/* * Copyright(c) 2007 Atheros Corporation. All rights reserved. * * Derived from Intel e1000 driver * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include <linux/pci.h> #include <linux/delay.h> #include <linux/mii.h> #include <linux/crc32.h> #include "atl1c.h" /* * check_eeprom_exist * return 1 if eeprom exist */ int atl1c_check_eeprom_exist(struct atl1c_hw *hw) { u32 data; AT_READ_REG(hw, REG_TWSI_DEBUG, &data); if (data & TWSI_DEBUG_DEV_EXIST) return 1; AT_READ_REG(hw, REG_MASTER_CTRL, &data); if (data & MASTER_CTRL_OTP_SEL) return 1; return 0; } void atl1c_hw_set_mac_addr(struct atl1c_hw *hw, u8 *mac_addr) { u32 value; /* * 00-0B-6A-F6-00-DC * 0: 6AF600DC 1: 000B * low dword */ value = mac_addr[2] << 24 | mac_addr[3] << 16 | mac_addr[4] << 8 | mac_addr[5]; AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value); /* hight dword */ value = mac_addr[0] << 8 | mac_addr[1]; AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value); } /* read mac address from hardware register */ static bool atl1c_read_current_addr(struct atl1c_hw *hw, u8 *eth_addr) { u32 addr[2]; AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]); AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]); *(u32 *) ð_addr[2] = htonl(addr[0]); *(u16 *) ð_addr[0] = htons((u16)addr[1]); return is_valid_ether_addr(eth_addr); } /* * atl1c_get_permanent_address * return 0 if get valid mac address, */ static int atl1c_get_permanent_address(struct atl1c_hw *hw) { u32 i; u32 otp_ctrl_data; u32 twsi_ctrl_data; u16 phy_data; bool raise_vol = false; /* MAC-address from BIOS is the 1st priority */ if (atl1c_read_current_addr(hw, hw->perm_mac_addr)) return 0; /* init */ AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data); if (atl1c_check_eeprom_exist(hw)) { if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c) { /* Enable OTP CLK */ if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) { otp_ctrl_data |= OTP_CTRL_CLK_EN; AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); AT_WRITE_FLUSH(hw); msleep(1); } } /* raise voltage temporally for l2cb */ if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) { atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, &phy_data); phy_data &= ~ANACTRL_HB_EN; atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data); atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data); phy_data |= VOLT_CTRL_SWLOWEST; atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data); udelay(20); raise_vol = true; } AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data); twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART; AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data); for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) { msleep(10); AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data); if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0) break; } if (i >= AT_TWSI_EEPROM_TIMEOUT) return -1; } /* Disable OTP_CLK */ if ((hw->nic_type == athr_l1c || hw->nic_type == athr_l2c)) { otp_ctrl_data &= ~OTP_CTRL_CLK_EN; AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); msleep(1); } if (raise_vol) { atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, &phy_data); phy_data |= ANACTRL_HB_EN; atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data); atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data); phy_data &= ~VOLT_CTRL_SWLOWEST; atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data); udelay(20); } if (atl1c_read_current_addr(hw, hw->perm_mac_addr)) return 0; return -1; } bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value) { int i; bool ret = false; u32 otp_ctrl_data; u32 control; u32 data; if (offset & 3) return ret; /* address do not align */ AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data); if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) AT_WRITE_REG(hw, REG_OTP_CTRL, (otp_ctrl_data | OTP_CTRL_CLK_EN)); AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0); control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT; AT_WRITE_REG(hw, REG_EEPROM_CTRL, control); for (i = 0; i < 10; i++) { udelay(100); AT_READ_REG(hw, REG_EEPROM_CTRL, &control); if (control & EEPROM_CTRL_RW) break; } if (control & EEPROM_CTRL_RW) { AT_READ_REG(hw, REG_EEPROM_CTRL, &data); AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value); data = data & 0xFFFF; *p_value = swab32((data << 16) | (*p_value >> 16)); ret = true; } if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); return ret; } /* * Reads the adapter's MAC address from the EEPROM * * hw - Struct containing variables accessed by shared code */ int atl1c_read_mac_addr(struct atl1c_hw *hw) { int err = 0; err = atl1c_get_permanent_address(hw); if (err) eth_random_addr(hw->perm_mac_addr); memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr)); return err; } /* * atl1c_hash_mc_addr * purpose * set hash value for a multicast address * hash calcu processing : * 1. calcu 32bit CRC for multicast address * 2. reverse crc with MSB to LSB */ u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr) { u32 crc32; u32 value = 0; int i; crc32 = ether_crc_le(6, mc_addr); for (i = 0; i < 32; i++) value |= (((crc32 >> i) & 1) << (31 - i)); return value; } /* * Sets the bit in the multicast table corresponding to the hash value. * hw - Struct containing variables accessed by shared code * hash_value - Multicast address hash value */ void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value) { u32 hash_bit, hash_reg; u32 mta; /* * The HASH Table is a register array of 2 32-bit registers. * It is treated like an array of 64 bits. We want to set * bit BitArray[hash_value]. So we figure out what register * the bit is in, read it, OR in the new bit, then write * back the new value. The register is determined by the * upper bit of the hash value and the bit within that * register are determined by the lower 5 bits of the value. */ hash_reg = (hash_value >> 31) & 0x1; hash_bit = (hash_value >> 26) & 0x1F; mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg); mta |= (1 << hash_bit); AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta); } /* * wait mdio module be idle * return true: idle * false: still busy */ bool atl1c_wait_mdio_idle(struct atl1c_hw *hw) { u32 val; int i; for (i = 0; i < MDIO_MAX_AC_TO; i++) { AT_READ_REG(hw, REG_MDIO_CTRL, &val); if (!(val & (MDIO_CTRL_BUSY | MDIO_CTRL_START))) break; udelay(10); } return i != MDIO_MAX_AC_TO; } void atl1c_stop_phy_polling(struct atl1c_hw *hw) { if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION)) return; AT_WRITE_REG(hw, REG_MDIO_CTRL, 0); atl1c_wait_mdio_idle(hw); } void atl1c_start_phy_polling(struct atl1c_hw *hw, u16 clk_sel) { u32 val; if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION)) return; val = MDIO_CTRL_SPRES_PRMBL | FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) | FIELDX(MDIO_CTRL_REG, 1) | MDIO_CTRL_START | MDIO_CTRL_OP_READ; AT_WRITE_REG(hw, REG_MDIO_CTRL, val); atl1c_wait_mdio_idle(hw); val |= MDIO_CTRL_AP_EN; val &= ~MDIO_CTRL_START; AT_WRITE_REG(hw, REG_MDIO_CTRL, val); udelay(30); } /* * atl1c_read_phy_core * core funtion to read register in PHY via MDIO control regsiter. * ext: extension register (see IEEE 802.3) * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0) * reg: reg to read */ int atl1c_read_phy_core(struct atl1c_hw *hw, bool ext, u8 dev, u16 reg, u16 *phy_data) { u32 val; u16 clk_sel = MDIO_CTRL_CLK_25_4; atl1c_stop_phy_polling(hw); *phy_data = 0; /* only l2c_b2 & l1d_2 could use slow clock */ if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) && hw->hibernate) clk_sel = MDIO_CTRL_CLK_25_128; if (ext) { val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg); AT_WRITE_REG(hw, REG_MDIO_EXTN, val); val = MDIO_CTRL_SPRES_PRMBL | FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) | MDIO_CTRL_START | MDIO_CTRL_MODE_EXT | MDIO_CTRL_OP_READ; } else { val = MDIO_CTRL_SPRES_PRMBL | FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) | FIELDX(MDIO_CTRL_REG, reg) | MDIO_CTRL_START | MDIO_CTRL_OP_READ; } AT_WRITE_REG(hw, REG_MDIO_CTRL, val); if (!atl1c_wait_mdio_idle(hw)) return -1; AT_READ_REG(hw, REG_MDIO_CTRL, &val); *phy_data = (u16)FIELD_GETX(val, MDIO_CTRL_DATA); atl1c_start_phy_polling(hw, clk_sel); return 0; } /* * atl1c_write_phy_core * core funtion to write to register in PHY via MDIO control regsiter. * ext: extension register (see IEEE 802.3) * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0) * reg: reg to write */ int atl1c_write_phy_core(struct atl1c_hw *hw, bool ext, u8 dev, u16 reg, u16 phy_data) { u32 val; u16 clk_sel = MDIO_CTRL_CLK_25_4; atl1c_stop_phy_polling(hw); /* only l2c_b2 & l1d_2 could use slow clock */ if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) && hw->hibernate) clk_sel = MDIO_CTRL_CLK_25_128; if (ext) { val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg); AT_WRITE_REG(hw, REG_MDIO_EXTN, val); val = MDIO_CTRL_SPRES_PRMBL | FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) | FIELDX(MDIO_CTRL_DATA, phy_data) | MDIO_CTRL_START | MDIO_CTRL_MODE_EXT; } else { val = MDIO_CTRL_SPRES_PRMBL | FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) | FIELDX(MDIO_CTRL_DATA, phy_data) | FIELDX(MDIO_CTRL_REG, reg) | MDIO_CTRL_START; } AT_WRITE_REG(hw, REG_MDIO_CTRL, val); if (!atl1c_wait_mdio_idle(hw)) return -1; atl1c_start_phy_polling(hw, clk_sel); return 0; } /* * Reads the value from a PHY register * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to read */ int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data) { return atl1c_read_phy_core(hw, false, 0, reg_addr, phy_data); } /* * Writes a value to a PHY register * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to write * data - data to write to the PHY */ int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data) { return atl1c_write_phy_core(hw, false, 0, reg_addr, phy_data); } /* read from PHY extension register */ int atl1c_read_phy_ext(struct atl1c_hw *hw, u8 dev_addr, u16 reg_addr, u16 *phy_data) { return atl1c_read_phy_core(hw, true, dev_addr, reg_addr, phy_data); } /* write to PHY extension register */ int atl1c_write_phy_ext(struct atl1c_hw *hw, u8 dev_addr, u16 reg_addr, u16 phy_data) { return atl1c_write_phy_core(hw, true, dev_addr, reg_addr, phy_data); } int atl1c_read_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data) { int err; err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr); if (unlikely(err)) return err; else err = atl1c_read_phy_reg(hw, MII_DBG_DATA, phy_data); return err; } int atl1c_write_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 phy_data) { int err; err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr); if (unlikely(err)) return err; else err = atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data); return err; } /* * Configures PHY autoneg and flow control advertisement settings * * hw - Struct containing variables accessed by shared code */ static int atl1c_phy_setup_adv(struct atl1c_hw *hw) { u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_ALL; u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP & ~GIGA_CR_1000T_SPEED_MASK; if (hw->autoneg_advertised & ADVERTISED_10baseT_Half) mii_adv_data |= ADVERTISE_10HALF; if (hw->autoneg_advertised & ADVERTISED_10baseT_Full) mii_adv_data |= ADVERTISE_10FULL; if (hw->autoneg_advertised & ADVERTISED_100baseT_Half) mii_adv_data |= ADVERTISE_100HALF; if (hw->autoneg_advertised & ADVERTISED_100baseT_Full) mii_adv_data |= ADVERTISE_100FULL; if (hw->autoneg_advertised & ADVERTISED_Autoneg) mii_adv_data |= ADVERTISE_10HALF | ADVERTISE_10FULL | ADVERTISE_100HALF | ADVERTISE_100FULL; if (hw->link_cap_flags & ATL1C_LINK_CAP_1000M) { if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half) mii_giga_ctrl_data |= ADVERTISE_1000HALF; if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full) mii_giga_ctrl_data |= ADVERTISE_1000FULL; if (hw->autoneg_advertised & ADVERTISED_Autoneg) mii_giga_ctrl_data |= ADVERTISE_1000HALF | ADVERTISE_1000FULL; } if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 || atl1c_write_phy_reg(hw, MII_CTRL1000, mii_giga_ctrl_data) != 0) return -1; return 0; } void atl1c_phy_disable(struct atl1c_hw *hw) { atl1c_power_saving(hw, 0); } int atl1c_phy_reset(struct atl1c_hw *hw) { struct atl1c_adapter *adapter = hw->adapter; struct pci_dev *pdev = adapter->pdev; u16 phy_data; u32 phy_ctrl_data, lpi_ctrl; int err; /* reset PHY core */ AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl_data); phy_ctrl_data &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_GATE_25M_EN | GPHY_CTRL_PWDOWN_HW | GPHY_CTRL_CLS); phy_ctrl_data |= GPHY_CTRL_SEL_ANA_RST; if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE)) phy_ctrl_data |= (GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE); else phy_ctrl_data &= ~(GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE); AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data); AT_WRITE_FLUSH(hw); udelay(10); AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data | GPHY_CTRL_EXT_RESET); AT_WRITE_FLUSH(hw); udelay(10 * GPHY_CTRL_EXT_RST_TO); /* delay 800us */ /* switch clock */ if (hw->nic_type == athr_l2c_b) { atl1c_read_phy_dbg(hw, MIIDBG_CFGLPSPD, &phy_data); atl1c_write_phy_dbg(hw, MIIDBG_CFGLPSPD, phy_data & ~CFGLPSPD_RSTCNT_CLK125SW); } /* tx-half amplitude issue fix */ if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) { atl1c_read_phy_dbg(hw, MIIDBG_CABLE1TH_DET, &phy_data); phy_data |= CABLE1TH_DET_EN; atl1c_write_phy_dbg(hw, MIIDBG_CABLE1TH_DET, phy_data); } /* clear bit3 of dbgport 3B to lower voltage */ if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE)) { if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) { atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data); phy_data &= ~VOLT_CTRL_SWLOWEST; atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data); } /* power saving config */ phy_data = hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ? L1D_LEGCYPS_DEF : L1C_LEGCYPS_DEF; atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS, phy_data); /* hib */ atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL, SYSMODCTRL_IECHOADJ_DEF); } else { /* disable pws */ atl1c_read_phy_dbg(hw, MIIDBG_LEGCYPS, &phy_data); atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS, phy_data & ~LEGCYPS_EN); /* disable hibernate */ atl1c_read_phy_dbg(hw, MIIDBG_HIBNEG, &phy_data); atl1c_write_phy_dbg(hw, MIIDBG_HIBNEG, phy_data & HIBNEG_PSHIB_EN); } /* disable AZ(EEE) by default */ if (hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 || hw->nic_type == athr_l2c_b2) { AT_READ_REG(hw, REG_LPI_CTRL, &lpi_ctrl); AT_WRITE_REG(hw, REG_LPI_CTRL, lpi_ctrl & ~LPI_CTRL_EN); atl1c_write_phy_ext(hw, MIIEXT_ANEG, MIIEXT_LOCAL_EEEADV, 0); atl1c_write_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL3, L2CB_CLDCTRL3); } /* other debug port to set */ atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, ANACTRL_DEF); atl1c_write_phy_dbg(hw, MIIDBG_SRDSYSMOD, SRDSYSMOD_DEF); atl1c_write_phy_dbg(hw, MIIDBG_TST10BTCFG, TST10BTCFG_DEF); /* UNH-IOL test issue, set bit7 */ atl1c_write_phy_dbg(hw, MIIDBG_TST100BTCFG, TST100BTCFG_DEF | TST100BTCFG_LITCH_EN); /* set phy interrupt mask */ phy_data = IER_LINK_UP | IER_LINK_DOWN; err = atl1c_write_phy_reg(hw, MII_IER, phy_data); if (err) { if (netif_msg_hw(adapter)) dev_err(&pdev->dev, "Error enable PHY linkChange Interrupt\n"); return err; } return 0; } int atl1c_phy_init(struct atl1c_hw *hw) { struct atl1c_adapter *adapter = hw->adapter; struct pci_dev *pdev = adapter->pdev; int ret_val; u16 mii_bmcr_data = BMCR_RESET; if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &hw->phy_id1) != 0) || (atl1c_read_phy_reg(hw, MII_PHYSID2, &hw->phy_id2) != 0)) { dev_err(&pdev->dev, "Error get phy ID\n"); return -1; } switch (hw->media_type) { case MEDIA_TYPE_AUTO_SENSOR: ret_val = atl1c_phy_setup_adv(hw); if (ret_val) { if (netif_msg_link(adapter)) dev_err(&pdev->dev, "Error Setting up Auto-Negotiation\n"); return ret_val; } mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART; break; case MEDIA_TYPE_100M_FULL: mii_bmcr_data |= BMCR_SPEED100 | BMCR_FULLDPLX; break; case MEDIA_TYPE_100M_HALF: mii_bmcr_data |= BMCR_SPEED100; break; case MEDIA_TYPE_10M_FULL: mii_bmcr_data |= BMCR_FULLDPLX; break; case MEDIA_TYPE_10M_HALF: break; default: if (netif_msg_link(adapter)) dev_err(&pdev->dev, "Wrong Media type %d\n", hw->media_type); return -1; break; } ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data); if (ret_val) return ret_val; hw->phy_configured = true; return 0; } /* * Detects the current speed and duplex settings of the hardware. * * hw - Struct containing variables accessed by shared code * speed - Speed of the connection * duplex - Duplex setting of the connection */ int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex) { int err; u16 phy_data; /* Read PHY Specific Status Register (17) */ err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data); if (err) return err; if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED)) return -1; switch (phy_data & GIGA_PSSR_SPEED) { case GIGA_PSSR_1000MBS: *speed = SPEED_1000; break; case GIGA_PSSR_100MBS: *speed = SPEED_100; break; case GIGA_PSSR_10MBS: *speed = SPEED_10; break; default: return -1; break; } if (phy_data & GIGA_PSSR_DPLX) *duplex = FULL_DUPLEX; else *duplex = HALF_DUPLEX; return 0; } /* select one link mode to get lower power consumption */ int atl1c_phy_to_ps_link(struct atl1c_hw *hw) { struct atl1c_adapter *adapter = hw->adapter; struct pci_dev *pdev = adapter->pdev; int ret = 0; u16 autoneg_advertised = ADVERTISED_10baseT_Half; u16 save_autoneg_advertised; u16 phy_data; u16 mii_lpa_data; u16 speed = SPEED_0; u16 duplex = FULL_DUPLEX; int i; atl1c_read_phy_reg(hw, MII_BMSR, &phy_data); atl1c_read_phy_reg(hw, MII_BMSR, &phy_data); if (phy_data & BMSR_LSTATUS) { atl1c_read_phy_reg(hw, MII_LPA, &mii_lpa_data); if (mii_lpa_data & LPA_10FULL) autoneg_advertised = ADVERTISED_10baseT_Full; else if (mii_lpa_data & LPA_10HALF) autoneg_advertised = ADVERTISED_10baseT_Half; else if (mii_lpa_data & LPA_100HALF) autoneg_advertised = ADVERTISED_100baseT_Half; else if (mii_lpa_data & LPA_100FULL) autoneg_advertised = ADVERTISED_100baseT_Full; save_autoneg_advertised = hw->autoneg_advertised; hw->phy_configured = false; hw->autoneg_advertised = autoneg_advertised; if (atl1c_restart_autoneg(hw) != 0) { dev_dbg(&pdev->dev, "phy autoneg failed\n"); ret = -1; } hw->autoneg_advertised = save_autoneg_advertised; if (mii_lpa_data) { for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) { mdelay(100); atl1c_read_phy_reg(hw, MII_BMSR, &phy_data); atl1c_read_phy_reg(hw, MII_BMSR, &phy_data); if (phy_data & BMSR_LSTATUS) { if (atl1c_get_speed_and_duplex(hw, &speed, &duplex) != 0) dev_dbg(&pdev->dev, "get speed and duplex failed\n"); break; } } } } else { speed = SPEED_10; duplex = HALF_DUPLEX; } adapter->link_speed = speed; adapter->link_duplex = duplex; return ret; } int atl1c_restart_autoneg(struct atl1c_hw *hw) { int err = 0; u16 mii_bmcr_data = BMCR_RESET; err = atl1c_phy_setup_adv(hw); if (err) return err; mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART; return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data); } int atl1c_power_saving(struct atl1c_hw *hw, u32 wufc) { struct atl1c_adapter *adapter = hw->adapter; struct pci_dev *pdev = adapter->pdev; u32 master_ctrl, mac_ctrl, phy_ctrl; u32 wol_ctrl, speed; u16 phy_data; wol_ctrl = 0; speed = adapter->link_speed == SPEED_1000 ? MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100; AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl); AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl); AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl); master_ctrl &= ~MASTER_CTRL_CLK_SEL_DIS; mac_ctrl = FIELD_SETX(mac_ctrl, MAC_CTRL_SPEED, speed); mac_ctrl &= ~(MAC_CTRL_DUPLX | MAC_CTRL_RX_EN | MAC_CTRL_TX_EN); if (adapter->link_duplex == FULL_DUPLEX) mac_ctrl |= MAC_CTRL_DUPLX; phy_ctrl &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_CLS); phy_ctrl |= GPHY_CTRL_SEL_ANA_RST | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_HIB_EN; if (!wufc) { /* without WoL */ master_ctrl |= MASTER_CTRL_CLK_SEL_DIS; phy_ctrl |= GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PWDOWN_HW; AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl); AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl); AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl); AT_WRITE_REG(hw, REG_WOL_CTRL, 0); hw->phy_configured = false; /* re-init PHY when resume */ return 0; } phy_ctrl |= GPHY_CTRL_EXT_RESET; if (wufc & AT_WUFC_MAG) { mac_ctrl |= MAC_CTRL_RX_EN | MAC_CTRL_BC_EN; wol_ctrl |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN; if (hw->nic_type == athr_l2c_b && hw->revision_id == L2CB_V11) wol_ctrl |= WOL_PATTERN_EN | WOL_PATTERN_PME_EN; } if (wufc & AT_WUFC_LNKC) { wol_ctrl |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN; if (atl1c_write_phy_reg(hw, MII_IER, IER_LINK_UP) != 0) { dev_dbg(&pdev->dev, "%s: write phy MII_IER failed.\n", atl1c_driver_name); } } /* clear PHY interrupt */ atl1c_read_phy_reg(hw, MII_ISR, &phy_data); dev_dbg(&pdev->dev, "%s: suspend MAC=%x,MASTER=%x,PHY=0x%x,WOL=%x\n", atl1c_driver_name, mac_ctrl, master_ctrl, phy_ctrl, wol_ctrl); AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl); AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl); AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl); AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl); return 0; } /* configure phy after Link change Event */ void atl1c_post_phy_linkchg(struct atl1c_hw *hw, u16 link_speed) { u16 phy_val; bool adj_thresh = false; if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2) adj_thresh = true; if (link_speed != SPEED_0) { /* link up */ /* az with brcm, half-amp */ if (hw->nic_type == athr_l1d_2) { atl1c_read_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL6, &phy_val); phy_val = FIELD_GETX(phy_val, CLDCTRL6_CAB_LEN); phy_val = phy_val > CLDCTRL6_CAB_LEN_SHORT ? AZ_ANADECT_LONG : AZ_ANADECT_DEF; atl1c_write_phy_dbg(hw, MIIDBG_AZ_ANADECT, phy_val); } /* threshold adjust */ if (adj_thresh && link_speed == SPEED_100 && hw->msi_lnkpatch) { atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB, L1D_MSE16DB_UP); atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL, L1D_SYSMODCTRL_IECHOADJ_DEF); } } else { /* link down */ if (adj_thresh && hw->msi_lnkpatch) { atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL, SYSMODCTRL_IECHOADJ_DEF); atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB, L1D_MSE16DB_DOWN); } } }