is set when either the LAN link goes down or a detected * bus error occurs. */ if (val & HP100_MISC_ERROR) { /* New for J2585B */ #ifdef HP100_DEBUG_IRQ printk ("hp100: %s: Misc. Error Interrupt - Check cabling.\n", dev->name); #endif if (lp->mode == 1) { hp100_clean_txring(dev); hp100_rxfill(dev); } hp100_misc_interrupt(dev); } spin_unlock(&lp->lock); hp100_ints_on(); return IRQ_HANDLED; } /* * some misc functions */ static void hp100_start_interface(struct net_device *dev) { unsigned long flags; int ioaddr = dev->base_addr; struct hp100_private *lp = netdev_priv(dev); #ifdef HP100_DEBUG_B hp100_outw(0x4220, TRACE); printk("hp100: %s: hp100_start_interface\n", dev->name); #endif spin_lock_irqsave(&lp->lock, flags); /* Ensure the adapter does not want to request an interrupt when */ /* enabling the IRQ line to be active on the bus (i.e. not tri-stated) */ hp100_page(PERFORMANCE); hp100_outw(0xfefe, IRQ_MASK); /* mask off all ints */ hp100_outw(0xffff, IRQ_STATUS); /* ack all IRQs */ hp100_outw(HP100_FAKE_INT | HP100_INT_EN | HP100_RESET_LB, OPTION_LSW); /* Un Tri-state int. TODO: Check if shared interrupts can be realised? */ hp100_outw(HP100_TRI_INT | HP100_RESET_HB, OPTION_LSW); if (lp->mode == 1) { /* Make sure BM bit is set... */ hp100_page(HW_MAP); hp100_orb(HP100_BM_MASTER, BM); hp100_rxfill(dev); } else if (lp->mode == 2) { /* Enable memory mapping. Note: Don't do this when busmaster. */ hp100_outw(HP100_MMAP_DIS | HP100_RESET_HB, OPTION_LSW); } hp100_page(PERFORMANCE); hp100_outw(0xfefe, IRQ_MASK); /* mask off all ints */ hp100_outw(0xffff, IRQ_STATUS); /* ack IRQ */ /* enable a few interrupts: */ if (lp->mode == 1) { /* busmaster mode */ hp100_outw(HP100_RX_PDL_FILL_COMPL | HP100_RX_PDA_ZERO | HP100_RX_ERROR | /* HP100_RX_PACKET | */ /* HP100_RX_EARLY_INT | */ HP100_SET_HB | /* HP100_TX_PDA_ZERO | */ HP100_TX_COMPLETE | /* HP100_MISC_ERROR | */ HP100_TX_ERROR | HP100_SET_LB, IRQ_MASK); } else { hp100_outw(HP100_RX_PACKET | HP100_RX_ERROR | HP100_SET_HB | HP100_TX_ERROR | HP100_SET_LB, IRQ_MASK); } /* Note : before hp100_set_multicast_list(), because it will play with * spinlock itself... Jean II */ spin_unlock_irqrestore(&lp->lock, flags); /* Enable MAC Tx and RX, set MAC modes, ... */ hp100_set_multicast_list(dev); } static void hp100_stop_interface(struct net_device *dev) { struct hp100_private *lp = netdev_priv(dev); int ioaddr = dev->base_addr; u_int val; #ifdef HP100_DEBUG_B printk("hp100: %s: hp100_stop_interface\n", dev->name); hp100_outw(0x4221, TRACE); #endif if (lp->mode == 1) hp100_BM_shutdown(dev); else { /* Note: MMAP_DIS will be reenabled by start_interface */ hp100_outw(HP100_INT_EN | HP100_RESET_LB | HP100_TRI_INT | HP100_MMAP_DIS | HP100_SET_HB, OPTION_LSW); val = hp100_inw(OPTION_LSW); hp100_page(MAC_CTRL); hp100_andb(~(HP100_RX_EN | HP100_TX_EN), MAC_CFG_1); if (!(val & HP100_HW_RST)) return; /* If reset, imm. return ... */ /* ... else: busy wait until idle */ for (val = 0; val < 6000; val++) if ((hp100_inb(MAC_CFG_1) & (HP100_TX_IDLE | HP100_RX_IDLE)) == (HP100_TX_IDLE | HP100_RX_IDLE)) { hp100_page(PERFORMANCE); return; } printk("hp100: %s: hp100_stop_interface - timeout\n", dev->name); hp100_page(PERFORMANCE); } } static void hp100_load_eeprom(struct net_device *dev, u_short probe_ioaddr) { int i; int ioaddr = probe_ioaddr > 0 ? probe_ioaddr : dev->base_addr; #ifdef HP100_DEBUG_B hp100_outw(0x4222, TRACE); #endif hp100_page(EEPROM_CTRL); hp100_andw(~HP100_EEPROM_LOAD, EEPROM_CTRL); hp100_orw(HP100_EEPROM_LOAD, EEPROM_CTRL); for (i = 0; i < 10000; i++) if (!(hp100_inb(OPTION_MSW) & HP100_EE_LOAD)) return; printk("hp100: %s: hp100_load_eeprom - timeout\n", dev->name); } /* Sense connection status. * return values: LAN_10 - Connected to 10Mbit/s network * LAN_100 - Connected to 100Mbit/s network * LAN_ERR - not connected or 100Mbit/s Hub down */ static int hp100_sense_lan(struct net_device *dev) { int ioaddr = dev->base_addr; u_short val_VG, val_10; struct hp100_private *lp = netdev_priv(dev); #ifdef HP100_DEBUG_B hp100_outw(0x4223, TRACE); #endif hp100_page(MAC_CTRL); val_10 = hp100_inb(10_LAN_CFG_1); val_VG = hp100_inb(VG_LAN_CFG_1); hp100_page(PERFORMANCE); #ifdef HP100_DEBUG printk("hp100: %s: sense_lan: val_VG = 0x%04x, val_10 = 0x%04x\n", dev->name, val_VG, val_10); #endif if (val_10 & HP100_LINK_BEAT_ST) /* 10Mb connection is active */ return HP100_LAN_10; if (val_10 & HP100_AUI_ST) { /* have we BNC or AUI onboard? */ /* * This can be overriden by dos utility, so if this has no effect, * perhaps you need to download that utility from HP and set card * back to "auto detect". */ val_10 |= HP100_AUI_SEL | HP100_LOW_TH; hp100_page(MAC_CTRL); hp100_outb(val_10, 10_LAN_CFG_1); hp100_page(PERFORMANCE); return HP100_LAN_COAX; } /* Those cards don't have a 100 Mbit connector */ if ( !strcmp(lp->id, "HWP1920") || (lp->pci_dev && lp->pci_dev->vendor == PCI_VENDOR_ID && (lp->pci_dev->device == PCI_DEVICE_ID_HP_J2970A || lp->pci_dev->device == PCI_DEVICE_ID_HP_J2973A))) return HP100_LAN_ERR; if (val_VG & HP100_LINK_CABLE_ST) /* Can hear the HUBs tone. */ return HP100_LAN_100; return HP100_LAN_ERR; } static int hp100_down_vg_link(struct net_device *dev) { struct hp100_private *lp = netdev_priv(dev); int ioaddr = dev->base_addr; unsigned long time; long savelan, newlan; #ifdef HP100_DEBUG_B hp100_outw(0x4224, TRACE); printk("hp100: %s: down_vg_link\n", dev->name); #endif hp100_page(MAC_CTRL); time = jiffies + (HZ / 4); do { if (hp100_inb(VG_LAN_CFG_1) & HP100_LINK_CABLE_ST) break; if (!in_interrupt()) schedule_timeout_interruptible(1); } while (time_after(time, jiffies)); if (time_after_eq(jiffies, time)) /* no signal->no logout */ return 0; /* Drop the VG Link by clearing the link up cmd and load addr. */ hp100_andb(~(HP100_LOAD_ADDR | HP100_LINK_CMD), VG_LAN_CFG_1); hp100_orb(HP100_VG_SEL, VG_LAN_CFG_1); /* Conditionally stall for >250ms on Link-Up Status (to go down) */ time = jiffies + (HZ / 2); do { if (!(hp100_inb(VG_LAN_CFG_1) & HP100_LINK_UP_ST)) break; if (!in_interrupt()) schedule_timeout_interruptible(1); } while (time_after(time, jiffies)); #ifdef HP100_DEBUG if (time_after_eq(jiffies, time)) printk("hp100: %s: down_vg_link: Link does not go down?\n", dev->name); #endif /* To prevent condition where Rev 1 VG MAC and old hubs do not complete */ /* logout under traffic (even though all the status bits are cleared), */ /* do this workaround to get the Rev 1 MAC in its idle state */ if (lp->chip == HP100_CHIPID_LASSEN) { /* Reset VG MAC to insure it leaves the logoff state even if */ /* the Hub is still emitting tones */ hp100_andb(~HP100_VG_RESET, VG_LAN_CFG_1); udelay(1500); /* wait for >1ms */ hp100_orb(HP100_VG_RESET, VG_LAN_CFG_1); /* Release Reset */ udelay(1500); } /* New: For lassen, switch to 10 Mbps mac briefly to clear training ACK */ /* to get the VG mac to full reset. This is not req.d with later chips */ /* Note: It will take the between 1 and 2 seconds for the VG mac to be */ /* selected again! This will be left to the connect hub function to */ /* perform if desired. */ if (lp->chip == HP100_CHIPID_LASSEN) { /* Have to write to 10 and 100VG control registers simultaneously */ savelan = newlan = hp100_inl(10_LAN_CFG_1); /* read 10+100 LAN_CFG regs */ newlan &= ~(HP100_VG_SEL << 16); newlan |= (HP100_DOT3_MAC) << 8; hp100_andb(~HP100_AUTO_MODE, MAC_CFG_3); /* Autosel off */ hp100_outl(newlan, 10_LAN_CFG_1); /* Conditionally stall for 5sec on VG selected. */ time = jiffies + (HZ * 5); do { if (!(hp100_inb(MAC_CFG_4) & HP100_MAC_SEL_ST)) break; if (!in_interrupt()) schedule_timeout_interruptible(1); } while (time_after(time, jiffies)); hp100_orb(HP100_AUTO_MODE, MAC_CFG_3); /* Autosel back on */ hp100_outl(savelan, 10_LAN_CFG_1); } time = jiffies + (3 * HZ); /* Timeout 3s */ do { if ((hp100_inb(VG_LAN_CFG_1) & HP100_LINK_CABLE_ST) == 0) break; if (!in_interrupt()) schedule_timeout_interruptible(1); } while (time_after(time, jiffies)); if (time_before_eq(time, jiffies)) { #ifdef HP100_DEBUG printk("hp100: %s: down_vg_link: timeout\n", dev->name); #endif return -EIO; } time = jiffies + (2 * HZ); /* This seems to take a while.... */ do { if (!in_interrupt()) schedule_timeout_interruptible(1); } while (time_after(time, jiffies)); return 0; } static int hp100_login_to_vg_hub(struct net_device *dev, u_short force_relogin) { int ioaddr = dev->base_addr; struct hp100_private *lp = netdev_priv(dev); u_short val = 0; unsigned long time; int startst; #ifdef HP100_DEBUG_B hp100_outw(0x4225, TRACE); printk("hp100: %s: login_to_vg_hub\n", dev->name); #endif /* Initiate a login sequence iff VG MAC is enabled and either Load Address * bit is zero or the force relogin flag is set (e.g. due to MAC address or * promiscuous mode change) */ hp100_page(MAC_CTRL); startst = hp100_inb(VG_LAN_CFG_1); if ((force_relogin == 1) || (hp100_inb(MAC_CFG_4) & HP100_MAC_SEL_ST)) { #ifdef HP100_DEBUG_TRAINING printk("hp100: %s: Start training\n", dev->name); #endif /* Ensure VG Reset bit is 1 (i.e., do not reset) */ hp100_orb(HP100_VG_RESET, VG_LAN_CFG_1); /* If Lassen AND auto-select-mode AND VG tones were sensed on */ /* entry then temporarily put them into force 100Mbit mode */ if ((lp->chip == HP100_CHIPID_LASSEN) && (startst & HP100_LINK_CABLE_ST)) hp100_andb(~HP100_DOT3_MAC, 10_LAN_CFG_2); /* Drop the VG link by zeroing Link Up Command and Load Address */ hp100_andb(~(HP100_LINK_CMD /* |HP100_LOAD_ADDR */ ), VG_LAN_CFG_1); #ifdef HP100_DEBUG_TRAINING printk("hp100: %s: Bring down the link\n", dev->name); #endif /* Wait for link to drop */ time = jiffies + (HZ / 10); do { if (~(hp100_inb(VG_LAN_CFG_1) & HP100_LINK_UP_ST)) break; if (!in_interrupt()) schedule_timeout_interruptible(1); } while (time_after(time, jiffies)); /* Start an addressed training and optionally request promiscuous port */ if ((dev->flags) & IFF_PROMISC) { hp100_orb(HP100_PROM_MODE, VG_LAN_CFG_2); if (lp->chip == HP100_CHIPID_LASSEN) hp100_orw(HP100_MACRQ_PROMSC, TRAIN_REQUEST); } else { hp100_andb(~HP100_PROM_MODE, VG_LAN_CFG_2); /* For ETR parts we need to reset the prom. bit in the training * register, otherwise promiscious mode won't be disabled. */ if (lp->chip == HP100_CHIPID_LASSEN) { hp100_andw(~HP100_MACRQ_PROMSC, TRAIN_REQUEST); } } /* With ETR parts, frame format request bits can be set. */ if (lp->chip == HP100_CHIPID_LASSEN) hp100_orb(HP100_MACRQ_FRAMEFMT_EITHER, TRAIN_REQUEST); hp100_orb(HP100_LINK_CMD | HP100_LOAD_ADDR | HP100_VG_RESET, VG_LAN_CFG_1); /* Note: Next wait could be omitted for Hood and earlier chips under */ /* certain circumstances */ /* TODO: check if hood/earlier and skip wait. */ /* Wait for either short timeout for VG tones or long for login */ /* Wait for the card hardware to signalise link cable status ok... */ hp100_page(MAC_CTRL); time = jiffies + (1 * HZ); /* 1 sec timeout for cable st */ do { if (hp100_inb(VG_LAN_CFG_1) & HP100_LINK_CABLE_ST) break; if (!in_interrupt()) schedule_timeout_interruptible(1); } while (time_before(jiffies, time)); if (time_after_eq(jiffies, time)) { #ifdef HP100_DEBUG_TRAINING printk("hp100: %s: Link cable status not ok? Training aborted.\n", dev->name); #endif } else { #ifdef HP100_DEBUG_TRAINING printk ("hp100: %s: HUB tones detected. Trying to train.\n", dev->name); #endif time = jiffies + (2 * HZ); /* again a timeout */ do { val = hp100_inb(VG_LAN_CFG_1); if ((val & (HP100_LINK_UP_ST))) { #ifdef HP100_DEBUG_TRAINING printk("hp100: %s: Passed training.\n", dev->name); #endif break; } if (!in_interrupt()) schedule_timeout_interruptible(1); } while (time_after(time, jiffies)); } /* If LINK_UP_ST is set, then we are logged into the hub. */ if (time_before_eq(jiffies, time) && (val & HP100_LINK_UP_ST)) { #ifdef HP100_DEBUG_TRAINING printk("hp100: %s: Successfully logged into the HUB.\n", dev->name); if (lp->chip == HP100_CHIPID_LASSEN) { val = hp100_inw(TRAIN_ALLOW); printk("hp100: %s: Card supports 100VG MAC Version \"%s\" ", dev->name, (hp100_inw(TRAIN_REQUEST) & HP100_CARD_MACVER) ? "802.12" : "Pre"); printk("Driver will use MAC Version \"%s\"\n", (val & HP100_HUB_MACVER) ? "802.12" : "Pre"); printk("hp100: %s: Frame format is %s.\n", dev->name, (val & HP100_MALLOW_FRAMEFMT) ? "802.5" : "802.3"); } #endif } else { /* If LINK_UP_ST is not set, login was not successful */ printk("hp100: %s: Problem logging into the HUB.\n", dev->name); if (lp->chip == HP100_CHIPID_LASSEN) { /* Check allowed Register to find out why there is a problem. */ val = hp100_inw(TRAIN_ALLOW); /* won't work on non-ETR card */ #ifdef HP100_DEBUG_TRAINING printk("hp100: %s: MAC Configuration requested: 0x%04x, HUB allowed: 0x%04x\n", dev->name, hp100_inw(TRAIN_REQUEST), val); #endif if (val & HP100_MALLOW_ACCDENIED) printk("hp100: %s: HUB access denied.\n", dev->name); if (val & HP100_MALLOW_CONFIGURE) printk("hp100: %s: MAC Configuration is incompatible with the Network.\n", dev->name); if (val & HP100_MALLOW_DUPADDR) printk("hp100: %s: Duplicate MAC Address on the Network.\n", dev->name); } } /* If we have put the chip into forced 100 Mbit mode earlier, go back */ /* to auto-select mode */ if ((lp->chip == HP100_CHIPID_LASSEN) && (startst & HP100_LINK_CABLE_ST)) { hp100_page(MAC_CTRL); hp100_orb(HP100_DOT3_MAC, 10_LAN_CFG_2); } val = hp100_inb(VG_LAN_CFG_1); /* Clear the MISC_ERROR Interrupt, which might be generated when doing the relogin */ hp100_page(PERFORMANCE); hp100_outw(HP100_MISC_ERROR, IRQ_STATUS); if (val & HP100_LINK_UP_ST) return 0; /* login was ok */ else { printk("hp100: %s: Training failed.\n", dev->name); hp100_down_vg_link(dev); return -EIO; } } /* no forced relogin & already link there->no training. */ return -EIO; } static void hp100_cascade_reset(struct net_device *dev, u_short enable) { int ioaddr = dev->base_addr; struct hp100_private *lp = netdev_priv(dev); #ifdef HP100_DEBUG_B hp100_outw(0x4226, TRACE); printk("hp100: %s: cascade_reset\n", dev->name); #endif if (enable) { hp100_outw(HP100_HW_RST | HP100_RESET_LB, OPTION_LSW); if (lp->chip == HP100_CHIPID_LASSEN) { /* Lassen requires a PCI transmit fifo reset */ hp100_page(HW_MAP); hp100_andb(~HP100_PCI_RESET, PCICTRL2); hp100_orb(HP100_PCI_RESET, PCICTRL2); /* Wait for min. 300 ns */ /* we can't use jiffies here, because it may be */ /* that we have disabled the timer... */ udelay(400); hp100_andb(~HP100_PCI_RESET, PCICTRL2); hp100_page(PERFORMANCE); } } else { /* bring out of reset */ hp100_outw(HP100_HW_RST | HP100_SET_LB, OPTION_LSW); udelay(400); hp100_page(PERFORMANCE); } } #ifdef HP100_DEBUG void hp100_RegisterDump(struct net_device *dev) { int ioaddr = dev->base_addr; int Page; int Register; /* Dump common registers */ printk("hp100: %s: Cascade Register Dump\n", dev->name); printk("hardware id #1: 0x%.2x\n", hp100_inb(HW_ID)); printk("hardware id #2/paging: 0x%.2x\n", hp100_inb(PAGING)); printk("option #1: 0x%.4x\n", hp100_inw(OPTION_LSW)); printk("option #2: 0x%.4x\n", hp100_inw(OPTION_MSW)); /* Dump paged registers */ for (Page = 0; Page < 8; Page++) { /* Dump registers */ printk("page: 0x%.2x\n", Page); outw(Page, ioaddr + 0x02); for (Register = 0x8; Register < 0x22; Register += 2) { /* Display Register contents except data port */ if (((Register != 0x10) && (Register != 0x12)) || (Page > 0)) { printk("0x%.2x = 0x%.4x\n", Register, inw(ioaddr + Register)); } } } hp100_page(PERFORMANCE); } #endif static void cleanup_dev(struct net_device *d) { struct hp100_private *p = netdev_priv(d); unregister_netdev(d); release_region(d->base_addr, HP100_REGION_SIZE); if (p->mode == 1) /* busmaster */ pci_free_consistent(p->pci_dev, MAX_RINGSIZE + 0x0f, p->page_vaddr_algn, virt_to_whatever(d, p->page_vaddr_algn)); if (p->mem_ptr_virt) iounmap(p->mem_ptr_virt); free_netdev(d); } #ifdef CONFIG_EISA static int __init hp100_eisa_probe (struct device *gendev) { struct net_device *dev = alloc_etherdev(sizeof(struct hp100_private)); struct eisa_device *edev = to_eisa_device(gendev); int err; if (!dev) return -ENOMEM; SET_NETDEV_DEV(dev, &edev->dev); err = hp100_probe1(dev, edev->base_addr + 0xC38, HP100_BUS_EISA, NULL); if (err) goto out1; #ifdef HP100_DEBUG printk("hp100: %s: EISA adapter found at 0x%x\n", dev->name, dev->base_addr); #endif dev_set_drvdata(gendev, dev); return 0; out1: free_netdev(dev); return err; } static int hp100_eisa_remove(struct device *gendev) { struct net_device *dev = dev_get_drvdata(gendev); cleanup_dev(dev); return 0; } static struct eisa_driver hp100_eisa_driver = { .id_table = hp100_eisa_tbl, .driver = { .name = "hp100", .probe = hp100_eisa_probe, .remove = hp100_eisa_remove, } }; #endif #ifdef CONFIG_PCI static int hp100_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev; int ioaddr; u_short pci_command; int err; if (pci_enable_device(pdev)) return -ENODEV; dev = alloc_etherdev(sizeof(struct hp100_private)); if (!dev) { err = -ENOMEM; goto out0; } SET_NETDEV_DEV(dev, &pdev->dev); pci_read_config_word(pdev, PCI_COMMAND, &pci_command); if (!(pci_command & PCI_COMMAND_IO)) { #ifdef HP100_DEBUG printk("hp100: %s: PCI I/O Bit has not been set. Setting...\n", dev->name); #endif pci_command |= PCI_COMMAND_IO; pci_write_config_word(pdev, PCI_COMMAND, pci_command); } if (!(pci_command & PCI_COMMAND_MASTER)) { #ifdef HP100_DEBUG printk("hp100: %s: PCI Master Bit has not been set. Setting...\n", dev->name); #endif pci_command |= PCI_COMMAND_MASTER; pci_write_config_word(pdev, PCI_COMMAND, pci_command); } ioaddr = pci_resource_start(pdev, 0); err = hp100_probe1(dev, ioaddr, HP100_BUS_PCI, pdev); if (err) goto out1; #ifdef HP100_DEBUG printk("hp100: %s: PCI adapter found at 0x%x\n", dev->name, ioaddr); #endif pci_set_drvdata(pdev, dev); return 0; out1: free_netdev(dev); out0: pci_disable_device(pdev); return err; } static void hp100_pci_remove(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); cleanup_dev(dev); pci_disable_device(pdev); } static struct pci_driver hp100_pci_driver = { .name = "hp100", .id_table = hp100_pci_tbl, .probe = hp100_pci_probe, .remove = hp100_pci_remove, }; #endif /* * module section */ MODULE_LICENSE("GPL"); MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>, " "Siegfried \"Frieder\" Loeffler (dg1sek) <floeff@mathematik.uni-stuttgart.de>"); MODULE_DESCRIPTION("HP CASCADE Architecture Driver for 100VG-AnyLan Network Adapters"); /* * Note: to register three isa devices, use: * option hp100 hp100_port=0,0,0 * to register one card at io 0x280 as eth239, use: * option hp100 hp100_port=0x280 */ #if defined(MODULE) && defined(CONFIG_ISA) #define HP100_DEVICES 5 /* Parameters set by insmod */ static int hp100_port[HP100_DEVICES] = { 0, [1 ... (HP100_DEVICES-1)] = -1 }; module_param_array(hp100_port, int, NULL, 0); /* List of devices */ static struct net_device *hp100_devlist[HP100_DEVICES]; static int __init hp100_isa_init(void) { struct net_device *dev; int i, err, cards = 0; /* Don't autoprobe ISA bus */ if (hp100_port[0] == 0) return -ENODEV; /* Loop on all possible base addresses */ for (i = 0; i < HP100_DEVICES && hp100_port[i] != -1; ++i) { dev = alloc_etherdev(sizeof(struct hp100_private)); if (!dev) { while (cards > 0) cleanup_dev(hp100_devlist[--cards]); return -ENOMEM; } err = hp100_isa_probe(dev, hp100_port[i]); if (!err) hp100_devlist[cards++] = dev; else free_netdev(dev); } return cards > 0 ? 0 : -ENODEV; } static void hp100_isa_cleanup(void) { int i; for (i = 0; i < HP100_DEVICES; i++) { struct net_device *dev = hp100_devlist[i]; if (dev) cleanup_dev(dev); } } #else #define hp100_isa_init() (0) #define hp100_isa_cleanup() do { } while(0) #endif static int __init hp100_module_init(void) { int err; err = hp100_isa_init(); if (err && err != -ENODEV) goto out; #ifdef CONFIG_EISA err = eisa_driver_register(&hp100_eisa_driver); if (err && err != -ENODEV) goto out2; #endif #ifdef CONFIG_PCI err = pci_register_driver(&hp100_pci_driver); if (err && err != -ENODEV) goto out3; #endif out: return err; out3: #ifdef CONFIG_EISA eisa_driver_unregister (&hp100_eisa_driver); out2: #endif hp100_isa_cleanup(); goto out; } static void __exit hp100_module_exit(void) { hp100_isa_cleanup(); #ifdef CONFIG_EISA eisa_driver_unregister (&hp100_eisa_driver); #endif #ifdef CONFIG_PCI pci_unregister_driver (&hp100_pci_driver); #endif } module_init(hp100_module_init) module_exit(hp100_module_exit)