/* * Copyright (C) ST-Ericsson AB 2010 * Author: Daniel Martensson * Dmitry.Tarnyagin / dmitry.tarnyagin@lockless.no * License terms: GNU General Public License (GPL) version 2. */ #define pr_fmt(fmt) KBUILD_MODNAME fmt #include <linux/init.h> #include <linux/module.h> #include <linux/device.h> #include <linux/netdevice.h> #include <linux/string.h> #include <linux/list.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/if_arp.h> #include <linux/timer.h> #include <net/rtnetlink.h> #include <linux/pkt_sched.h> #include <net/caif/caif_layer.h> #include <net/caif/caif_hsi.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("Daniel Martensson"); MODULE_DESCRIPTION("CAIF HSI driver"); /* Returns the number of padding bytes for alignment. */ #define PAD_POW2(x, pow) ((((x)&((pow)-1)) == 0) ? 0 :\ (((pow)-((x)&((pow)-1))))) static const struct cfhsi_config hsi_default_config = { /* Inactivity timeout on HSI, ms */ .inactivity_timeout = HZ, /* Aggregation timeout (ms) of zero means no aggregation is done*/ .aggregation_timeout = 1, /* * HSI link layer flow-control thresholds. * Threshold values for the HSI packet queue. Flow-control will be * asserted when the number of packets exceeds q_high_mark. It will * not be de-asserted before the number of packets drops below * q_low_mark. * Warning: A high threshold value might increase throughput but it * will at the same time prevent channel prioritization and increase * the risk of flooding the modem. The high threshold should be above * the low. */ .q_high_mark = 100, .q_low_mark = 50, /* * HSI padding options. * Warning: must be a base of 2 (& operation used) and can not be zero ! */ .head_align = 4, .tail_align = 4, }; #define ON 1 #define OFF 0 static LIST_HEAD(cfhsi_list); static void cfhsi_inactivity_tout(unsigned long arg) { struct cfhsi *cfhsi = (struct cfhsi *)arg; netdev_dbg(cfhsi->ndev, "%s.\n", __func__); /* Schedule power down work queue. */ if (!test_bit(CFHSI_SHUTDOWN, &cfhsi->bits)) queue_work(cfhsi->wq, &cfhsi->wake_down_work); } static void cfhsi_update_aggregation_stats(struct cfhsi *cfhsi, const struct sk_buff *skb, int direction) { struct caif_payload_info *info; int hpad, tpad, len; info = (struct caif_payload_info *)&skb->cb; hpad = 1 + PAD_POW2((info->hdr_len + 1), cfhsi->cfg.head_align); tpad = PAD_POW2((skb->len + hpad), cfhsi->cfg.tail_align); len = skb->len + hpad + tpad; if (direction > 0) cfhsi->aggregation_len += len; else if (direction < 0) cfhsi->aggregation_len -= len; } static bool cfhsi_can_send_aggregate(struct cfhsi *cfhsi) { int i; if (cfhsi->cfg.aggregation_timeout == 0) return true; for (i = 0; i < CFHSI_PRIO_BEBK; ++i) { if (cfhsi->qhead[i].qlen) return true; } /* TODO: Use aggregation_len instead */ if (cfhsi->qhead[CFHSI_PRIO_BEBK].qlen >= CFHSI_MAX_PKTS) return true; return false; } static struct sk_buff *cfhsi_dequeue(struct cfhsi *cfhsi) { struct sk_buff *skb; int i; for (i = 0; i < CFHSI_PRIO_LAST; ++i) { skb = skb_dequeue(&cfhsi->qhead[i]); if (skb) break; } return skb; } static int cfhsi_tx_queue_len(struct cfhsi *cfhsi) { int i, len = 0; for (i = 0; i < CFHSI_PRIO_LAST; ++i) len += skb_queue_len(&cfhsi->qhead[i]); return len; } static void cfhsi_abort_tx(struct cfhsi *cfhsi) { struct sk_buff *skb; for (;;) { spin_lock_bh(&cfhsi->lock); skb = cfhsi_dequeue(cfhsi); if (!skb) break; cfhsi->ndev->stats.tx_errors++; cfhsi->ndev->stats.tx_dropped++; cfhsi_update_aggregation_stats(cfhsi, skb, -1); spin_unlock_bh(&cfhsi->lock); kfree_skb(skb); } cfhsi->tx_state = CFHSI_TX_STATE_IDLE; if (!test_bit(CFHSI_SHUTDOWN, &cfhsi->bits)) mod_timer(&cfhsi->inactivity_timer, jiffies + cfhsi->cfg.inactivity_timeout); spin_unlock_bh(&cfhsi->lock); } static int cfhsi_flush_fifo(struct cfhsi *cfhsi) { char buffer[32]; /* Any reasonable value */ size_t fifo_occupancy; int ret; netdev_dbg(cfhsi->ndev, "%s.\n", __func__); do { ret = cfhsi->ops->cfhsi_fifo_occupancy(cfhsi->ops, &fifo_occupancy); if (ret) { netdev_warn(cfhsi->ndev, "%s: can't get FIFO occupancy: %d.\n", __func__, ret); break; } else if (!fifo_occupancy) /* No more data, exitting normally */ break; fifo_occupancy = min(sizeof(buffer), fifo_occupancy); set_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits); ret = cfhsi->ops->cfhsi_rx(buffer, fifo_occupancy, cfhsi->ops); if (ret) { clear_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits); netdev_warn(cfhsi->ndev, "%s: can't read data: %d.\n", __func__, ret); break; } ret = 5 * HZ; ret = wait_event_interruptible_timeout(cfhsi->flush_fifo_wait, !test_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits), ret); if (ret < 0) { netdev_warn(cfhsi->ndev, "%s: can't wait for flush complete: %d.\n", __func__, ret); break; } else if (!ret) { ret = -ETIMEDOUT; netdev_warn(cfhsi->ndev, "%s: timeout waiting for flush complete.\n", __func__); break; } } while (1); return ret; } static int cfhsi_tx_frm(struct cfhsi_desc *desc, struct cfhsi *cfhsi) { int nfrms = 0; int pld_len = 0; struct sk_buff *skb; u8 *pfrm = desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ; skb = cfhsi_dequeue(cfhsi); if (!skb) return 0; /* Clear offset. */ desc->offset = 0; /* Check if we can embed a CAIF frame. */ if (skb->len < CFHSI_MAX_EMB_FRM_SZ) { struct caif_payload_info *info; int hpad; int tpad; /* Calculate needed head alignment and tail alignment. */ info = (struct caif_payload_info *)&skb->cb; hpad = 1 + PAD_POW2((info->hdr_len + 1), cfhsi->cfg.head_align); tpad = PAD_POW2((skb->len + hpad), cfhsi->cfg.tail_align); /* Check if frame still fits with added alignment. */ if ((skb->len + hpad + tpad) <= CFHSI_MAX_EMB_FRM_SZ) { u8 *pemb = desc->emb_frm; desc->offset = CFHSI_DESC_SHORT_SZ; *pemb = (u8)(hpad - 1); pemb += hpad; /* Update network statistics. */ spin_lock_bh(&cfhsi->lock); cfhsi->ndev->stats.tx_packets++; cfhsi->ndev->stats.tx_bytes += skb->len; cfhsi_update_aggregation_stats(cfhsi, skb, -1); spin_unlock_bh(&cfhsi->lock); /* Copy in embedded CAIF frame. */ skb_copy_bits(skb, 0, pemb, skb->len); /* Consume the SKB */ consume_skb(skb); skb = NULL; } } /* Create payload CAIF frames. */ pfrm = desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ; while (nfrms < CFHSI_MAX_PKTS) { struct caif_payload_info *info; int hpad; int tpad; if (!skb) skb = cfhsi_dequeue(cfhsi); if (!skb) break; /* Calculate needed head alignment and tail alignment. */ info = (struct caif_payload_info *)&skb->cb; hpad = 1 + PAD_POW2((info->hdr_len + 1), cfhsi->cfg.head_align); tpad = PAD_POW2((skb->len + hpad), cfhsi->cfg.tail_align); /* Fill in CAIF frame length in descriptor. */ desc->cffrm_len[nfrms] = hpad + skb->len + tpad; /* Fill head padding information. */ *pfrm = (u8)(hpad - 1); pfrm += hpad; /* Update network statistics. */ spin_lock_bh(&cfhsi->lock); cfhsi->ndev->stats.tx_packets++; cfhsi->ndev->stats.tx_bytes += skb->len; cfhsi_update_aggregation_stats(cfhsi, skb, -1); spin_unlock_bh(&cfhsi->lock); /* Copy in CAIF frame. */ skb_copy_bits(skb, 0, pfrm, skb->len); /* Update payload length. */ pld_len += desc->cffrm_len[nfrms]; /* Update frame pointer. */ pfrm += skb->len + tpad; /* Consume the SKB */ consume_skb(skb); skb = NULL; /* Update number of frames. */ nfrms++; } /* Unused length fields should be zero-filled (according to SPEC). */ while (nfrms < CFHSI_MAX_PKTS) { desc->cffrm_len[nfrms] = 0x0000; nfrms++; } /* Check if we can piggy-back another descriptor. */ if (cfhsi_can_send_aggregate(cfhsi)) desc->header |= CFHSI_PIGGY_DESC; else desc->header &= ~CFHSI_PIGGY_DESC; return CFHSI_DESC_SZ + pld_len; } static void cfhsi_start_tx(struct cfhsi *cfhsi) { struct cfhsi_desc *desc = (struct cfhsi_desc *)cfhsi->tx_buf; int len, res; netdev_dbg(cfhsi->ndev, "%s.\n", __func__); if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits)) return; do { /* Create HSI frame. */ len = cfhsi_tx_frm(desc, cfhsi); if (!len) { spin_lock_bh(&cfhsi->lock); if (unlikely(cfhsi_tx_queue_len(cfhsi))) { spin_unlock_bh(&cfhsi->lock); res = -EAGAIN; continue; } cfhsi->tx_state = CFHSI_TX_STATE_IDLE; /* Start inactivity timer. */ mod_timer(&cfhsi->inactivity_timer, jiffies + cfhsi->cfg.inactivity_timeout); spin_unlock_bh(&cfhsi->lock); break; } /* Set up new transfer. */ res = cfhsi->ops->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->ops); if (WARN_ON(res < 0)) netdev_err(cfhsi->ndev, "%s: TX error %d.\n", __func__, res); } while (res < 0); } static void cfhsi_tx_done(struct cfhsi *cfhsi) { netdev_dbg(cfhsi->ndev, "%s.\n", __func__); if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits)) return; /* * Send flow on if flow off has been previously signalled * and number of packets is below low water mark. */ spin_lock_bh(&cfhsi->lock); if (cfhsi->flow_off_sent && cfhsi_tx_queue_len(cfhsi) <= cfhsi->cfg.q_low_mark && cfhsi->cfdev.flowctrl) { cfhsi->flow_off_sent = 0; cfhsi->cfdev.flowctrl(cfhsi->ndev, ON); } if (cfhsi_can_send_aggregate(cfhsi)) { spin_unlock_bh(&cfhsi->lock); cfhsi_start_tx(cfhsi); } else { mod_timer(&cfhsi->aggregation_timer, jiffies + cfhsi->cfg.aggregation_timeout); spin_unlock_bh(&cfhsi->lock); } return; } static void cfhsi_tx_done_cb(struct cfhsi_cb_ops *cb_ops) { struct cfhsi *cfhsi; cfhsi = container_of(cb_ops, struct cfhsi, cb_ops); netdev_dbg(cfhsi->ndev, "%s.\n", __func__); if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits)) return; cfhsi_tx_done(cfhsi); } static int cfhsi_rx_desc(struct cfhsi_desc *desc, struct cfhsi *cfhsi) { int xfer_sz = 0; int nfrms = 0; u16 *plen = NULL; u8 *pfrm = NULL; if ((desc->header & ~CFHSI_PIGGY_DESC) || (desc->offset > CFHSI_MAX_EMB_FRM_SZ)) { netdev_err(cfhsi->ndev, "%s: Invalid descriptor.\n", __func__); return -EPROTO; } /* Check for embedded CAIF frame. */ if (desc->offset) { struct sk_buff *skb; u8 *dst = NULL; int len = 0; pfrm = ((u8 *)desc) + desc->offset; /* Remove offset padding. */ pfrm += *pfrm + 1; /* Read length of CAIF frame (little endian). */ len = *pfrm; len |= ((*(pfrm+1)) << 8) & 0xFF00; len += 2; /* Add FCS fields. */ /* Sanity check length of CAIF frame. */ if (unlikely(len > CFHSI_MAX_CAIF_FRAME_SZ)) { netdev_err(cfhsi->ndev, "%s: Invalid length.\n", __func__); return -EPROTO; } /* Allocate SKB (OK even in IRQ context). */ skb = alloc_skb(len + 1, GFP_ATOMIC); if (!skb) { netdev_err(cfhsi->ndev, "%s: Out of memory !\n", __func__); return -ENOMEM; } caif_assert(skb != NULL); dst = skb_put(skb, len); memcpy(dst, pfrm, len); skb->protocol = htons(ETH_P_CAIF); skb_reset_mac_header(skb); skb->dev = cfhsi->ndev; /* * We are in a callback handler and * unfortunately we don't know what context we're * running in. */ if (in_interrupt()) netif_rx(skb); else netif_rx_ni(skb); /* Update network statistics. */ cfhsi->ndev->stats.rx_packets++; cfhsi->ndev->stats.rx_bytes += len; } /* Calculate transfer length. */ plen = desc->cffrm_len; while (nfrms < CFHSI_MAX_PKTS && *plen) { xfer_sz += *plen; plen++; nfrms++; } /* Check for piggy-backed descriptor. */ if (desc->header & CFHSI_PIGGY_DESC) xfer_sz += CFHSI_DESC_SZ; if ((xfer_sz % 4) || (xfer_sz > (CFHSI_BUF_SZ_RX - CFHSI_DESC_SZ))) { netdev_err(cfhsi->ndev, "%s: Invalid payload len: %d, ignored.\n", __func__, xfer_sz); return -EPROTO; } return xfer_sz; } static int cfhsi_rx_desc_len(struct cfhsi_desc *desc) { int xfer_sz = 0; int nfrms = 0; u16 *plen; if ((desc->header & ~CFHSI_PIGGY_DESC) || (desc->offset > CFHSI_MAX_EMB_FRM_SZ)) { pr_err("Invalid descriptor. %x %x\n", desc->header, desc->offset); return -EPROTO; } /* Calculate transfer length. */ plen = desc->cffrm_len; while (nfrms < CFHSI_MAX_PKTS && *plen) { xfer_sz += *plen; plen++; nfrms++; } if (xfer_sz % 4) { pr_err("Invalid payload len: %d, ignored.\n", xfer_sz); return -EPROTO; } return xfer_sz; } static int cfhsi_rx_pld(struct cfhsi_desc *desc, struct cfhsi *cfhsi) { int rx_sz = 0; int nfrms = 0; u16 *plen = NULL; u8 *pfrm = NULL; /* Sanity check header and offset. */ if (WARN_ON((desc->header & ~CFHSI_PIGGY_DESC) || (desc->offset > CFHSI_MAX_EMB_FRM_SZ))) { netdev_err(cfhsi->ndev, "%s: Invalid descriptor.\n", __func__); return -EPROTO; } /* Set frame pointer to start of payload. */ pfrm = desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ; plen = desc->cffrm_len; /* Skip already processed frames. */ while (nfrms < cfhsi->rx_state.nfrms) { pfrm += *plen; rx_sz += *plen; plen++; nfrms++; } /* Parse payload. */ while (nfrms < CFHSI_MAX_PKTS && *plen) { struct sk_buff *skb; u8 *dst = NULL; u8 *pcffrm = NULL; int len; /* CAIF frame starts after head padding. */ pcffrm = pfrm + *pfrm + 1; /* Read length of CAIF frame (little endian). */ len = *pcffrm; len |= ((*(pcffrm + 1)) << 8) & 0xFF00; len += 2; /* Add FCS fields. */ /* Sanity check length of CAIF frames. */ if (unlikely(len > CFHSI_MAX_CAIF_FRAME_SZ)) { netdev_err(cfhsi->ndev, "%s: Invalid length.\n", __func__); return -EPROTO; } /* Allocate SKB (OK even in IRQ context). */ skb = alloc_skb(len + 1, GFP_ATOMIC); if (!skb) { netdev_err(cfhsi->ndev, "%s: Out of memory !\n", __func__); cfhsi->rx_state.nfrms = nfrms; return -ENOMEM; } caif_assert(skb != NULL); dst = skb_put(skb, len); memcpy(dst, pcffrm, len); skb->protocol = htons(ETH_P_CAIF); skb_reset_mac_header(skb); skb->dev = cfhsi->ndev; /* * We're called in callback from HSI * and don't know the context we're running in. */ if (in_interrupt()) netif_rx(skb); else netif_rx_ni(skb); /* Update network statistics. */ cfhsi->ndev->stats.rx_packets++; cfhsi->ndev->stats.rx_bytes += len; pfrm += *plen; rx_sz += *plen; plen++; nfrms++; } return rx_sz; } static void cfhsi_rx_done(struct cfhsi *cfhsi) { int res; int desc_pld_len = 0, rx_len, rx_state; struct cfhsi_desc *desc = NULL; u8 *rx_ptr, *rx_buf; struct cfhsi_desc *piggy_desc = NULL; desc = (struct cfhsi_desc *)cfhsi->rx_buf; netdev_dbg(cfhsi->ndev, "%s\n", __func__); if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits)) return; /* Update inactivity timer if pending. */ spin_lock_bh(&cfhsi->lock); mod_timer_pending(&cfhsi->inactivity_timer, jiffies + cfhsi->cfg.inactivity_timeout); spin_unlock_bh(&cfhsi->lock); if (cfhsi->rx_state.state == CFHSI_RX_STATE_DESC) { desc_pld_len = cfhsi_rx_desc_len(desc); if (desc_pld_len < 0) goto out_of_sync; rx_buf = cfhsi->rx_buf; rx_len = desc_pld_len; if (desc_pld_len > 0 && (desc->header & CFHSI_PIGGY_DESC)) rx_len += CFHSI_DESC_SZ; if (desc_pld_len == 0) rx_buf = cfhsi->rx_flip_buf; } else { rx_buf = cfhsi->rx_flip_buf; rx_len = CFHSI_DESC_SZ; if (cfhsi->rx_state.pld_len > 0 && (desc->header & CFHSI_PIGGY_DESC)) { piggy_desc = (struct cfhsi_desc *) (desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ + cfhsi->rx_state.pld_len); cfhsi->rx_state.piggy_desc = true; /* Extract payload len from piggy-backed descriptor. */ desc_pld_len = cfhsi_rx_desc_len(piggy_desc); if (desc_pld_len < 0) goto out_of_sync; if (desc_pld_len > 0) { rx_len = desc_pld_len; if (piggy_desc->header & CFHSI_PIGGY_DESC) rx_len += CFHSI_DESC_SZ; } /* * Copy needed information from the piggy-backed * descriptor to the descriptor in the start. */ memcpy(rx_buf, (u8 *)piggy_desc, CFHSI_DESC_SHORT_SZ); } } if (desc_pld_len) { rx_state = CFHSI_RX_STATE_PAYLOAD; rx_ptr = rx_buf + CFHSI_DESC_SZ; } else { rx_state = CFHSI_RX_STATE_DESC; rx_ptr = rx_buf; rx_len = CFHSI_DESC_SZ; } /* Initiate next read */ if (test_bit(CFHSI_AWAKE, &cfhsi->bits)) { /* Set up new transfer. */ netdev_dbg(cfhsi->ndev, "%s: Start RX.\n", __func__); res = cfhsi->ops->cfhsi_rx(rx_ptr, rx_len, cfhsi->ops); if (WARN_ON(res < 0)) { netdev_err(cfhsi->ndev, "%s: RX error %d.\n", __func__, res); cfhsi->ndev->stats.rx_errors++; cfhsi->ndev->stats.rx_dropped++; } } if (cfhsi->rx_state.state == CFHSI_RX_STATE_DESC) { /* Extract payload from descriptor */ if (cfhsi_rx_desc(desc, cfhsi) < 0) goto out_of_sync; } else { /* Extract payload */ if (cfhsi_rx_pld(desc, cfhsi) < 0) goto out_of_sync; if (piggy_desc) { /* Extract any payload in piggyback descriptor. */ if (cfhsi_rx_desc(piggy_desc, cfhsi) < 0) goto out_of_sync; /* Mark no embedded frame after extracting it */ piggy_desc->offset = 0; } } /* Update state info */ memset(&cfhsi->rx_state, 0, sizeof(cfhsi->rx_state)); cfhsi->rx_state.state = rx_state; cfhsi->rx_ptr = rx_ptr; cfhsi->rx_len = rx_len; cfhsi->rx_state.pld_len = desc_pld_len; cfhsi->rx_state.piggy_desc = desc->header & CFHSI_PIGGY_DESC; if (rx_buf != cfhsi->rx_buf) swap(cfhsi->rx_buf, cfhsi->rx_flip_buf); return; out_of_sync: netdev_err(cfhsi->ndev, "%s: Out of sync.\n", __func__); print_hex_dump_bytes("--> ", DUMP_PREFIX_NONE, cfhsi->rx_buf, CFHSI_DESC_SZ); schedule_work(&cfhsi->out_of_sync_work); } static void cfhsi_rx_slowpath(unsigned long arg) { struct cfhsi *cfhsi = (struct cfhsi *)arg; netdev_dbg(cfhsi->ndev, "%s.\n", __func__); cfhsi_rx_done(cfhsi); } static void cfhsi_rx_done_cb(struct cfhsi_cb_ops *cb_ops) { struct cfhsi *cfhsi; cfhsi = container_of(cb_ops, struct cfhsi, cb_ops); netdev_dbg(cfhsi->ndev, "%s.\n", __func__); if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits)) return; if (test_and_clear_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits)) wake_up_interruptible(&cfhsi->flush_fifo_wait); else cfhsi_rx_done(cfhsi); } static void cfhsi_wake_up(struct work_struct *work) { struct cfhsi *cfhsi = NULL; int res; int len; long ret; cfhsi = container_of(work, struct cfhsi, wake_up_work); if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits)) return; if (unlikely(test_bit(CFHSI_AWAKE, &cfhsi->bits))) { /* It happenes when wakeup is requested by * both ends at the same time. */ clear_bit(CFHSI_WAKE_UP, &cfhsi->bits); clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits); return; } /* Activate wake line. */ cfhsi->ops->cfhsi_wake_up(cfhsi->ops); netdev_dbg(cfhsi->ndev, "%s: Start waiting.\n", __func__); /* Wait for acknowledge. */ ret = CFHSI_WAKE_TOUT; ret = wait_event_interruptible_timeout(cfhsi->wake_up_wait, test_and_clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits), ret); if (unlikely(ret < 0)) { /* Interrupted by signal. */ netdev_err(cfhsi->ndev, "%s: Signalled: %ld.\n", __func__, ret); clear_bit(CFHSI_WAKE_UP, &cfhsi->bits); cfhsi->ops->cfhsi_wake_down(cfhsi->ops); return; } else if (!ret) { bool ca_wake = false; size_t fifo_occupancy = 0; /* Wakeup timeout */ netdev_dbg(cfhsi->ndev, "%s: Timeout.\n", __func__); /* Check FIFO to check if modem has sent something. */ WARN_ON(cfhsi->ops->cfhsi_fifo_occupancy(cfhsi->ops, &fifo_occupancy)); netdev_dbg(cfhsi->ndev, "%s: Bytes in FIFO: %u.\n", __func__, (unsigned) fifo_occupancy); /* Check if we misssed the interrupt. */ WARN_ON(cfhsi->ops->cfhsi_get_peer_wake(cfhsi->ops, &ca_wake)); if (ca_wake) { netdev_err(cfhsi->ndev, "%s: CA Wake missed !.\n", __func__); /* Clear the CFHSI_WAKE_UP_ACK bit to prevent race. */ clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits); /* Continue execution. */ goto wake_ack; } clear_bit(CFHSI_WAKE_UP, &cfhsi->bits); cfhsi->ops->cfhsi_wake_down(cfhsi->ops); return; } wake_ack: netdev_dbg(cfhsi->ndev, "%s: Woken.\n", __func__); /* Clear power up bit. */ set_bit(CFHSI_AWAKE, &cfhsi->bits); clear_bit(CFHSI_WAKE_UP, &cfhsi->bits); /* Resume read operation. */ netdev_dbg(cfhsi->ndev, "%s: Start RX.\n", __func__); res = cfhsi->ops->cfhsi_rx(cfhsi->rx_ptr, cfhsi->rx_len, cfhsi->ops); if (WARN_ON(res < 0)) netdev_err(cfhsi->ndev, "%s: RX err %d.\n", __func__, res); /* Clear power up acknowledment. */ clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits); spin_lock_bh(&cfhsi->lock); /* Resume transmit if queues are not empty. */ if (!cfhsi_tx_queue_len(cfhsi)) { netdev_dbg(cfhsi->ndev, "%s: Peer wake, start timer.\n", __func__); /* Start inactivity timer. */ mod_timer(&cfhsi->inactivity_timer, jiffies + cfhsi->cfg.inactivity_timeout); spin_unlock_bh(&cfhsi->lock); return; } netdev_dbg(cfhsi->ndev, "%s: Host wake.\n", __func__); spin_unlock_bh(&cfhsi->lock); /* Create HSI frame. */ len = cfhsi_tx_frm((struct cfhsi_desc *)cfhsi->tx_buf, cfhsi); if (likely(len > 0)) { /* Set up new transfer. */ res = cfhsi->ops->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->ops); if (WARN_ON(res < 0)) { netdev_err(cfhsi->ndev, "%s: TX error %d.\n", __func__, res); cfhsi_abort_tx(cfhsi); } } else { netdev_err(cfhsi->ndev, "%s: Failed to create HSI frame: %d.\n", __func__, len); } } static void cfhsi_wake_down(struct work_struct *work) { long ret; struct cfhsi *cfhsi = NULL; size_t fifo_occupancy = 0; int retry = CFHSI_WAKE_TOUT; cfhsi = container_of(work, struct cfhsi, wake_down_work); netdev_dbg(cfhsi->ndev, "%s.\n", __func__); if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits)) return; /* Deactivate wake line. */ cfhsi->ops->cfhsi_wake_down(cfhsi->ops); /* Wait for acknowledge. */ ret = CFHSI_WAKE_TOUT; ret = wait_event_interruptible_timeout(cfhsi->wake_down_wait, test_and_clear_bit(CFHSI_WAKE_DOWN_ACK, &cfhsi->bits), ret); if (ret < 0) { /* Interrupted by signal. */ netdev_err(cfhsi->ndev, "%s: Signalled: %ld.\n", __func__, ret); return; } else if (!ret) { bool ca_wake = true; /* Timeout */ netdev_err(cfhsi->ndev, "%s: Timeout.\n", __func__); /* Check if we misssed the interrupt. */ WARN_ON(cfhsi->ops->cfhsi_get_peer_wake(cfhsi->ops, &ca_wake)); if (!ca_wake) netdev_err(cfhsi->ndev, "%s: CA Wake missed !.\n", __func__); } /* Check FIFO occupancy. */ while (retry) { WARN_ON(cfhsi->ops->cfhsi_fifo_occupancy(cfhsi->ops, &fifo_occupancy)); if (!fifo_occupancy) break; set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(1); retry--; } if (!retry) netdev_err(cfhsi->ndev, "%s: FIFO Timeout.\n", __func__); /* Clear AWAKE condition. */ clear_bit(CFHSI_AWAKE, &cfhsi->bits); /* Cancel pending RX requests. */ cfhsi->ops->cfhsi_rx_cancel(cfhsi->ops); } static void cfhsi_out_of_sync(struct work_struct *work) { struct cfhsi *cfhsi = NULL; cfhsi = container_of(work, struct cfhsi, out_of_sync_work); rtnl_lock(); dev_close(cfhsi->ndev); rtnl_unlock(); } static void cfhsi_wake_up_cb(struct cfhsi_cb_ops *cb_ops) { struct cfhsi *cfhsi = NULL; cfhsi = container_of(cb_ops, struct cfhsi, cb_ops); netdev_dbg(cfhsi->ndev, "%s.\n", __func__); set_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits); wake_up_interruptible(&cfhsi->wake_up_wait); if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits)) return; /* Schedule wake up work queue if the peer initiates. */ if (!test_and_set_bit(CFHSI_WAKE_UP, &cfhsi->bits)) queue_work(cfhsi->wq, &cfhsi->wake_up_work); } static void cfhsi_wake_down_cb(struct cfhsi_cb_ops *cb_ops) { struct cfhsi *cfhsi = NULL; cfhsi = container_of(cb_ops, struct cfhsi, cb_ops); netdev_dbg(cfhsi->ndev, "%s.\n", __func__); /* Initiating low power is only permitted by the host (us). */ set_bit(CFHSI_WAKE_DOWN_ACK, &cfhsi->bits); wake_up_interruptible(&cfhsi->wake_down_wait); } static void cfhsi_aggregation_tout(unsigned long arg) { struct cfhsi *cfhsi = (struct cfhsi *)arg; netdev_dbg(cfhsi->ndev, "%s.\n", __func__); cfhsi_start_tx(cfhsi); } static int cfhsi_xmit(struct sk_buff *skb, struct net_device *dev) { struct cfhsi *cfhsi = NULL; int start_xfer = 0; int timer_active; int prio; if (!dev) return -EINVAL; cfhsi = netdev_priv(dev); switch (skb->priority) { case TC_PRIO_BESTEFFORT: case TC_PRIO_FILLER: case TC_PRIO_BULK: prio = CFHSI_PRIO_BEBK; break; case TC_PRIO_INTERACTIVE_BULK: prio = CFHSI_PRIO_VI; break; case TC_PRIO_INTERACTIVE: prio = CFHSI_PRIO_VO; break; case TC_PRIO_CONTROL: default: prio = CFHSI_PRIO_CTL; break; } spin_lock_bh(&cfhsi->lock); /* Update aggregation statistics */ cfhsi_update_aggregation_stats(cfhsi, skb, 1); /* Queue the SKB */ skb_queue_tail(&cfhsi->qhead[prio], skb); /* Sanity check; xmit should not be called after unregister_netdev */ if (WARN_ON(test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))) { spin_unlock_bh(&cfhsi->lock); cfhsi_abort_tx(cfhsi); return -EINVAL; } /* Send flow off if number of packets is above high water mark. */ if (!cfhsi->flow_off_sent && cfhsi_tx_queue_len(cfhsi) > cfhsi->cfg.q_high_mark && cfhsi->cfdev.flowctrl) { cfhsi->flow_off_sent = 1; cfhsi->cfdev.flowctrl(cfhsi->ndev, OFF); } if (cfhsi->tx_state == CFHSI_TX_STATE_IDLE) { cfhsi->tx_state = CFHSI_TX_STATE_XFER; start_xfer = 1; } if (!start_xfer) { /* Send aggregate if it is possible */ bool aggregate_ready = cfhsi_can_send_aggregate(cfhsi) && del_timer(&cfhsi->aggregation_timer) > 0; spin_unlock_bh(&cfhsi->lock); if (aggregate_ready) cfhsi_start_tx(cfhsi); return 0; } /* Delete inactivity timer if started. */ timer_active = del_timer_sync(&cfhsi->inactivity_timer); spin_unlock_bh(&cfhsi->lock); if (timer_active) { struct cfhsi_desc *desc = (struct cfhsi_desc *)cfhsi->tx_buf; int len; int res; /* Create HSI frame. */ len = cfhsi_tx_frm(desc, cfhsi); WARN_ON(!len); /* Set up new transfer. */ res = cfhsi->ops->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->ops); if (WARN_ON(res < 0)) { netdev_err(cfhsi->ndev, "%s: TX error %d.\n", __func__, res); cfhsi_abort_tx(cfhsi); } } else { /* Schedule wake up work queue if the we initiate. */ if (!test_and_set_bit(CFHSI_WAKE_UP, &cfhsi->bits)) queue_work(cfhsi->wq, &cfhsi->wake_up_work); } return 0; } static const struct net_device_ops cfhsi_netdevops; static void cfhsi_setup(struct net_device *dev) { int i; struct cfhsi *cfhsi = netdev_priv(dev); dev->features = 0; dev->type = ARPHRD_CAIF; dev->flags = IFF_POINTOPOINT | IFF_NOARP; dev->mtu = CFHSI_MAX_CAIF_FRAME_SZ; dev->tx_queue_len = 0; dev->destructor = free_netdev; dev->netdev_ops = &cfhsi_netdevops; for (i = 0; i < CFHSI_PRIO_LAST; ++i) skb_queue_head_init(&cfhsi->qhead[i]); cfhsi->cfdev.link_select = CAIF_LINK_HIGH_BANDW; cfhsi->cfdev.use_frag = false; cfhsi->cfdev.use_stx = false; cfhsi->cfdev.use_fcs = false; cfhsi->ndev = dev; cfhsi->cfg = hsi_default_config; } static int cfhsi_open(struct net_device *ndev) { struct cfhsi *cfhsi = netdev_priv(ndev); int res; clear_bit(CFHSI_SHUTDOWN, &cfhsi->bits); /* Initialize state vaiables. */ cfhsi->tx_state = CFHSI_TX_STATE_IDLE; cfhsi->rx_state.state = CFHSI_RX_STATE_DESC; /* Set flow info */ cfhsi->flow_off_sent = 0; /* * Allocate a TX buffer with the size of a HSI packet descriptors * and the necessary room for CAIF payload frames. */ cfhsi->tx_buf = kzalloc(CFHSI_BUF_SZ_TX, GFP_KERNEL); if (!cfhsi->tx_buf) { res = -ENODEV; goto err_alloc_tx; } /* * Allocate a RX buffer with the size of two HSI packet descriptors and * the necessary room for CAIF payload frames. */ cfhsi->rx_buf = kzalloc(CFHSI_BUF_SZ_RX, GFP_KERNEL); if (!cfhsi->rx_buf) { res = -ENODEV; goto err_alloc_rx; } cfhsi->rx_flip_buf = kzalloc(CFHSI_BUF_SZ_RX, GFP_KERNEL); if (!cfhsi->rx_flip_buf) { res = -ENODEV; goto err_alloc_rx_flip; } /* Initialize aggregation timeout */ cfhsi->cfg.aggregation_timeout = hsi_default_config.aggregation_timeout; /* Initialize recieve vaiables. */ cfhsi->rx_ptr = cfhsi->rx_buf; cfhsi->rx_len = CFHSI_DESC_SZ; /* Initialize spin locks. */ spin_lock_init(&cfhsi->lock); /* Set up the driver. */ cfhsi->cb_ops.tx_done_cb = cfhsi_tx_done_cb; cfhsi->cb_ops.rx_done_cb = cfhsi_rx_done_cb; cfhsi->cb_ops.wake_up_cb = cfhsi_wake_up_cb; cfhsi->cb_ops.wake_down_cb = cfhsi_wake_down_cb; /* Initialize the work queues. */ INIT_WORK(&cfhsi->wake_up_work, cfhsi_wake_up); INIT_WORK(&cfhsi->wake_down_work, cfhsi_wake_down); INIT_WORK(&cfhsi->out_of_sync_work, cfhsi_out_of_sync); /* Clear all bit fields. */ clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits); clear_bit(CFHSI_WAKE_DOWN_ACK, &cfhsi->bits); clear_bit(CFHSI_WAKE_UP, &cfhsi->bits); clear_bit(CFHSI_AWAKE, &cfhsi->bits); /* Create work thread. */ cfhsi->wq = create_singlethread_workqueue(cfhsi->ndev->name); if (!cfhsi->wq) { netdev_err(cfhsi->ndev, "%s: Failed to create work queue.\n", __func__); res = -ENODEV; goto err_create_wq; } /* Initialize wait queues. */ init_waitqueue_head(&cfhsi->wake_up_wait); init_waitqueue_head(&cfhsi->wake_down_wait); init_waitqueue_head(&cfhsi->flush_fifo_wait); /* Setup the inactivity timer. */ init_timer(&cfhsi->inactivity_timer); cfhsi->inactivity_timer.data = (unsigned long)cfhsi; cfhsi->inactivity_timer.function = cfhsi_inactivity_tout; /* Setup the slowpath RX timer. */ init_timer(&cfhsi->rx_slowpath_timer); cfhsi->rx_slowpath_timer.data = (unsigned long)cfhsi; cfhsi->rx_slowpath_timer.function = cfhsi_rx_slowpath; /* Setup the aggregation timer. */ init_timer(&cfhsi->aggregation_timer); cfhsi->aggregation_timer.data = (unsigned long)cfhsi; cfhsi->aggregation_timer.function = cfhsi_aggregation_tout; /* Activate HSI interface. */ res = cfhsi->ops->cfhsi_up(cfhsi->ops); if (res) { netdev_err(cfhsi->ndev, "%s: can't activate HSI interface: %d.\n", __func__, res); goto err_activate; } /* Flush FIFO */ res = cfhsi_flush_fifo(cfhsi); if (res) { netdev_err(cfhsi->ndev, "%s: Can't flush FIFO: %d.\n", __func__, res); goto err_net_reg; } return res; err_net_reg: cfhsi->ops->cfhsi_down(cfhsi->ops); err_activate: destroy_workqueue(cfhsi->wq); err_create_wq: kfree(cfhsi->rx_flip_buf); err_alloc_rx_flip: kfree(cfhsi->rx_buf); err_alloc_rx: kfree(cfhsi->tx_buf); err_alloc_tx: return res; } static int cfhsi_close(struct net_device *ndev) { struct cfhsi *cfhsi = netdev_priv(ndev); u8 *tx_buf, *rx_buf, *flip_buf; /* going to shutdown driver */ set_bit(CFHSI_SHUTDOWN, &cfhsi->bits); /* Flush workqueue */ flush_workqueue(cfhsi->wq); /* Delete timers if pending */ del_timer_sync(&cfhsi->inactivity_timer); del_timer_sync(&cfhsi->rx_slowpath_timer); del_timer_sync(&cfhsi->aggregation_timer); /* Cancel pending RX request (if any) */ cfhsi->ops->cfhsi_rx_cancel(cfhsi->ops); /* Destroy workqueue */ destroy_workqueue(cfhsi->wq); /* Store bufferes: will be freed later. */ tx_buf = cfhsi->tx_buf; rx_buf = cfhsi->rx_buf; flip_buf = cfhsi->rx_flip_buf; /* Flush transmit queues. */ cfhsi_abort_tx(cfhsi); /* Deactivate interface */ cfhsi->ops->cfhsi_down(cfhsi->ops); /* Free buffers. */ kfree(tx_buf); kfree(rx_buf); kfree(flip_buf); return 0; } static void cfhsi_uninit(struct net_device *dev) { struct cfhsi *cfhsi = netdev_priv(dev); ASSERT_RTNL(); symbol_put(cfhsi_get_device); list_del(&cfhsi->list); } static const struct net_device_ops cfhsi_netdevops = { .ndo_uninit = cfhsi_uninit, .ndo_open = cfhsi_open, .ndo_stop = cfhsi_close, .ndo_start_xmit = cfhsi_xmit }; static void cfhsi_netlink_parms(struct nlattr *data[], struct cfhsi *cfhsi) { int i; if (!data) { pr_debug("no params data found\n"); return; } i = __IFLA_CAIF_HSI_INACTIVITY_TOUT; /* * Inactivity timeout in millisecs. Lowest possible value is 1, * and highest possible is NEXT_TIMER_MAX_DELTA. */ if (data[i]) { u32 inactivity_timeout = nla_get_u32(data[i]); /* Pre-calculate inactivity timeout. */ cfhsi->cfg.inactivity_timeout = inactivity_timeout * HZ / 1000; if (cfhsi->cfg.inactivity_timeout == 0) cfhsi->cfg.inactivity_timeout = 1; else if (cfhsi->cfg.inactivity_timeout > NEXT_TIMER_MAX_DELTA) cfhsi->cfg.inactivity_timeout = NEXT_TIMER_MAX_DELTA; } i = __IFLA_CAIF_HSI_AGGREGATION_TOUT; if (data[i]) cfhsi->cfg.aggregation_timeout = nla_get_u32(data[i]); i = __IFLA_CAIF_HSI_HEAD_ALIGN; if (data[i]) cfhsi->cfg.head_align = nla_get_u32(data[i]); i = __IFLA_CAIF_HSI_TAIL_ALIGN; if (data[i]) cfhsi->cfg.tail_align = nla_get_u32(data[i]); i = __IFLA_CAIF_HSI_QHIGH_WATERMARK; if (data[i]) cfhsi->cfg.q_high_mark = nla_get_u32(data[i]); i = __IFLA_CAIF_HSI_QLOW_WATERMARK; if (data[i]) cfhsi->cfg.q_low_mark = nla_get_u32(data[i]); } static int caif_hsi_changelink(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[]) { cfhsi_netlink_parms(data, netdev_priv(dev)); netdev_state_change(dev); return 0; } static const struct nla_policy caif_hsi_policy[__IFLA_CAIF_HSI_MAX + 1] = { [__IFLA_CAIF_HSI_INACTIVITY_TOUT] = { .type = NLA_U32, .len = 4 }, [__IFLA_CAIF_HSI_AGGREGATION_TOUT] = { .type = NLA_U32, .len = 4 }, [__IFLA_CAIF_HSI_HEAD_ALIGN] = { .type = NLA_U32, .len = 4 }, [__IFLA_CAIF_HSI_TAIL_ALIGN] = { .type = NLA_U32, .len = 4 }, [__IFLA_CAIF_HSI_QHIGH_WATERMARK] = { .type = NLA_U32, .len = 4 }, [__IFLA_CAIF_HSI_QLOW_WATERMARK] = { .type = NLA_U32, .len = 4 }, }; static size_t caif_hsi_get_size(const struct net_device *dev) { int i; size_t s = 0; for (i = __IFLA_CAIF_HSI_UNSPEC + 1; i < __IFLA_CAIF_HSI_MAX; i++) s += nla_total_size(caif_hsi_policy[i].len); return s; } static int caif_hsi_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct cfhsi *cfhsi = netdev_priv(dev); if (nla_put_u32(skb, __IFLA_CAIF_HSI_INACTIVITY_TOUT, cfhsi->cfg.inactivity_timeout) || nla_put_u32(skb, __IFLA_CAIF_HSI_AGGREGATION_TOUT, cfhsi->cfg.aggregation_timeout) || nla_put_u32(skb, __IFLA_CAIF_HSI_HEAD_ALIGN, cfhsi->cfg.head_align) || nla_put_u32(skb, __IFLA_CAIF_HSI_TAIL_ALIGN, cfhsi->cfg.tail_align) || nla_put_u32(skb, __IFLA_CAIF_HSI_QHIGH_WATERMARK, cfhsi->cfg.q_high_mark) || nla_put_u32(skb, __IFLA_CAIF_HSI_QLOW_WATERMARK, cfhsi->cfg.q_low_mark)) return -EMSGSIZE; return 0; } static int caif_hsi_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[]) { struct cfhsi *cfhsi = NULL; struct cfhsi_ops *(*get_ops)(void); ASSERT_RTNL(); cfhsi = netdev_priv(dev); cfhsi_netlink_parms(data, cfhsi); dev_net_set(cfhsi->ndev, src_net); get_ops = symbol_get(cfhsi_get_ops); if (!get_ops) { pr_err("%s: failed to get the cfhsi_ops\n", __func__); return -ENODEV; } /* Assign the HSI device. */ cfhsi->ops = (*get_ops)(); if (!cfhsi->ops) { pr_err("%s: failed to get the cfhsi_ops\n", __func__); goto err; } /* Assign the driver to this HSI device. */ cfhsi->ops->cb_ops = &cfhsi->cb_ops; if (register_netdevice(dev)) { pr_warn("%s: caif_hsi device registration failed\n", __func__); goto err; } /* Add CAIF HSI device to list. */ list_add_tail(&cfhsi->list, &cfhsi_list); return 0; err: symbol_put(cfhsi_get_ops); return -ENODEV; } static struct rtnl_link_ops caif_hsi_link_ops __read_mostly = { .kind = "cfhsi", .priv_size = sizeof(struct cfhsi), .setup = cfhsi_setup, .maxtype = __IFLA_CAIF_HSI_MAX, .policy = caif_hsi_policy, .newlink = caif_hsi_newlink, .changelink = caif_hsi_changelink, .get_size = caif_hsi_get_size, .fill_info = caif_hsi_fill_info, }; static void __exit cfhsi_exit_module(void) { struct list_head *list_node; struct list_head *n; struct cfhsi *cfhsi; rtnl_link_unregister(&caif_hsi_link_ops); rtnl_lock(); list_for_each_safe(list_node, n, &cfhsi_list) { cfhsi = list_entry(list_node, struct cfhsi, list); unregister_netdev(cfhsi->ndev); } rtnl_unlock(); } static int __init cfhsi_init_module(void) { return rtnl_link_register(&caif_hsi_link_ops); } module_init(cfhsi_init_module); module_exit(cfhsi_exit_module);