/* * NES, SNES, N64, MultiSystem, PSX gamepad driver for Linux * * Copyright (c) 1999-2004 Vojtech Pavlik <vojtech@suse.cz> * Copyright (c) 2004 Peter Nelson <rufus-kernel@hackish.org> * * Based on the work of: * Andree Borrmann John Dahlstrom * David Kuder Nathan Hand * Raphael Assenat */ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Should you need to contact me, the author, you can do so either by * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail: * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/init.h> #include <linux/parport.h> #include <linux/input.h> #include <linux/mutex.h> #include <linux/slab.h> MODULE_AUTHOR("Vojtech Pavlik <vojtech@ucw.cz>"); MODULE_DESCRIPTION("NES, SNES, N64, MultiSystem, PSX gamepad driver"); MODULE_LICENSE("GPL"); #define GC_MAX_PORTS 3 #define GC_MAX_DEVICES 5 struct gc_config { int args[GC_MAX_DEVICES + 1]; unsigned int nargs; }; static struct gc_config gc_cfg[GC_MAX_PORTS] __initdata; module_param_array_named(map, gc_cfg[0].args, int, &gc_cfg[0].nargs, 0); MODULE_PARM_DESC(map, "Describes first set of devices (<parport#>,<pad1>,<pad2>,..<pad5>)"); module_param_array_named(map2, gc_cfg[1].args, int, &gc_cfg[1].nargs, 0); MODULE_PARM_DESC(map2, "Describes second set of devices"); module_param_array_named(map3, gc_cfg[2].args, int, &gc_cfg[2].nargs, 0); MODULE_PARM_DESC(map3, "Describes third set of devices"); /* see also gs_psx_delay parameter in PSX support section */ enum gc_type { GC_NONE = 0, GC_SNES, GC_NES, GC_NES4, GC_MULTI, GC_MULTI2, GC_N64, GC_PSX, GC_DDR, GC_SNESMOUSE, GC_MAX }; #define GC_REFRESH_TIME HZ/100 struct gc_pad { struct input_dev *dev; enum gc_type type; char phys[32]; }; struct gc { struct pardevice *pd; struct gc_pad pads[GC_MAX_DEVICES]; struct timer_list timer; int pad_count[GC_MAX]; int used; struct mutex mutex; }; struct gc_subdev { unsigned int idx; }; static struct gc *gc_base[3]; static const int gc_status_bit[] = { 0x40, 0x80, 0x20, 0x10, 0x08 }; static const char *gc_names[] = { NULL, "SNES pad", "NES pad", "NES FourPort", "Multisystem joystick", "Multisystem 2-button joystick", "N64 controller", "PSX controller", "PSX DDR controller", "SNES mouse" }; /* * N64 support. */ static const unsigned char gc_n64_bytes[] = { 0, 1, 13, 15, 14, 12, 10, 11, 2, 3 }; static const short gc_n64_btn[] = { BTN_A, BTN_B, BTN_C, BTN_X, BTN_Y, BTN_Z, BTN_TL, BTN_TR, BTN_TRIGGER, BTN_START }; #define GC_N64_LENGTH 32 /* N64 bit length, not including stop bit */ #define GC_N64_STOP_LENGTH 5 /* Length of encoded stop bit */ #define GC_N64_CMD_00 0x11111111UL #define GC_N64_CMD_01 0xd1111111UL #define GC_N64_CMD_03 0xdd111111UL #define GC_N64_CMD_1b 0xdd1dd111UL #define GC_N64_CMD_c0 0x111111ddUL #define GC_N64_CMD_80 0x1111111dUL #define GC_N64_STOP_BIT 0x1d /* Encoded stop bit */ #define GC_N64_REQUEST_DATA GC_N64_CMD_01 /* the request data command */ #define GC_N64_DELAY 133 /* delay between transmit request, and response ready (us) */ #define GC_N64_DWS 3 /* delay between write segments (required for sound playback because of ISA DMA) */ /* GC_N64_DWS > 24 is known to fail */ #define GC_N64_POWER_W 0xe2 /* power during write (transmit request) */ #define GC_N64_POWER_R 0xfd /* power during read */ #define GC_N64_OUT 0x1d /* output bits to the 4 pads */ /* Reading the main axes of any N64 pad is known to fail if the corresponding bit */ /* in GC_N64_OUT is pulled low on the output port (by any routine) for more */ /* than 123 us */ #define GC_N64_CLOCK 0x02 /* clock bits for read */ /* * Used for rumble code. */ /* Send encoded command */ static void gc_n64_send_command(struct gc *gc, unsigned long cmd, unsigned char target) { struct parport *port = gc->pd->port; int i; for (i = 0; i < GC_N64_LENGTH; i++) { unsigned char data = (cmd >> i) & 1 ? target : 0; parport_write_data(port, GC_N64_POWER_W | data); udelay(GC_N64_DWS); } } /* Send stop bit */ static void gc_n64_send_stop_bit(struct gc *gc, unsigned char target) { struct parport *port = gc->pd->port; int i; for (i = 0; i < GC_N64_STOP_LENGTH; i++) { unsigned char data = (GC_N64_STOP_BIT >> i) & 1 ? target : 0; parport_write_data(port, GC_N64_POWER_W | data); udelay(GC_N64_DWS); } } /* * gc_n64_read_packet() reads an N64 packet. * Each pad uses one bit per byte. So all pads connected to this port * are read in parallel. */ static void gc_n64_read_packet(struct gc *gc, unsigned char *data) { int i; unsigned long flags; /* * Request the pad to transmit data */ local_irq_save(flags); gc_n64_send_command(gc, GC_N64_REQUEST_DATA, GC_N64_OUT); gc_n64_send_stop_bit(gc, GC_N64_OUT); local_irq_restore(flags); /* * Wait for the pad response to be loaded into the 33-bit register * of the adapter. */ udelay(GC_N64_DELAY); /* * Grab data (ignoring the last bit, which is a stop bit) */ for (i = 0; i < GC_N64_LENGTH; i++) { parport_write_data(gc->pd->port, GC_N64_POWER_R); udelay(2); data[i] = parport_read_status(gc->pd->port); parport_write_data(gc->pd->port, GC_N64_POWER_R | GC_N64_CLOCK); } /* * We must wait 200 ms here for the controller to reinitialize before * the next read request. No worries as long as gc_read is polled less * frequently than this. */ } static void gc_n64_process_packet(struct gc *gc) { unsigned char data[GC_N64_LENGTH]; struct input_dev *dev; int i, j, s; signed char x, y; gc_n64_read_packet(gc, data); for (i = 0; i < GC_MAX_DEVICES; i++) { if (gc->pads[i].type != GC_N64) continue; dev = gc->pads[i].dev; s = gc_status_bit[i]; if (s & ~(data[8] | data[9])) { x = y = 0; for (j = 0; j < 8; j++) { if (data[23 - j] & s) x |= 1 << j; if (data[31 - j] & s) y |= 1 << j; } input_report_abs(dev, ABS_X, x); input_report_abs(dev, ABS_Y, -y); input_report_abs(dev, ABS_HAT0X, !(s & data[6]) - !(s & data[7])); input_report_abs(dev, ABS_HAT0Y, !(s & data[4]) - !(s & data[5])); for (j = 0; j < 10; j++) input_report_key(dev, gc_n64_btn[j], s & data[gc_n64_bytes[j]]); input_sync(dev); } } } static int gc_n64_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) { int i; unsigned long flags; struct gc *gc = input_get_drvdata(dev); struct gc_subdev *sdev = data; unsigned char target = 1 << sdev->idx; /* select desired pin */ if (effect->type == FF_RUMBLE) { struct ff_rumble_effect *rumble = &effect->u.rumble; unsigned int cmd = rumble->strong_magnitude || rumble->weak_magnitude ? GC_N64_CMD_01 : GC_N64_CMD_00; local_irq_save(flags); /* Init Rumble - 0x03, 0x80, 0x01, (34)0x80 */ gc_n64_send_command(gc, GC_N64_CMD_03, target); gc_n64_send_command(gc, GC_N64_CMD_80, target); gc_n64_send_command(gc, GC_N64_CMD_01, target); for (i = 0; i < 32; i++) gc_n64_send_command(gc, GC_N64_CMD_80, target); gc_n64_send_stop_bit(gc, target); udelay(GC_N64_DELAY); /* Now start or stop it - 0x03, 0xc0, 0zx1b, (32)0x01/0x00 */ gc_n64_send_command(gc, GC_N64_CMD_03, target); gc_n64_send_command(gc, GC_N64_CMD_c0, target); gc_n64_send_command(gc, GC_N64_CMD_1b, target); for (i = 0; i < 32; i++) gc_n64_send_command(gc, cmd, target); gc_n64_send_stop_bit(gc, target); local_irq_restore(flags); } return 0; } static int __init gc_n64_init_ff(struct input_dev *dev, int i) { struct gc_subdev *sdev; int err; sdev = kmalloc(sizeof(*sdev), GFP_KERNEL); if (!sdev) return -ENOMEM; sdev->idx = i; input_set_capability(dev, EV_FF, FF_RUMBLE); err = input_ff_create_memless(dev, sdev, gc_n64_play_effect); if (err) { kfree(sdev); return err; } return 0; } /* * NES/SNES support. */ #define GC_NES_DELAY 6 /* Delay between bits - 6us */ #define GC_NES_LENGTH 8 /* The NES pads use 8 bits of data */ #define GC_SNES_LENGTH 12 /* The SNES true length is 16, but the last 4 bits are unused */ #define GC_SNESMOUSE_LENGTH 32 /* The SNES mouse uses 32 bits, the first 16 bits are equivalent to a gamepad */ #define GC_NES_POWER 0xfc #define GC_NES_CLOCK 0x01 #define GC_NES_LATCH 0x02 static const unsigned char gc_nes_bytes[] = { 0, 1, 2, 3 }; static const unsigned char gc_snes_bytes[] = { 8, 0, 2, 3, 9, 1, 10, 11 }; static const short gc_snes_btn[] = { BTN_A, BTN_B, BTN_SELECT, BTN_START, BTN_X, BTN_Y, BTN_TL, BTN_TR }; /* * gc_nes_read_packet() reads a NES/SNES packet. * Each pad uses one bit per byte. So all pads connected to * this port are read in parallel. */ static void gc_nes_read_packet(struct gc *gc, int length, unsigned char *data) { int i; parport_write_data(gc->pd->port, GC_NES_POWER | GC_NES_CLOCK | GC_NES_LATCH); udelay(GC_NES_DELAY * 2); parport_write_data(gc->pd->port, GC_NES_POWER | GC_NES_CLOCK); for (i = 0; i < length; i++) { udelay(GC_NES_DELAY); parport_write_data(gc->pd->port, GC_NES_POWER); data[i] = parport_read_status(gc->pd->port) ^ 0x7f; udelay(GC_NES_DELAY); parport_write_data(gc->pd->port, GC_NES_POWER | GC_NES_CLOCK); } } static void gc_nes_process_packet(struct gc *gc) { unsigned char data[GC_SNESMOUSE_LENGTH]; struct gc_pad *pad; struct input_dev *dev; int i, j, s, len; char x_rel, y_rel; len = gc->pad_count[GC_SNESMOUSE] ? GC_SNESMOUSE_LENGTH : (gc->pad_count[GC_SNES] ? GC_SNES_LENGTH : GC_NES_LENGTH); gc_nes_read_packet(gc, len, data); for (i = 0; i < GC_MAX_DEVICES; i++) { pad = &gc->pads[i]; dev = pad->dev; s = gc_status_bit[i]; switch (pad->type) { case GC_NES: input_report_abs(dev, ABS_X, !(s & data[6]) - !(s & data[7])); input_report_abs(dev, ABS_Y, !(s & data[4]) - !(s & data[5])); for (j = 0; j < 4; j++) input_report_key(dev, gc_snes_btn[j], s & data[gc_nes_bytes[j]]); input_sync(dev); break; case GC_SNES: input_report_abs(dev, ABS_X, !(s & data[6]) - !(s & data[7])); input_report_abs(dev, ABS_Y, !(s & data[4]) - !(s & data[5])); for (j = 0; j < 8; j++) input_report_key(dev, gc_snes_btn[j], s & data[gc_snes_bytes[j]]); input_sync(dev); break; case GC_SNESMOUSE: /* * The 4 unused bits from SNES controllers appear * to be ID bits so use them to make sure we are * dealing with a mouse. * gamepad is connected. This is important since * my SNES gamepad sends 1's for bits 16-31, which * cause the mouse pointer to quickly move to the * upper left corner of the screen. */ if (!(s & data[12]) && !(s & data[13]) && !(s & data[14]) && (s & data[15])) { input_report_key(dev, BTN_LEFT, s & data[9]); input_report_key(dev, BTN_RIGHT, s & data[8]); x_rel = y_rel = 0; for (j = 0; j < 7; j++) { x_rel <<= 1; if (data[25 + j] & s) x_rel |= 1; y_rel <<= 1; if (data[17 + j] & s) y_rel |= 1; } if (x_rel) { if (data[24] & s) x_rel = -x_rel; input_report_rel(dev, REL_X, x_rel); } if (y_rel) { if (data[16] & s) y_rel = -y_rel; input_report_rel(dev, REL_Y, y_rel); } input_sync(dev); } break; default: break; } } } /* * Multisystem joystick support */ #define GC_MULTI_LENGTH 5 /* Multi system joystick packet length is 5 */ #define GC_MULTI2_LENGTH 6 /* One more bit for one more button */ /* * gc_multi_read_packet() reads a Multisystem joystick packet. */ static void gc_multi_read_packet(struct gc *gc, int length, unsigned char *data) { int i; for (i = 0; i < length; i++) { parport_write_data(gc->pd->port, ~(1 << i)); data[i] = parport_read_status(gc->pd->port) ^ 0x7f; } } static void gc_multi_process_packet(struct gc *gc) { unsigned char data[GC_MULTI2_LENGTH]; int data_len = gc->pad_count[GC_MULTI2] ? GC_MULTI2_LENGTH : GC_MULTI_LENGTH; struct gc_pad *pad; struct input_dev *dev; int i, s; gc_multi_read_packet(gc, data_len, data); for (i = 0; i < GC_MAX_DEVICES; i++) { pad = &gc->pads[i]; dev = pad->dev; s = gc_status_bit[i]; switch (pad->type) { case GC_MULTI2: input_report_key(dev, BTN_THUMB, s & data[5]); /* fall through */ case GC_MULTI: input_report_abs(dev, ABS_X, !(s & data[2]) - !(s & data[3])); input_report_abs(dev, ABS_Y, !(s & data[0]) - !(s & data[1])); input_report_key(dev, BTN_TRIGGER, s & data[4]); input_sync(dev); break; default: break; } } } /* * PSX support * * See documentation at: * http://www.geocities.co.jp/Playtown/2004/psx/ps_eng.txt * http://www.gamesx.com/controldata/psxcont/psxcont.htm * */ #define GC_PSX_DELAY 25 /* 25 usec */ #define GC_PSX_LENGTH 8 /* talk to the controller in bits */ #define GC_PSX_BYTES 6 /* the maximum number of bytes to read off the controller */ #define GC_PSX_MOUSE 1 /* Mouse */ #define GC_PSX_NEGCON 2 /* NegCon */ #define GC_PSX_NORMAL 4 /* Digital / Analog or Rumble in Digital mode */ #define GC_PSX_ANALOG 5 /* Analog in Analog mode / Rumble in Green mode */ #define GC_PSX_RUMBLE 7 /* Rumble in Red mode */ #define GC_PSX_CLOCK 0x04 /* Pin 4 */ #define GC_PSX_COMMAND 0x01 /* Pin 2 */ #define GC_PSX_POWER 0xf8 /* Pins 5-9 */ #define GC_PSX_SELECT 0x02 /* Pin 3 */ #define GC_PSX_ID(x) ((x) >> 4) /* High nibble is device type */ #define GC_PSX_LEN(x) (((x) & 0xf) << 1) /* Low nibble is length in bytes/2 */ static int gc_psx_delay = GC_PSX_DELAY; module_param_named(psx_delay, gc_psx_delay, uint, 0); MODULE_PARM_DESC(psx_delay, "Delay when accessing Sony PSX controller (usecs)"); static const short gc_psx_abs[] = { ABS_X, ABS_Y, ABS_RX, ABS_RY, ABS_HAT0X, ABS_HAT0Y }; static const short gc_psx_btn[] = { BTN_TL, BTN_TR, BTN_TL2, BTN_TR2, BTN_A, BTN_B, BTN_X, BTN_Y, BTN_START, BTN_SELECT, BTN_THUMBL, BTN_THUMBR }; static const short gc_psx_ddr_btn[] = { BTN_0, BTN_1, BTN_2, BTN_3 }; /* * gc_psx_command() writes 8bit command and reads 8bit data from * the psx pad. */ static void gc_psx_command(struct gc *gc, int b, unsigned char *data) { struct parport *port = gc->pd->port; int i, j, cmd, read; memset(data, 0, GC_MAX_DEVICES); for (i = 0; i < GC_PSX_LENGTH; i++, b >>= 1) { cmd = (b & 1) ? GC_PSX_COMMAND : 0; parport_write_data(port, cmd | GC_PSX_POWER); udelay(gc_psx_delay); read = parport_read_status(port) ^ 0x80; for (j = 0; j < GC_MAX_DEVICES; j++) { struct gc_pad *pad = &gc->pads[j]; if (pad->type == GC_PSX || pad->type == GC_DDR) data[j] |= (read & gc_status_bit[j]) ? (1 << i) : 0; } parport_write_data(gc->pd->port, cmd | GC_PSX_CLOCK | GC_PSX_POWER); udelay(gc_psx_delay); } } /* * gc_psx_read_packet() reads a whole psx packet and returns * device identifier code. */ static void gc_psx_read_packet(struct gc *gc, unsigned char data[GC_MAX_DEVICES][GC_PSX_BYTES], unsigned char id[GC_MAX_DEVICES]) { int i, j, max_len = 0; unsigned long flags; unsigned char data2[GC_MAX_DEVICES]; /* Select pad */ parport_write_data(gc->pd->port, GC_PSX_CLOCK | GC_PSX_SELECT | GC_PSX_POWER); udelay(gc_psx_delay); /* Deselect, begin command */ parport_write_data(gc->pd->port, GC_PSX_CLOCK | GC_PSX_POWER); udelay(gc_psx_delay); local_irq_save(flags); gc_psx_command(gc, 0x01, data2); /* Access pad */ gc_psx_command(gc, 0x42, id); /* Get device ids */ gc_psx_command(gc, 0, data2); /* Dump status */ /* Find the longest pad */ for (i = 0; i < GC_MAX_DEVICES; i++) { struct gc_pad *pad = &gc->pads[i]; if ((pad->type == GC_PSX || pad->type == GC_DDR) && GC_PSX_LEN(id[i]) > max_len && GC_PSX_LEN(id[i]) <= GC_PSX_BYTES) { max_len = GC_PSX_LEN(id[i]); } } /* Read in all the data */ for (i = 0; i < max_len; i++) { gc_psx_command(gc, 0, data2); for (j = 0; j < GC_MAX_DEVICES; j++) data[j][i] = data2[j]; } local_irq_restore(flags); parport_write_data(gc->pd->port, GC_PSX_CLOCK | GC_PSX_SELECT | GC_PSX_POWER); /* Set id's to the real value */ for (i = 0; i < GC_MAX_DEVICES; i++) id[i] = GC_PSX_ID(id[i]); } static void gc_psx_report_one(struct gc_pad *pad, unsigned char psx_type, unsigned char *data) { struct input_dev *dev = pad->dev; int i; switch (psx_type) { case GC_PSX_RUMBLE: input_report_key(dev, BTN_THUMBL, ~data[0] & 0x04); input_report_key(dev, BTN_THUMBR, ~data[0] & 0x02); case GC_PSX_NEGCON: case GC_PSX_ANALOG: if (pad->type == GC_DDR) { for (i = 0; i < 4; i++) input_report_key(dev, gc_psx_ddr_btn[i], ~data[0] & (0x10 << i)); } else { for (i = 0; i < 4; i++) input_report_abs(dev, gc_psx_abs[i + 2], data[i + 2]); input_report_abs(dev, ABS_X, !!(data[0] & 0x80) * 128 + !(data[0] & 0x20) * 127); input_report_abs(dev, ABS_Y, !!(data[0] & 0x10) * 128 + !(data[0] & 0x40) * 127); } for (i = 0; i < 8; i++) input_report_key(dev, gc_psx_btn[i], ~data[1] & (1 << i)); input_report_key(dev, BTN_START, ~data[0] & 0x08); input_report_key(dev, BTN_SELECT, ~data[0] & 0x01); input_sync(dev); break; case GC_PSX_NORMAL: if (pad->type == GC_DDR) { for (i = 0; i < 4; i++) input_report_key(dev, gc_psx_ddr_btn[i], ~data[0] & (0x10 << i)); } else { input_report_abs(dev, ABS_X, !!(data[0] & 0x80) * 128 + !(data[0] & 0x20) * 127); input_report_abs(dev, ABS_Y, !!(data[0] & 0x10) * 128 + !(data[0] & 0x40) * 127); /* * For some reason if the extra axes are left unset * they drift. * for (i = 0; i < 4; i++) input_report_abs(dev, gc_psx_abs[i + 2], 128); * This needs to be debugged properly, * maybe fuzz processing needs to be done * in input_sync() * --vojtech */ } for (i = 0; i < 8; i++) input_report_key(dev, gc_psx_btn[i], ~data[1] & (1 << i)); input_report_key(dev, BTN_START, ~data[0] & 0x08); input_report_key(dev, BTN_SELECT, ~data[0] & 0x01); input_sync(dev); break; default: /* not a pad, ignore */ break; } } static void gc_psx_process_packet(struct gc *gc) { unsigned char data[GC_MAX_DEVICES][GC_PSX_BYTES]; unsigned char id[GC_MAX_DEVICES]; struct gc_pad *pad; int i; gc_psx_read_packet(gc, data, id); for (i = 0; i < GC_MAX_DEVICES; i++) { pad = &gc->pads[i]; if (pad->type == GC_PSX || pad->type == GC_DDR) gc_psx_report_one(pad, id[i], data[i]); } } /* * gc_timer() initiates reads of console pads data. */ static void gc_timer(unsigned long private) { struct gc *gc = (void *) private; /* * N64 pads - must be read first, any read confuses them for 200 us */ if (gc->pad_count[GC_N64]) gc_n64_process_packet(gc); /* * NES and SNES pads or mouse */ if (gc->pad_count[GC_NES] || gc->pad_count[GC_SNES] || gc->pad_count[GC_SNESMOUSE]) { gc_nes_process_packet(gc); } /* * Multi and Multi2 joysticks */ if (gc->pad_count[GC_MULTI] || gc->pad_count[GC_MULTI2]) gc_multi_process_packet(gc); /* * PSX controllers */ if (gc->pad_count[GC_PSX] || gc->pad_count[GC_DDR]) gc_psx_process_packet(gc); mod_timer(&gc->timer, jiffies + GC_REFRESH_TIME); } static int gc_open(struct input_dev *dev) { struct gc *gc = input_get_drvdata(dev); int err; err = mutex_lock_interruptible(&gc->mutex); if (err) return err; if (!gc->used++) { parport_claim(gc->pd); parport_write_control(gc->pd->port, 0x04); mod_timer(&gc->timer, jiffies + GC_REFRESH_TIME); } mutex_unlock(&gc->mutex); return 0; } static void gc_close(struct input_dev *dev) { struct gc *gc = input_get_drvdata(dev); mutex_lock(&gc->mutex); if (!--gc->used) { del_timer_sync(&gc->timer); parport_write_control(gc->pd->port, 0x00); parport_release(gc->pd); } mutex_unlock(&gc->mutex); } static int __init gc_setup_pad(struct gc *gc, int idx, int pad_type) { struct gc_pad *pad = &gc->pads[idx]; struct input_dev *input_dev; int i; int err; if (pad_type < 1 || pad_type >= GC_MAX) { pr_err("Pad type %d unknown\n", pad_type); return -EINVAL; } pad->dev = input_dev = input_allocate_device(); if (!input_dev) { pr_err("Not enough memory for input device\n"); return -ENOMEM; } pad->type = pad_type; snprintf(pad->phys, sizeof(pad->phys), "%s/input%d", gc->pd->port->name, idx); input_dev->name = gc_names[pad_type]; input_dev->phys = pad->phys; input_dev->id.bustype = BUS_PARPORT; input_dev->id.vendor = 0x0001; input_dev->id.product = pad_type; input_dev->id.version = 0x0100; input_set_drvdata(input_dev, gc); input_dev->open = gc_open; input_dev->close = gc_close; if (pad_type != GC_SNESMOUSE) { input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS); for (i = 0; i < 2; i++) input_set_abs_params(input_dev, ABS_X + i, -1, 1, 0, 0); } else input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL); gc->pad_count[pad_type]++; switch (pad_type) { case GC_N64: for (i = 0; i < 10; i++) __set_bit(gc_n64_btn[i], input_dev->keybit); for (i = 0; i < 2; i++) { input_set_abs_params(input_dev, ABS_X + i, -127, 126, 0, 2); input_set_abs_params(input_dev, ABS_HAT0X + i, -1, 1, 0, 0); } err = gc_n64_init_ff(input_dev, idx); if (err) { pr_warning("Failed to initiate rumble for N64 device %d\n", idx); goto err_free_dev; } break; case GC_SNESMOUSE: __set_bit(BTN_LEFT, input_dev->keybit); __set_bit(BTN_RIGHT, input_dev->keybit); __set_bit(REL_X, input_dev->relbit); __set_bit(REL_Y, input_dev->relbit); break; case GC_SNES: for (i = 4; i < 8; i++) __set_bit(gc_snes_btn[i], input_dev->keybit); case GC_NES: for (i = 0; i < 4; i++) __set_bit(gc_snes_btn[i], input_dev->keybit); break; case GC_MULTI2: __set_bit(BTN_THUMB, input_dev->keybit); case GC_MULTI: __set_bit(BTN_TRIGGER, input_dev->keybit); break; case GC_PSX: for (i = 0; i < 6; i++) input_set_abs_params(input_dev, gc_psx_abs[i], 4, 252, 0, 2); for (i = 0; i < 12; i++) __set_bit(gc_psx_btn[i], input_dev->keybit); break; case GC_DDR: for (i = 0; i < 4; i++) __set_bit(gc_psx_ddr_btn[i], input_dev->keybit); for (i = 0; i < 12; i++) __set_bit(gc_psx_btn[i], input_dev->keybit); break; } err = input_register_device(pad->dev); if (err) goto err_free_dev; return 0; err_free_dev: input_free_device(pad->dev); pad->dev = NULL; return err; } static struct gc __init *gc_probe(int parport, int *pads, int n_pads) { struct gc *gc; struct parport *pp; struct pardevice *pd; int i; int count = 0; int err; pp = parport_find_number(parport); if (!pp) { pr_err("no such parport %d\n", parport); err = -EINVAL; goto err_out; } pd = parport_register_device(pp, "gamecon", NULL, NULL, NULL, PARPORT_DEV_EXCL, NULL); if (!pd) { pr_err("parport busy already - lp.o loaded?\n"); err = -EBUSY; goto err_put_pp; } gc = kzalloc(sizeof(struct gc), GFP_KERNEL); if (!gc) { pr_err("Not enough memory\n"); err = -ENOMEM; goto err_unreg_pardev; } mutex_init(&gc->mutex); gc->pd = pd; setup_timer(&gc->timer, gc_timer, (long) gc); for (i = 0; i < n_pads && i < GC_MAX_DEVICES; i++) { if (!pads[i]) continue; err = gc_setup_pad(gc, i, pads[i]); if (err) goto err_unreg_devs; count++; } if (count == 0) { pr_err("No valid devices specified\n"); err = -EINVAL; goto err_free_gc; } parport_put_port(pp); return gc; err_unreg_devs: while (--i >= 0) if (gc->pads[i].dev) input_unregister_device(gc->pads[i].dev); err_free_gc: kfree(gc); err_unreg_pardev: parport_unregister_device(pd); err_put_pp: parport_put_port(pp); err_out: return ERR_PTR(err); } static void gc_remove(struct gc *gc) { int i; for (i = 0; i < GC_MAX_DEVICES; i++) if (gc->pads[i].dev) input_unregister_device(gc->pads[i].dev); parport_unregister_device(gc->pd); kfree(gc); } static int __init gc_init(void) { int i; int have_dev = 0; int err = 0; for (i = 0; i < GC_MAX_PORTS; i++) { if (gc_cfg[i].nargs == 0 || gc_cfg[i].args[0] < 0) continue; if (gc_cfg[i].nargs < 2) { pr_err("at least one device must be specified\n"); err = -EINVAL; break; } gc_base[i] = gc_probe(gc_cfg[i].args[0], gc_cfg[i].args + 1, gc_cfg[i].nargs - 1); if (IS_ERR(gc_base[i])) { err = PTR_ERR(gc_base[i]); break; } have_dev = 1; } if (err) { while (--i >= 0) if (gc_base[i]) gc_remove(gc_base[i]); return err; } return have_dev ? 0 : -ENODEV; } static void __exit gc_exit(void) { int i; for (i = 0; i < GC_MAX_PORTS; i++) if (gc_base[i]) gc_remove(gc_base[i]); } module_init(gc_init); module_exit(gc_exit);