/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "drmP.h" #include "radeon.h" #include "cikd.h" #include "r600_dpm.h" #include "ci_dpm.h" #include "atom.h" #include <linux/seq_file.h> #define MC_CG_ARB_FREQ_F0 0x0a #define MC_CG_ARB_FREQ_F1 0x0b #define MC_CG_ARB_FREQ_F2 0x0c #define MC_CG_ARB_FREQ_F3 0x0d #define SMC_RAM_END 0x40000 #define VOLTAGE_SCALE 4 #define VOLTAGE_VID_OFFSET_SCALE1 625 #define VOLTAGE_VID_OFFSET_SCALE2 100 static const struct ci_pt_defaults defaults_hawaii_xt = { 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000, { 0x84, 0x0, 0x0, 0x7F, 0x0, 0x0, 0x5A, 0x60, 0x51, 0x8E, 0x79, 0x6B, 0x5F, 0x90, 0x79 }, { 0x1EA, 0x1EA, 0x1EA, 0x224, 0x224, 0x224, 0x24F, 0x24F, 0x24F, 0x28E, 0x28E, 0x28E, 0x2BC, 0x2BC, 0x2BC } }; static const struct ci_pt_defaults defaults_hawaii_pro = { 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062, { 0x93, 0x0, 0x0, 0x97, 0x0, 0x0, 0x6B, 0x60, 0x51, 0x95, 0x79, 0x6B, 0x5F, 0x90, 0x79 }, { 0x1EA, 0x1EA, 0x1EA, 0x224, 0x224, 0x224, 0x24F, 0x24F, 0x24F, 0x28E, 0x28E, 0x28E, 0x2BC, 0x2BC, 0x2BC } }; static const struct ci_pt_defaults defaults_bonaire_xt = { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 }, { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } }; static const struct ci_pt_defaults defaults_bonaire_pro = { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x65062, { 0x8C, 0x23F, 0x244, 0xA6, 0x83, 0x85, 0x86, 0x86, 0x83, 0xDB, 0xDB, 0xDA, 0x67, 0x60, 0x5F }, { 0x187, 0x193, 0x193, 0x1C7, 0x1D1, 0x1D1, 0x210, 0x219, 0x219, 0x266, 0x26C, 0x26C, 0x2C9, 0x2CB, 0x2CB } }; static const struct ci_pt_defaults defaults_saturn_xt = { 1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000, { 0x8C, 0x247, 0x249, 0xA6, 0x80, 0x81, 0x8B, 0x89, 0x86, 0xC9, 0xCA, 0xC9, 0x4D, 0x4D, 0x4D }, { 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 } }; static const struct ci_pt_defaults defaults_saturn_pro = { 1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x30000, { 0x96, 0x21D, 0x23B, 0xA1, 0x85, 0x87, 0x83, 0x84, 0x81, 0xE6, 0xE6, 0xE6, 0x71, 0x6A, 0x6A }, { 0x193, 0x19E, 0x19E, 0x1D2, 0x1DC, 0x1DC, 0x21A, 0x223, 0x223, 0x26E, 0x27E, 0x274, 0x2CF, 0x2D2, 0x2D2 } }; static const struct ci_pt_config_reg didt_config_ci[] = { { 0x10, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x10, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x10, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x10, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x11, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x11, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x11, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x11, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x12, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x12, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x12, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x12, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x2, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND }, { 0x2, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND }, { 0x2, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND }, { 0x1, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND }, { 0x1, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND }, { 0x0, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x30, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x30, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x30, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x30, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x31, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x31, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x31, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x31, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x32, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x32, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x32, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x32, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x22, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND }, { 0x22, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND }, { 0x22, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND }, { 0x21, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND }, { 0x21, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND }, { 0x20, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x50, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x50, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x50, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x50, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x51, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x51, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x51, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x51, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x52, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x52, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x52, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x52, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x42, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND }, { 0x42, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND }, { 0x42, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND }, { 0x41, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND }, { 0x41, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND }, { 0x40, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x70, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x70, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x70, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x70, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x71, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x71, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x71, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x71, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x72, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x72, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x72, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x72, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0x62, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND }, { 0x62, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND }, { 0x62, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND }, { 0x61, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND }, { 0x61, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND }, { 0x60, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND }, { 0xFFFFFFFF } }; extern u8 rv770_get_memory_module_index(struct radeon_device *rdev); extern void btc_get_max_clock_from_voltage_dependency_table(struct radeon_clock_voltage_dependency_table *table, u32 *max_clock); extern int ni_copy_and_switch_arb_sets(struct radeon_device *rdev, u32 arb_freq_src, u32 arb_freq_dest); extern u8 si_get_ddr3_mclk_frequency_ratio(u32 memory_clock); extern u8 si_get_mclk_frequency_ratio(u32 memory_clock, bool strobe_mode); extern void si_trim_voltage_table_to_fit_state_table(struct radeon_device *rdev, u32 max_voltage_steps, struct atom_voltage_table *voltage_table); extern void cik_enter_rlc_safe_mode(struct radeon_device *rdev); extern void cik_exit_rlc_safe_mode(struct radeon_device *rdev); extern int ci_mc_load_microcode(struct radeon_device *rdev); static int ci_get_std_voltage_value_sidd(struct radeon_device *rdev, struct atom_voltage_table_entry *voltage_table, u16 *std_voltage_hi_sidd, u16 *std_voltage_lo_sidd); static int ci_set_power_limit(struct radeon_device *rdev, u32 n); static int ci_set_overdrive_target_tdp(struct radeon_device *rdev, u32 target_tdp); static int ci_update_uvd_dpm(struct radeon_device *rdev, bool gate); static struct ci_power_info *ci_get_pi(struct radeon_device *rdev) { struct ci_power_info *pi = rdev->pm.dpm.priv; return pi; } static struct ci_ps *ci_get_ps(struct radeon_ps *rps) { struct ci_ps *ps = rps->ps_priv; return ps; } static void ci_initialize_powertune_defaults(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); switch (rdev->pdev->device) { case 0x6650: case 0x6658: case 0x665C: default: pi->powertune_defaults = &defaults_bonaire_xt; break; case 0x6651: case 0x665D: pi->powertune_defaults = &defaults_bonaire_pro; break; case 0x6640: pi->powertune_defaults = &defaults_saturn_xt; break; case 0x6641: pi->powertune_defaults = &defaults_saturn_pro; break; case 0x67B8: case 0x67B0: case 0x67A0: case 0x67A1: case 0x67A2: case 0x67A8: case 0x67A9: case 0x67AA: case 0x67B9: case 0x67BE: pi->powertune_defaults = &defaults_hawaii_xt; break; case 0x67BA: case 0x67B1: pi->powertune_defaults = &defaults_hawaii_pro; break; } pi->dte_tj_offset = 0; pi->caps_power_containment = true; pi->caps_cac = false; pi->caps_sq_ramping = false; pi->caps_db_ramping = false; pi->caps_td_ramping = false; pi->caps_tcp_ramping = false; if (pi->caps_power_containment) { pi->caps_cac = true; pi->enable_bapm_feature = true; pi->enable_tdc_limit_feature = true; pi->enable_pkg_pwr_tracking_feature = true; } } static u8 ci_convert_to_vid(u16 vddc) { return (6200 - (vddc * VOLTAGE_SCALE)) / 25; } static int ci_populate_bapm_vddc_vid_sidd(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); u8 *hi_vid = pi->smc_powertune_table.BapmVddCVidHiSidd; u8 *lo_vid = pi->smc_powertune_table.BapmVddCVidLoSidd; u8 *hi2_vid = pi->smc_powertune_table.BapmVddCVidHiSidd2; u32 i; if (rdev->pm.dpm.dyn_state.cac_leakage_table.entries == NULL) return -EINVAL; if (rdev->pm.dpm.dyn_state.cac_leakage_table.count > 8) return -EINVAL; if (rdev->pm.dpm.dyn_state.cac_leakage_table.count != rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count) return -EINVAL; for (i = 0; i < rdev->pm.dpm.dyn_state.cac_leakage_table.count; i++) { if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_EVV) { lo_vid[i] = ci_convert_to_vid(rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc1); hi_vid[i] = ci_convert_to_vid(rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc2); hi2_vid[i] = ci_convert_to_vid(rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc3); } else { lo_vid[i] = ci_convert_to_vid(rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc); hi_vid[i] = ci_convert_to_vid((u16)rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].leakage); } } return 0; } static int ci_populate_vddc_vid(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); u8 *vid = pi->smc_powertune_table.VddCVid; u32 i; if (pi->vddc_voltage_table.count > 8) return -EINVAL; for (i = 0; i < pi->vddc_voltage_table.count; i++) vid[i] = ci_convert_to_vid(pi->vddc_voltage_table.entries[i].value); return 0; } static int ci_populate_svi_load_line(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults; pi->smc_powertune_table.SviLoadLineEn = pt_defaults->svi_load_line_en; pi->smc_powertune_table.SviLoadLineVddC = pt_defaults->svi_load_line_vddc; pi->smc_powertune_table.SviLoadLineTrimVddC = 3; pi->smc_powertune_table.SviLoadLineOffsetVddC = 0; return 0; } static int ci_populate_tdc_limit(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults; u16 tdc_limit; tdc_limit = rdev->pm.dpm.dyn_state.cac_tdp_table->tdc * 256; pi->smc_powertune_table.TDC_VDDC_PkgLimit = cpu_to_be16(tdc_limit); pi->smc_powertune_table.TDC_VDDC_ThrottleReleaseLimitPerc = pt_defaults->tdc_vddc_throttle_release_limit_perc; pi->smc_powertune_table.TDC_MAWt = pt_defaults->tdc_mawt; return 0; } static int ci_populate_dw8(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults; int ret; ret = ci_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, PmFuseTable) + offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl), (u32 *)&pi->smc_powertune_table.TdcWaterfallCtl, pi->sram_end); if (ret) return -EINVAL; else pi->smc_powertune_table.TdcWaterfallCtl = pt_defaults->tdc_waterfall_ctl; return 0; } static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); u8 *hi_vid = pi->smc_powertune_table.BapmVddCVidHiSidd; u8 *lo_vid = pi->smc_powertune_table.BapmVddCVidLoSidd; int i, min, max; min = max = hi_vid[0]; for (i = 0; i < 8; i++) { if (0 != hi_vid[i]) { if (min > hi_vid[i]) min = hi_vid[i]; if (max < hi_vid[i]) max = hi_vid[i]; } if (0 != lo_vid[i]) { if (min > lo_vid[i]) min = lo_vid[i]; if (max < lo_vid[i]) max = lo_vid[i]; } } if ((min == 0) || (max == 0)) return -EINVAL; pi->smc_powertune_table.GnbLPMLMaxVid = (u8)max; pi->smc_powertune_table.GnbLPMLMinVid = (u8)min; return 0; } static int ci_populate_bapm_vddc_base_leakage_sidd(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); u16 hi_sidd = pi->smc_powertune_table.BapmVddCBaseLeakageHiSidd; u16 lo_sidd = pi->smc_powertune_table.BapmVddCBaseLeakageLoSidd; struct radeon_cac_tdp_table *cac_tdp_table = rdev->pm.dpm.dyn_state.cac_tdp_table; hi_sidd = cac_tdp_table->high_cac_leakage / 100 * 256; lo_sidd = cac_tdp_table->low_cac_leakage / 100 * 256; pi->smc_powertune_table.BapmVddCBaseLeakageHiSidd = cpu_to_be16(hi_sidd); pi->smc_powertune_table.BapmVddCBaseLeakageLoSidd = cpu_to_be16(lo_sidd); return 0; } static int ci_populate_bapm_parameters_in_dpm_table(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults; SMU7_Discrete_DpmTable *dpm_table = &pi->smc_state_table; struct radeon_cac_tdp_table *cac_tdp_table = rdev->pm.dpm.dyn_state.cac_tdp_table; struct radeon_ppm_table *ppm = rdev->pm.dpm.dyn_state.ppm_table; int i, j, k; const u16 *def1; const u16 *def2; dpm_table->DefaultTdp = cac_tdp_table->tdp * 256; dpm_table->TargetTdp = cac_tdp_table->configurable_tdp * 256; dpm_table->DTETjOffset = (u8)pi->dte_tj_offset; dpm_table->GpuTjMax = (u8)(pi->thermal_temp_setting.temperature_high / 1000); dpm_table->GpuTjHyst = 8; dpm_table->DTEAmbientTempBase = pt_defaults->dte_ambient_temp_base; if (ppm) { dpm_table->PPM_PkgPwrLimit = cpu_to_be16((u16)ppm->dgpu_tdp * 256 / 1000); dpm_table->PPM_TemperatureLimit = cpu_to_be16((u16)ppm->tj_max * 256); } else { dpm_table->PPM_PkgPwrLimit = cpu_to_be16(0); dpm_table->PPM_TemperatureLimit = cpu_to_be16(0); } dpm_table->BAPM_TEMP_GRADIENT = cpu_to_be32(pt_defaults->bapm_temp_gradient); def1 = pt_defaults->bapmti_r; def2 = pt_defaults->bapmti_rc; for (i = 0; i < SMU7_DTE_ITERATIONS; i++) { for (j = 0; j < SMU7_DTE_SOURCES; j++) { for (k = 0; k < SMU7_DTE_SINKS; k++) { dpm_table->BAPMTI_R[i][j][k] = cpu_to_be16(*def1); dpm_table->BAPMTI_RC[i][j][k] = cpu_to_be16(*def2); def1++; def2++; } } } return 0; } static int ci_populate_pm_base(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); u32 pm_fuse_table_offset; int ret; if (pi->caps_power_containment) { ret = ci_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, PmFuseTable), &pm_fuse_table_offset, pi->sram_end); if (ret) return ret; ret = ci_populate_bapm_vddc_vid_sidd(rdev); if (ret) return ret; ret = ci_populate_vddc_vid(rdev); if (ret) return ret; ret = ci_populate_svi_load_line(rdev); if (ret) return ret; ret = ci_populate_tdc_limit(rdev); if (ret) return ret; ret = ci_populate_dw8(rdev); if (ret) return ret; ret = ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(rdev); if (ret) return ret; ret = ci_populate_bapm_vddc_base_leakage_sidd(rdev); if (ret) return ret; ret = ci_copy_bytes_to_smc(rdev, pm_fuse_table_offset, (u8 *)&pi->smc_powertune_table, sizeof(SMU7_Discrete_PmFuses), pi->sram_end); if (ret) return ret; } return 0; } static void ci_do_enable_didt(struct radeon_device *rdev, const bool enable) { struct ci_power_info *pi = ci_get_pi(rdev); u32 data; if (pi->caps_sq_ramping) { data = RREG32_DIDT(DIDT_SQ_CTRL0); if (enable) data |= DIDT_CTRL_EN; else data &= ~DIDT_CTRL_EN; WREG32_DIDT(DIDT_SQ_CTRL0, data); } if (pi->caps_db_ramping) { data = RREG32_DIDT(DIDT_DB_CTRL0); if (enable) data |= DIDT_CTRL_EN; else data &= ~DIDT_CTRL_EN; WREG32_DIDT(DIDT_DB_CTRL0, data); } if (pi->caps_td_ramping) { data = RREG32_DIDT(DIDT_TD_CTRL0); if (enable) data |= DIDT_CTRL_EN; else data &= ~DIDT_CTRL_EN; WREG32_DIDT(DIDT_TD_CTRL0, data); } if (pi->caps_tcp_ramping) { data = RREG32_DIDT(DIDT_TCP_CTRL0); if (enable) data |= DIDT_CTRL_EN; else data &= ~DIDT_CTRL_EN; WREG32_DIDT(DIDT_TCP_CTRL0, data); } } static int ci_program_pt_config_registers(struct radeon_device *rdev, const struct ci_pt_config_reg *cac_config_regs) { const struct ci_pt_config_reg *config_regs = cac_config_regs; u32 data; u32 cache = 0; if (config_regs == NULL) return -EINVAL; while (config_regs->offset != 0xFFFFFFFF) { if (config_regs->type == CISLANDS_CONFIGREG_CACHE) { cache |= ((config_regs->value << config_regs->shift) & config_regs->mask); } else { switch (config_regs->type) { case CISLANDS_CONFIGREG_SMC_IND: data = RREG32_SMC(config_regs->offset); break; case CISLANDS_CONFIGREG_DIDT_IND: data = RREG32_DIDT(config_regs->offset); break; default: data = RREG32(config_regs->offset << 2); break; } data &= ~config_regs->mask; data |= ((config_regs->value << config_regs->shift) & config_regs->mask); data |= cache; switch (config_regs->type) { case CISLANDS_CONFIGREG_SMC_IND: WREG32_SMC(config_regs->offset, data); break; case CISLANDS_CONFIGREG_DIDT_IND: WREG32_DIDT(config_regs->offset, data); break; default: WREG32(config_regs->offset << 2, data); break; } cache = 0; } config_regs++; } return 0; } static int ci_enable_didt(struct radeon_device *rdev, bool enable) { struct ci_power_info *pi = ci_get_pi(rdev); int ret; if (pi->caps_sq_ramping || pi->caps_db_ramping || pi->caps_td_ramping || pi->caps_tcp_ramping) { cik_enter_rlc_safe_mode(rdev); if (enable) { ret = ci_program_pt_config_registers(rdev, didt_config_ci); if (ret) { cik_exit_rlc_safe_mode(rdev); return ret; } } ci_do_enable_didt(rdev, enable); cik_exit_rlc_safe_mode(rdev); } return 0; } static int ci_enable_power_containment(struct radeon_device *rdev, bool enable) { struct ci_power_info *pi = ci_get_pi(rdev); PPSMC_Result smc_result; int ret = 0; if (enable) { pi->power_containment_features = 0; if (pi->caps_power_containment) { if (pi->enable_bapm_feature) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableDTE); if (smc_result != PPSMC_Result_OK) ret = -EINVAL; else pi->power_containment_features |= POWERCONTAINMENT_FEATURE_BAPM; } if (pi->enable_tdc_limit_feature) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_TDCLimitEnable); if (smc_result != PPSMC_Result_OK) ret = -EINVAL; else pi->power_containment_features |= POWERCONTAINMENT_FEATURE_TDCLimit; } if (pi->enable_pkg_pwr_tracking_feature) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_PkgPwrLimitEnable); if (smc_result != PPSMC_Result_OK) { ret = -EINVAL; } else { struct radeon_cac_tdp_table *cac_tdp_table = rdev->pm.dpm.dyn_state.cac_tdp_table; u32 default_pwr_limit = (u32)(cac_tdp_table->maximum_power_delivery_limit * 256); pi->power_containment_features |= POWERCONTAINMENT_FEATURE_PkgPwrLimit; ci_set_power_limit(rdev, default_pwr_limit); } } } } else { if (pi->caps_power_containment && pi->power_containment_features) { if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_TDCLimit) ci_send_msg_to_smc(rdev, PPSMC_MSG_TDCLimitDisable); if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_BAPM) ci_send_msg_to_smc(rdev, PPSMC_MSG_DisableDTE); if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_PkgPwrLimit) ci_send_msg_to_smc(rdev, PPSMC_MSG_PkgPwrLimitDisable); pi->power_containment_features = 0; } } return ret; } static int ci_enable_smc_cac(struct radeon_device *rdev, bool enable) { struct ci_power_info *pi = ci_get_pi(rdev); PPSMC_Result smc_result; int ret = 0; if (pi->caps_cac) { if (enable) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableCac); if (smc_result != PPSMC_Result_OK) { ret = -EINVAL; pi->cac_enabled = false; } else { pi->cac_enabled = true; } } else if (pi->cac_enabled) { ci_send_msg_to_smc(rdev, PPSMC_MSG_DisableCac); pi->cac_enabled = false; } } return ret; } static int ci_power_control_set_level(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); struct radeon_cac_tdp_table *cac_tdp_table = rdev->pm.dpm.dyn_state.cac_tdp_table; s32 adjust_percent; s32 target_tdp; int ret = 0; bool adjust_polarity = false; /* ??? */ if (pi->caps_power_containment && (pi->power_containment_features & POWERCONTAINMENT_FEATURE_BAPM)) { adjust_percent = adjust_polarity ? rdev->pm.dpm.tdp_adjustment : (-1 * rdev->pm.dpm.tdp_adjustment); target_tdp = ((100 + adjust_percent) * (s32)cac_tdp_table->configurable_tdp) / 100; target_tdp *= 256; ret = ci_set_overdrive_target_tdp(rdev, (u32)target_tdp); } return ret; } void ci_dpm_powergate_uvd(struct radeon_device *rdev, bool gate) { struct ci_power_info *pi = ci_get_pi(rdev); if (pi->uvd_power_gated == gate) return; pi->uvd_power_gated = gate; ci_update_uvd_dpm(rdev, gate); } bool ci_dpm_vblank_too_short(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); u32 vblank_time = r600_dpm_get_vblank_time(rdev); u32 switch_limit = pi->mem_gddr5 ? 450 : 300; if (vblank_time < switch_limit) return true; else return false; } static void ci_apply_state_adjust_rules(struct radeon_device *rdev, struct radeon_ps *rps) { struct ci_ps *ps = ci_get_ps(rps); struct ci_power_info *pi = ci_get_pi(rdev); struct radeon_clock_and_voltage_limits *max_limits; bool disable_mclk_switching; u32 sclk, mclk; u32 max_sclk_vddc, max_mclk_vddci, max_mclk_vddc; int i; if ((rdev->pm.dpm.new_active_crtc_count > 1) || ci_dpm_vblank_too_short(rdev)) disable_mclk_switching = true; else disable_mclk_switching = false; if ((rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY) pi->battery_state = true; else pi->battery_state = false; if (rdev->pm.dpm.ac_power) max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac; else max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc; if (rdev->pm.dpm.ac_power == false) { for (i = 0; i < ps->performance_level_count; i++) { if (ps->performance_levels[i].mclk > max_limits->mclk) ps->performance_levels[i].mclk = max_limits->mclk; if (ps->performance_levels[i].sclk > max_limits->sclk) ps->performance_levels[i].sclk = max_limits->sclk; } } /* limit clocks to max supported clocks based on voltage dependency tables */ btc_get_max_clock_from_voltage_dependency_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk, &max_sclk_vddc); btc_get_max_clock_from_voltage_dependency_table(&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk, &max_mclk_vddci); btc_get_max_clock_from_voltage_dependency_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk, &max_mclk_vddc); for (i = 0; i < ps->performance_level_count; i++) { if (max_sclk_vddc) { if (ps->performance_levels[i].sclk > max_sclk_vddc) ps->performance_levels[i].sclk = max_sclk_vddc; } if (max_mclk_vddci) { if (ps->performance_levels[i].mclk > max_mclk_vddci) ps->performance_levels[i].mclk = max_mclk_vddci; } if (max_mclk_vddc) { if (ps->performance_levels[i].mclk > max_mclk_vddc) ps->performance_levels[i].mclk = max_mclk_vddc; } } /* XXX validate the min clocks required for display */ if (disable_mclk_switching) { mclk = ps->performance_levels[ps->performance_level_count - 1].mclk; sclk = ps->performance_levels[0].sclk; } else { mclk = ps->performance_levels[0].mclk; sclk = ps->performance_levels[0].sclk; } ps->performance_levels[0].sclk = sclk; ps->performance_levels[0].mclk = mclk; if (ps->performance_levels[1].sclk < ps->performance_levels[0].sclk) ps->performance_levels[1].sclk = ps->performance_levels[0].sclk; if (disable_mclk_switching) { if (ps->performance_levels[0].mclk < ps->performance_levels[1].mclk) ps->performance_levels[0].mclk = ps->performance_levels[1].mclk; } else { if (ps->performance_levels[1].mclk < ps->performance_levels[0].mclk) ps->performance_levels[1].mclk = ps->performance_levels[0].mclk; } } static int ci_set_thermal_temperature_range(struct radeon_device *rdev, int min_temp, int max_temp) { int low_temp = 0 * 1000; int high_temp = 255 * 1000; u32 tmp; if (low_temp < min_temp) low_temp = min_temp; if (high_temp > max_temp) high_temp = max_temp; if (high_temp < low_temp) { DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp); return -EINVAL; } tmp = RREG32_SMC(CG_THERMAL_INT); tmp &= ~(CI_DIG_THERM_INTH_MASK | CI_DIG_THERM_INTL_MASK); tmp |= CI_DIG_THERM_INTH(high_temp / 1000) | CI_DIG_THERM_INTL(low_temp / 1000); WREG32_SMC(CG_THERMAL_INT, tmp); #if 0 /* XXX: need to figure out how to handle this properly */ tmp = RREG32_SMC(CG_THERMAL_CTRL); tmp &= DIG_THERM_DPM_MASK; tmp |= DIG_THERM_DPM(high_temp / 1000); WREG32_SMC(CG_THERMAL_CTRL, tmp); #endif return 0; } #if 0 static int ci_read_smc_soft_register(struct radeon_device *rdev, u16 reg_offset, u32 *value) { struct ci_power_info *pi = ci_get_pi(rdev); return ci_read_smc_sram_dword(rdev, pi->soft_regs_start + reg_offset, value, pi->sram_end); } #endif static int ci_write_smc_soft_register(struct radeon_device *rdev, u16 reg_offset, u32 value) { struct ci_power_info *pi = ci_get_pi(rdev); return ci_write_smc_sram_dword(rdev, pi->soft_regs_start + reg_offset, value, pi->sram_end); } static void ci_init_fps_limits(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); SMU7_Discrete_DpmTable *table = &pi->smc_state_table; if (pi->caps_fps) { u16 tmp; tmp = 45; table->FpsHighT = cpu_to_be16(tmp); tmp = 30; table->FpsLowT = cpu_to_be16(tmp); } } static int ci_update_sclk_t(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); int ret = 0; u32 low_sclk_interrupt_t = 0; if (pi->caps_sclk_throttle_low_notification) { low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t); ret = ci_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT), (u8 *)&low_sclk_interrupt_t, sizeof(u32), pi->sram_end); } return ret; } static void ci_get_leakage_voltages(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); u16 leakage_id, virtual_voltage_id; u16 vddc, vddci; int i; pi->vddc_leakage.count = 0; pi->vddci_leakage.count = 0; if (radeon_atom_get_leakage_id_from_vbios(rdev, &leakage_id) == 0) { for (i = 0; i < CISLANDS_MAX_LEAKAGE_COUNT; i++) { virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; if (radeon_atom_get_leakage_vddc_based_on_leakage_params(rdev, &vddc, &vddci, virtual_voltage_id, leakage_id) == 0) { if (vddc != 0 && vddc != virtual_voltage_id) { pi->vddc_leakage.actual_voltage[pi->vddc_leakage.count] = vddc; pi->vddc_leakage.leakage_id[pi->vddc_leakage.count] = virtual_voltage_id; pi->vddc_leakage.count++; } if (vddci != 0 && vddci != virtual_voltage_id) { pi->vddci_leakage.actual_voltage[pi->vddci_leakage.count] = vddci; pi->vddci_leakage.leakage_id[pi->vddci_leakage.count] = virtual_voltage_id; pi->vddci_leakage.count++; } } } } } static void ci_set_dpm_event_sources(struct radeon_device *rdev, u32 sources) { struct ci_power_info *pi = ci_get_pi(rdev); bool want_thermal_protection; enum radeon_dpm_event_src dpm_event_src; u32 tmp; switch (sources) { case 0: default: want_thermal_protection = false; break; case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL): want_thermal_protection = true; dpm_event_src = RADEON_DPM_EVENT_SRC_DIGITAL; break; case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL): want_thermal_protection = true; dpm_event_src = RADEON_DPM_EVENT_SRC_EXTERNAL; break; case ((1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL) | (1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL)): want_thermal_protection = true; dpm_event_src = RADEON_DPM_EVENT_SRC_DIGIAL_OR_EXTERNAL; break; } if (want_thermal_protection) { #if 0 /* XXX: need to figure out how to handle this properly */ tmp = RREG32_SMC(CG_THERMAL_CTRL); tmp &= DPM_EVENT_SRC_MASK; tmp |= DPM_EVENT_SRC(dpm_event_src); WREG32_SMC(CG_THERMAL_CTRL, tmp); #endif tmp = RREG32_SMC(GENERAL_PWRMGT); if (pi->thermal_protection) tmp &= ~THERMAL_PROTECTION_DIS; else tmp |= THERMAL_PROTECTION_DIS; WREG32_SMC(GENERAL_PWRMGT, tmp); } else { tmp = RREG32_SMC(GENERAL_PWRMGT); tmp |= THERMAL_PROTECTION_DIS; WREG32_SMC(GENERAL_PWRMGT, tmp); } } static void ci_enable_auto_throttle_source(struct radeon_device *rdev, enum radeon_dpm_auto_throttle_src source, bool enable) { struct ci_power_info *pi = ci_get_pi(rdev); if (enable) { if (!(pi->active_auto_throttle_sources & (1 << source))) { pi->active_auto_throttle_sources |= 1 << source; ci_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources); } } else { if (pi->active_auto_throttle_sources & (1 << source)) { pi->active_auto_throttle_sources &= ~(1 << source); ci_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources); } } } static void ci_enable_vr_hot_gpio_interrupt(struct radeon_device *rdev) { if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_REGULATOR_HOT) ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableVRHotGPIOInterrupt); } static int ci_unfreeze_sclk_mclk_dpm(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); PPSMC_Result smc_result; if (!pi->need_update_smu7_dpm_table) return 0; if ((!pi->sclk_dpm_key_disabled) && (pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_SCLKDPM_UnfreezeLevel); if (smc_result != PPSMC_Result_OK) return -EINVAL; } if ((!pi->mclk_dpm_key_disabled) && (pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_UnfreezeLevel); if (smc_result != PPSMC_Result_OK) return -EINVAL; } pi->need_update_smu7_dpm_table = 0; return 0; } static int ci_enable_sclk_mclk_dpm(struct radeon_device *rdev, bool enable) { struct ci_power_info *pi = ci_get_pi(rdev); PPSMC_Result smc_result; if (enable) { if (!pi->sclk_dpm_key_disabled) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_DPM_Enable); if (smc_result != PPSMC_Result_OK) return -EINVAL; } if (!pi->mclk_dpm_key_disabled) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_Enable); if (smc_result != PPSMC_Result_OK) return -EINVAL; WREG32_P(MC_SEQ_CNTL_3, CAC_EN, ~CAC_EN); WREG32_SMC(LCAC_MC0_CNTL, 0x05); WREG32_SMC(LCAC_MC1_CNTL, 0x05); WREG32_SMC(LCAC_CPL_CNTL, 0x100005); udelay(10); WREG32_SMC(LCAC_MC0_CNTL, 0x400005); WREG32_SMC(LCAC_MC1_CNTL, 0x400005); WREG32_SMC(LCAC_CPL_CNTL, 0x500005); } } else { if (!pi->sclk_dpm_key_disabled) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_DPM_Disable); if (smc_result != PPSMC_Result_OK) return -EINVAL; } if (!pi->mclk_dpm_key_disabled) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_Disable); if (smc_result != PPSMC_Result_OK) return -EINVAL; } } return 0; } static int ci_start_dpm(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); PPSMC_Result smc_result; int ret; u32 tmp; tmp = RREG32_SMC(GENERAL_PWRMGT); tmp |= GLOBAL_PWRMGT_EN; WREG32_SMC(GENERAL_PWRMGT, tmp); tmp = RREG32_SMC(SCLK_PWRMGT_CNTL); tmp |= DYNAMIC_PM_EN; WREG32_SMC(SCLK_PWRMGT_CNTL, tmp); ci_write_smc_soft_register(rdev, offsetof(SMU7_SoftRegisters, VoltageChangeTimeout), 0x1000); WREG32_P(BIF_LNCNT_RESET, 0, ~RESET_LNCNT_EN); smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_Voltage_Cntl_Enable); if (smc_result != PPSMC_Result_OK) return -EINVAL; ret = ci_enable_sclk_mclk_dpm(rdev, true); if (ret) return ret; if (!pi->pcie_dpm_key_disabled) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_PCIeDPM_Enable); if (smc_result != PPSMC_Result_OK) return -EINVAL; } return 0; } static int ci_freeze_sclk_mclk_dpm(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); PPSMC_Result smc_result; if (!pi->need_update_smu7_dpm_table) return 0; if ((!pi->sclk_dpm_key_disabled) && (pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_SCLKDPM_FreezeLevel); if (smc_result != PPSMC_Result_OK) return -EINVAL; } if ((!pi->mclk_dpm_key_disabled) && (pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_FreezeLevel); if (smc_result != PPSMC_Result_OK) return -EINVAL; } return 0; } static int ci_stop_dpm(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); PPSMC_Result smc_result; int ret; u32 tmp; tmp = RREG32_SMC(GENERAL_PWRMGT); tmp &= ~GLOBAL_PWRMGT_EN; WREG32_SMC(GENERAL_PWRMGT, tmp); tmp = RREG32(SCLK_PWRMGT_CNTL); tmp &= ~DYNAMIC_PM_EN; WREG32_SMC(SCLK_PWRMGT_CNTL, tmp); if (!pi->pcie_dpm_key_disabled) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_PCIeDPM_Disable); if (smc_result != PPSMC_Result_OK) return -EINVAL; } ret = ci_enable_sclk_mclk_dpm(rdev, false); if (ret) return ret; smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_Voltage_Cntl_Disable); if (smc_result != PPSMC_Result_OK) return -EINVAL; return 0; } static void ci_enable_sclk_control(struct radeon_device *rdev, bool enable) { u32 tmp = RREG32_SMC(SCLK_PWRMGT_CNTL); if (enable) tmp &= ~SCLK_PWRMGT_OFF; else tmp |= SCLK_PWRMGT_OFF; WREG32_SMC(SCLK_PWRMGT_CNTL, tmp); } #if 0 static int ci_notify_hw_of_power_source(struct radeon_device *rdev, bool ac_power) { struct ci_power_info *pi = ci_get_pi(rdev); struct radeon_cac_tdp_table *cac_tdp_table = rdev->pm.dpm.dyn_state.cac_tdp_table; u32 power_limit; if (ac_power) power_limit = (u32)(cac_tdp_table->maximum_power_delivery_limit * 256); else power_limit = (u32)(cac_tdp_table->battery_power_limit * 256); ci_set_power_limit(rdev, power_limit); if (pi->caps_automatic_dc_transition) { if (ac_power) ci_send_msg_to_smc(rdev, PPSMC_MSG_RunningOnAC); else ci_send_msg_to_smc(rdev, PPSMC_MSG_Remove_DC_Clamp); } return 0; } #endif static PPSMC_Result ci_send_msg_to_smc_with_parameter(struct radeon_device *rdev, PPSMC_Msg msg, u32 parameter) { WREG32(SMC_MSG_ARG_0, parameter); return ci_send_msg_to_smc(rdev, msg); } static PPSMC_Result ci_send_msg_to_smc_return_parameter(struct radeon_device *rdev, PPSMC_Msg msg, u32 *parameter) { PPSMC_Result smc_result; smc_result = ci_send_msg_to_smc(rdev, msg); if ((smc_result == PPSMC_Result_OK) && parameter) *parameter = RREG32(SMC_MSG_ARG_0); return smc_result; } static int ci_dpm_force_state_sclk(struct radeon_device *rdev, u32 n) { struct ci_power_info *pi = ci_get_pi(rdev); if (!pi->sclk_dpm_key_disabled) { PPSMC_Result smc_result = ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, n); if (smc_result != PPSMC_Result_OK) return -EINVAL; } return 0; } static int ci_dpm_force_state_mclk(struct radeon_device *rdev, u32 n) { struct ci_power_info *pi = ci_get_pi(rdev); if (!pi->mclk_dpm_key_disabled) { PPSMC_Result smc_result = ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_MCLKDPM_ForceState, n); if (smc_result != PPSMC_Result_OK) return -EINVAL; } return 0; } static int ci_dpm_force_state_pcie(struct radeon_device *rdev, u32 n) { struct ci_power_info *pi = ci_get_pi(rdev); if (!pi->pcie_dpm_key_disabled) { PPSMC_Result smc_result = ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_PCIeDPM_ForceLevel, n); if (smc_result != PPSMC_Result_OK) return -EINVAL; } return 0; } static int ci_set_power_limit(struct radeon_device *rdev, u32 n) { struct ci_power_info *pi = ci_get_pi(rdev); if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_PkgPwrLimit) { PPSMC_Result smc_result = ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_PkgPwrSetLimit, n); if (smc_result != PPSMC_Result_OK) return -EINVAL; } return 0; } static int ci_set_overdrive_target_tdp(struct radeon_device *rdev, u32 target_tdp) { PPSMC_Result smc_result = ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_OverDriveSetTargetTdp, target_tdp); if (smc_result != PPSMC_Result_OK) return -EINVAL; return 0; } static int ci_set_boot_state(struct radeon_device *rdev) { return ci_enable_sclk_mclk_dpm(rdev, false); } static u32 ci_get_average_sclk_freq(struct radeon_device *rdev) { u32 sclk_freq; PPSMC_Result smc_result = ci_send_msg_to_smc_return_parameter(rdev, PPSMC_MSG_API_GetSclkFrequency, &sclk_freq); if (smc_result != PPSMC_Result_OK) sclk_freq = 0; return sclk_freq; } static u32 ci_get_average_mclk_freq(struct radeon_device *rdev) { u32 mclk_freq; PPSMC_Result smc_result = ci_send_msg_to_smc_return_parameter(rdev, PPSMC_MSG_API_GetMclkFrequency, &mclk_freq); if (smc_result != PPSMC_Result_OK) mclk_freq = 0; return mclk_freq; } static void ci_dpm_start_smc(struct radeon_device *rdev) { int i; ci_program_jump_on_start(rdev); ci_start_smc_clock(rdev); ci_start_smc(rdev); for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32_SMC(FIRMWARE_FLAGS) & INTERRUPTS_ENABLED) break; } } static void ci_dpm_stop_smc(struct radeon_device *rdev) { ci_reset_smc(rdev); ci_stop_smc_clock(rdev); } static int ci_process_firmware_header(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); u32 tmp; int ret; ret = ci_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, DpmTable), &tmp, pi->sram_end); if (ret) return ret; pi->dpm_table_start = tmp; ret = ci_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, SoftRegisters), &tmp, pi->sram_end); if (ret) return ret; pi->soft_regs_start = tmp; ret = ci_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, mcRegisterTable), &tmp, pi->sram_end); if (ret) return ret; pi->mc_reg_table_start = tmp; ret = ci_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, FanTable), &tmp, pi->sram_end); if (ret) return ret; pi->fan_table_start = tmp; ret = ci_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, mcArbDramTimingTable), &tmp, pi->sram_end); if (ret) return ret; pi->arb_table_start = tmp; return 0; } static void ci_read_clock_registers(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); pi->clock_registers.cg_spll_func_cntl = RREG32_SMC(CG_SPLL_FUNC_CNTL); pi->clock_registers.cg_spll_func_cntl_2 = RREG32_SMC(CG_SPLL_FUNC_CNTL_2); pi->clock_registers.cg_spll_func_cntl_3 = RREG32_SMC(CG_SPLL_FUNC_CNTL_3); pi->clock_registers.cg_spll_func_cntl_4 = RREG32_SMC(CG_SPLL_FUNC_CNTL_4); pi->clock_registers.cg_spll_spread_spectrum = RREG32_SMC(CG_SPLL_SPREAD_SPECTRUM); pi->clock_registers.cg_spll_spread_spectrum_2 = RREG32_SMC(CG_SPLL_SPREAD_SPECTRUM_2); pi->clock_registers.dll_cntl = RREG32(DLL_CNTL); pi->clock_registers.mclk_pwrmgt_cntl = RREG32(MCLK_PWRMGT_CNTL); pi->clock_registers.mpll_ad_func_cntl = RREG32(MPLL_AD_FUNC_CNTL); pi->clock_registers.mpll_dq_func_cntl = RREG32(MPLL_DQ_FUNC_CNTL); pi->clock_registers.mpll_func_cntl = RREG32(MPLL_FUNC_CNTL); pi->clock_registers.mpll_func_cntl_1 = RREG32(MPLL_FUNC_CNTL_1); pi->clock_registers.mpll_func_cntl_2 = RREG32(MPLL_FUNC_CNTL_2); pi->clock_registers.mpll_ss1 = RREG32(MPLL_SS1); pi->clock_registers.mpll_ss2 = RREG32(MPLL_SS2); } static void ci_init_sclk_t(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); pi->low_sclk_interrupt_t = 0; } static void ci_enable_thermal_protection(struct radeon_device *rdev, bool enable) { u32 tmp = RREG32_SMC(GENERAL_PWRMGT); if (enable) tmp &= ~THERMAL_PROTECTION_DIS; else tmp |= THERMAL_PROTECTION_DIS; WREG32_SMC(GENERAL_PWRMGT, tmp); } static void ci_enable_acpi_power_management(struct radeon_device *rdev) { u32 tmp = RREG32_SMC(GENERAL_PWRMGT); tmp |= STATIC_PM_EN; WREG32_SMC(GENERAL_PWRMGT, tmp); } #if 0 static int ci_enter_ulp_state(struct radeon_device *rdev) { WREG32(SMC_MESSAGE_0, PPSMC_MSG_SwitchToMinimumPower); udelay(25000); return 0; } static int ci_exit_ulp_state(struct radeon_device *rdev) { int i; WREG32(SMC_MESSAGE_0, PPSMC_MSG_ResumeFromMinimumPower); udelay(7000); for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(SMC_RESP_0) == 1) break; udelay(1000); } return 0; } #endif static int ci_notify_smc_display_change(struct radeon_device *rdev, bool has_display) { PPSMC_Msg msg = has_display ? PPSMC_MSG_HasDisplay : PPSMC_MSG_NoDisplay; return (ci_send_msg_to_smc(rdev, msg) == PPSMC_Result_OK) ? 0 : -EINVAL; } static int ci_enable_ds_master_switch(struct radeon_device *rdev, bool enable) { struct ci_power_info *pi = ci_get_pi(rdev); if (enable) { if (pi->caps_sclk_ds) { if (ci_send_msg_to_smc(rdev, PPSMC_MSG_MASTER_DeepSleep_ON) != PPSMC_Result_OK) return -EINVAL; } else { if (ci_send_msg_to_smc(rdev, PPSMC_MSG_MASTER_DeepSleep_OFF) != PPSMC_Result_OK) return -EINVAL; } } else { if (pi->caps_sclk_ds) { if (ci_send_msg_to_smc(rdev, PPSMC_MSG_MASTER_DeepSleep_OFF) != PPSMC_Result_OK) return -EINVAL; } } return 0; } static void ci_program_display_gap(struct radeon_device *rdev) { u32 tmp = RREG32_SMC(CG_DISPLAY_GAP_CNTL); u32 pre_vbi_time_in_us; u32 frame_time_in_us; u32 ref_clock = rdev->clock.spll.reference_freq; u32 refresh_rate = r600_dpm_get_vrefresh(rdev); u32 vblank_time = r600_dpm_get_vblank_time(rdev); tmp &= ~DISP_GAP_MASK; if (rdev->pm.dpm.new_active_crtc_count > 0) tmp |= DISP_GAP(R600_PM_DISPLAY_GAP_VBLANK_OR_WM); else tmp |= DISP_GAP(R600_PM_DISPLAY_GAP_IGNORE); WREG32_SMC(CG_DISPLAY_GAP_CNTL, tmp); if (refresh_rate == 0) refresh_rate = 60; if (vblank_time == 0xffffffff) vblank_time = 500; frame_time_in_us = 1000000 / refresh_rate; pre_vbi_time_in_us = frame_time_in_us - 200 - vblank_time; tmp = pre_vbi_time_in_us * (ref_clock / 100); WREG32_SMC(CG_DISPLAY_GAP_CNTL2, tmp); ci_write_smc_soft_register(rdev, offsetof(SMU7_SoftRegisters, PreVBlankGap), 0x64); ci_write_smc_soft_register(rdev, offsetof(SMU7_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us)); ci_notify_smc_display_change(rdev, (rdev->pm.dpm.new_active_crtc_count == 1)); } static void ci_enable_spread_spectrum(struct radeon_device *rdev, bool enable) { struct ci_power_info *pi = ci_get_pi(rdev); u32 tmp; if (enable) { if (pi->caps_sclk_ss_support) { tmp = RREG32_SMC(GENERAL_PWRMGT); tmp |= DYN_SPREAD_SPECTRUM_EN; WREG32_SMC(GENERAL_PWRMGT, tmp); } } else { tmp = RREG32_SMC(CG_SPLL_SPREAD_SPECTRUM); tmp &= ~SSEN; WREG32_SMC(CG_SPLL_SPREAD_SPECTRUM, tmp); tmp = RREG32_SMC(GENERAL_PWRMGT); tmp &= ~DYN_SPREAD_SPECTRUM_EN; WREG32_SMC(GENERAL_PWRMGT, tmp); } } static void ci_program_sstp(struct radeon_device *rdev) { WREG32_SMC(CG_SSP, (SSTU(R600_SSTU_DFLT) | SST(R600_SST_DFLT))); } static void ci_enable_display_gap(struct radeon_device *rdev) { u32 tmp = RREG32_SMC(CG_DISPLAY_GAP_CNTL); tmp &= ~(DISP_GAP_MASK | DISP_GAP_MCHG_MASK); tmp |= (DISP_GAP(R600_PM_DISPLAY_GAP_IGNORE) | DISP_GAP_MCHG(R600_PM_DISPLAY_GAP_VBLANK)); WREG32_SMC(CG_DISPLAY_GAP_CNTL, tmp); } static void ci_program_vc(struct radeon_device *rdev) { u32 tmp; tmp = RREG32_SMC(SCLK_PWRMGT_CNTL); tmp &= ~(RESET_SCLK_CNT | RESET_BUSY_CNT); WREG32_SMC(SCLK_PWRMGT_CNTL, tmp); WREG32_SMC(CG_FTV_0, CISLANDS_VRC_DFLT0); WREG32_SMC(CG_FTV_1, CISLANDS_VRC_DFLT1); WREG32_SMC(CG_FTV_2, CISLANDS_VRC_DFLT2); WREG32_SMC(CG_FTV_3, CISLANDS_VRC_DFLT3); WREG32_SMC(CG_FTV_4, CISLANDS_VRC_DFLT4); WREG32_SMC(CG_FTV_5, CISLANDS_VRC_DFLT5); WREG32_SMC(CG_FTV_6, CISLANDS_VRC_DFLT6); WREG32_SMC(CG_FTV_7, CISLANDS_VRC_DFLT7); } static void ci_clear_vc(struct radeon_device *rdev) { u32 tmp; tmp = RREG32_SMC(SCLK_PWRMGT_CNTL); tmp |= (RESET_SCLK_CNT | RESET_BUSY_CNT); WREG32_SMC(SCLK_PWRMGT_CNTL, tmp); WREG32_SMC(CG_FTV_0, 0); WREG32_SMC(CG_FTV_1, 0); WREG32_SMC(CG_FTV_2, 0); WREG32_SMC(CG_FTV_3, 0); WREG32_SMC(CG_FTV_4, 0); WREG32_SMC(CG_FTV_5, 0); WREG32_SMC(CG_FTV_6, 0); WREG32_SMC(CG_FTV_7, 0); } static int ci_upload_firmware(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); int i, ret; for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32_SMC(RCU_UC_EVENTS) & BOOT_SEQ_DONE) break; } WREG32_SMC(SMC_SYSCON_MISC_CNTL, 1); ci_stop_smc_clock(rdev); ci_reset_smc(rdev); ret = ci_load_smc_ucode(rdev, pi->sram_end); return ret; } static int ci_get_svi2_voltage_table(struct radeon_device *rdev, struct radeon_clock_voltage_dependency_table *voltage_dependency_table, struct atom_voltage_table *voltage_table) { u32 i; if (voltage_dependency_table == NULL) return -EINVAL; voltage_table->mask_low = 0; voltage_table->phase_delay = 0; voltage_table->count = voltage_dependency_table->count; for (i = 0; i < voltage_table->count; i++) { voltage_table->entries[i].value = voltage_dependency_table->entries[i].v; voltage_table->entries[i].smio_low = 0; } return 0; } static int ci_construct_voltage_tables(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); int ret; if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) { ret = radeon_atom_get_voltage_table(rdev, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT, &pi->vddc_voltage_table); if (ret) return ret; } else if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2) { ret = ci_get_svi2_voltage_table(rdev, &rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk, &pi->vddc_voltage_table); if (ret) return ret; } if (pi->vddc_voltage_table.count > SMU7_MAX_LEVELS_VDDC) si_trim_voltage_table_to_fit_state_table(rdev, SMU7_MAX_LEVELS_VDDC, &pi->vddc_voltage_table); if (pi->vddci_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) { ret = radeon_atom_get_voltage_table(rdev, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &pi->vddci_voltage_table); if (ret) return ret; } else if (pi->vddci_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2) { ret = ci_get_svi2_voltage_table(rdev, &rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk, &pi->vddci_voltage_table); if (ret) return ret; } if (pi->vddci_voltage_table.count > SMU7_MAX_LEVELS_VDDCI) si_trim_voltage_table_to_fit_state_table(rdev, SMU7_MAX_LEVELS_VDDCI, &pi->vddci_voltage_table); if (pi->mvdd_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) { ret = radeon_atom_get_voltage_table(rdev, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &pi->mvdd_voltage_table); if (ret) return ret; } else if (pi->mvdd_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2) { ret = ci_get_svi2_voltage_table(rdev, &rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk, &pi->mvdd_voltage_table); if (ret) return ret; } if (pi->mvdd_voltage_table.count > SMU7_MAX_LEVELS_MVDD) si_trim_voltage_table_to_fit_state_table(rdev, SMU7_MAX_LEVELS_MVDD, &pi->mvdd_voltage_table); return 0; } static void ci_populate_smc_voltage_table(struct radeon_device *rdev, struct atom_voltage_table_entry *voltage_table, SMU7_Discrete_VoltageLevel *smc_voltage_table) { int ret; ret = ci_get_std_voltage_value_sidd(rdev, voltage_table, &smc_voltage_table->StdVoltageHiSidd, &smc_voltage_table->StdVoltageLoSidd); if (ret) { smc_voltage_table->StdVoltageHiSidd = voltage_table->value * VOLTAGE_SCALE; smc_voltage_table->StdVoltageLoSidd = voltage_table->value * VOLTAGE_SCALE; } smc_voltage_table->Voltage = cpu_to_be16(voltage_table->value * VOLTAGE_SCALE); smc_voltage_table->StdVoltageHiSidd = cpu_to_be16(smc_voltage_table->StdVoltageHiSidd); smc_voltage_table->StdVoltageLoSidd = cpu_to_be16(smc_voltage_table->StdVoltageLoSidd); } static int ci_populate_smc_vddc_table(struct radeon_device *rdev, SMU7_Discrete_DpmTable *table) { struct ci_power_info *pi = ci_get_pi(rdev); unsigned int count; table->VddcLevelCount = pi->vddc_voltage_table.count; for (count = 0; count < table->VddcLevelCount; count++) { ci_populate_smc_voltage_table(rdev, &pi->vddc_voltage_table.entries[count], &table->VddcLevel[count]); if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) table->VddcLevel[count].Smio |= pi->vddc_voltage_table.entries[count].smio_low; else table->VddcLevel[count].Smio = 0; } table->VddcLevelCount = cpu_to_be32(table->VddcLevelCount); return 0; } static int ci_populate_smc_vddci_table(struct radeon_device *rdev, SMU7_Discrete_DpmTable *table) { unsigned int count; struct ci_power_info *pi = ci_get_pi(rdev); table->VddciLevelCount = pi->vddci_voltage_table.count; for (count = 0; count < table->VddciLevelCount; count++) { ci_populate_smc_voltage_table(rdev, &pi->vddci_voltage_table.entries[count], &table->VddciLevel[count]); if (pi->vddci_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) table->VddciLevel[count].Smio |= pi->vddci_voltage_table.entries[count].smio_low; else table->VddciLevel[count].Smio = 0; } table->VddciLevelCount = cpu_to_be32(table->VddciLevelCount); return 0; } static int ci_populate_smc_mvdd_table(struct radeon_device *rdev, SMU7_Discrete_DpmTable *table) { struct ci_power_info *pi = ci_get_pi(rdev); unsigned int count; table->MvddLevelCount = pi->mvdd_voltage_table.count; for (count = 0; count < table->MvddLevelCount; count++) { ci_populate_smc_voltage_table(rdev, &pi->mvdd_voltage_table.entries[count], &table->MvddLevel[count]); if (pi->mvdd_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) table->MvddLevel[count].Smio |= pi->mvdd_voltage_table.entries[count].smio_low; else table->MvddLevel[count].Smio = 0; } table->MvddLevelCount = cpu_to_be32(table->MvddLevelCount); return 0; } static int ci_populate_smc_voltage_tables(struct radeon_device *rdev, SMU7_Discrete_DpmTable *table) { int ret; ret = ci_populate_smc_vddc_table(rdev, table); if (ret) return ret; ret = ci_populate_smc_vddci_table(rdev, table); if (ret) return ret; ret = ci_populate_smc_mvdd_table(rdev, table); if (ret) return ret; return 0; } static int ci_populate_mvdd_value(struct radeon_device *rdev, u32 mclk, SMU7_Discrete_VoltageLevel *voltage) { struct ci_power_info *pi = ci_get_pi(rdev); u32 i = 0; if (pi->mvdd_control != CISLANDS_VOLTAGE_CONTROL_NONE) { for (i = 0; i < rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.count; i++) { if (mclk <= rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.entries[i].clk) { voltage->Voltage = pi->mvdd_voltage_table.entries[i].value; break; } } if (i >= rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.count) return -EINVAL; } return -EINVAL; } static int ci_get_std_voltage_value_sidd(struct radeon_device *rdev, struct atom_voltage_table_entry *voltage_table, u16 *std_voltage_hi_sidd, u16 *std_voltage_lo_sidd) { u16 v_index, idx; bool voltage_found = false; *std_voltage_hi_sidd = voltage_table->value * VOLTAGE_SCALE; *std_voltage_lo_sidd = voltage_table->value * VOLTAGE_SCALE; if (rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries == NULL) return -EINVAL; if (rdev->pm.dpm.dyn_state.cac_leakage_table.entries) { for (v_index = 0; (u32)v_index < rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; v_index++) { if (voltage_table->value == rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[v_index].v) { voltage_found = true; if ((u32)v_index < rdev->pm.dpm.dyn_state.cac_leakage_table.count) idx = v_index; else idx = rdev->pm.dpm.dyn_state.cac_leakage_table.count - 1; *std_voltage_lo_sidd = rdev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].vddc * VOLTAGE_SCALE; *std_voltage_hi_sidd = rdev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].leakage * VOLTAGE_SCALE; break; } } if (!voltage_found) { for (v_index = 0; (u32)v_index < rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; v_index++) { if (voltage_table->value <= rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[v_index].v) { voltage_found = true; if ((u32)v_index < rdev->pm.dpm.dyn_state.cac_leakage_table.count) idx = v_index; else idx = rdev->pm.dpm.dyn_state.cac_leakage_table.count - 1; *std_voltage_lo_sidd = rdev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].vddc * VOLTAGE_SCALE; *std_voltage_hi_sidd = rdev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].leakage * VOLTAGE_SCALE; break; } } } } return 0; } static void ci_populate_phase_value_based_on_sclk(struct radeon_device *rdev, const struct radeon_phase_shedding_limits_table *limits, u32 sclk, u32 *phase_shedding) { unsigned int i; *phase_shedding = 1; for (i = 0; i < limits->count; i++) { if (sclk < limits->entries[i].sclk) { *phase_shedding = i; break; } } } static void ci_populate_phase_value_based_on_mclk(struct radeon_device *rdev, const struct radeon_phase_shedding_limits_table *limits, u32 mclk, u32 *phase_shedding) { unsigned int i; *phase_shedding = 1; for (i = 0; i < limits->count; i++) { if (mclk < limits->entries[i].mclk) { *phase_shedding = i; break; } } } static int ci_init_arb_table_index(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); u32 tmp; int ret; ret = ci_read_smc_sram_dword(rdev, pi->arb_table_start, &tmp, pi->sram_end); if (ret) return ret; tmp &= 0x00FFFFFF; tmp |= MC_CG_ARB_FREQ_F1 << 24; return ci_write_smc_sram_dword(rdev, pi->arb_table_start, tmp, pi->sram_end); } static int ci_get_dependency_volt_by_clk(struct radeon_device *rdev, struct radeon_clock_voltage_dependency_table *allowed_clock_voltage_table, u32 clock, u32 *voltage) { u32 i = 0; if (allowed_clock_voltage_table->count == 0) return -EINVAL; for (i = 0; i < allowed_clock_voltage_table->count; i++) { if (allowed_clock_voltage_table->entries[i].clk >= clock) { *voltage = allowed_clock_voltage_table->entries[i].v; return 0; } } *voltage = allowed_clock_voltage_table->entries[i-1].v; return 0; } static u8 ci_get_sleep_divider_id_from_clock(struct radeon_device *rdev, u32 sclk, u32 min_sclk_in_sr) { u32 i; u32 tmp; u32 min = (min_sclk_in_sr > CISLAND_MINIMUM_ENGINE_CLOCK) ? min_sclk_in_sr : CISLAND_MINIMUM_ENGINE_CLOCK; if (sclk < min) return 0; for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { tmp = sclk / (1 << i); if (tmp >= min || i == 0) break; } return (u8)i; } static int ci_initial_switch_from_arb_f0_to_f1(struct radeon_device *rdev) { return ni_copy_and_switch_arb_sets(rdev, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); } static int ci_reset_to_default(struct radeon_device *rdev) { return (ci_send_msg_to_smc(rdev, PPSMC_MSG_ResetToDefaults) == PPSMC_Result_OK) ? 0 : -EINVAL; } static int ci_force_switch_to_arb_f0(struct radeon_device *rdev) { u32 tmp; tmp = (RREG32_SMC(SMC_SCRATCH9) & 0x0000ff00) >> 8; if (tmp == MC_CG_ARB_FREQ_F0) return 0; return ni_copy_and_switch_arb_sets(rdev, tmp, MC_CG_ARB_FREQ_F0); } static int ci_populate_memory_timing_parameters(struct radeon_device *rdev, u32 sclk, u32 mclk, SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs) { u32 dram_timing; u32 dram_timing2; u32 burst_time; radeon_atom_set_engine_dram_timings(rdev, sclk, mclk); dram_timing = RREG32(MC_ARB_DRAM_TIMING); dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2); burst_time = RREG32(MC_ARB_BURST_TIME) & STATE0_MASK; arb_regs->McArbDramTiming = cpu_to_be32(dram_timing); arb_regs->McArbDramTiming2 = cpu_to_be32(dram_timing2); arb_regs->McArbBurstTime = (u8)burst_time; return 0; } static int ci_do_program_memory_timing_parameters(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); SMU7_Discrete_MCArbDramTimingTable arb_regs; u32 i, j; int ret = 0; memset(&arb_regs, 0, sizeof(SMU7_Discrete_MCArbDramTimingTable)); for (i = 0; i < pi->dpm_table.sclk_table.count; i++) { for (j = 0; j < pi->dpm_table.mclk_table.count; j++) { ret = ci_populate_memory_timing_parameters(rdev, pi->dpm_table.sclk_table.dpm_levels[i].value, pi->dpm_table.mclk_table.dpm_levels[j].value, &arb_regs.entries[i][j]); if (ret) break; } } if (ret == 0) ret = ci_copy_bytes_to_smc(rdev, pi->arb_table_start, (u8 *)&arb_regs, sizeof(SMU7_Discrete_MCArbDramTimingTable), pi->sram_end); return ret; } static int ci_program_memory_timing_parameters(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); if (pi->need_update_smu7_dpm_table == 0) return 0; return ci_do_program_memory_timing_parameters(rdev); } static void ci_populate_smc_initial_state(struct radeon_device *rdev, struct radeon_ps *radeon_boot_state) { struct ci_ps *boot_state = ci_get_ps(radeon_boot_state); struct ci_power_info *pi = ci_get_pi(rdev); u32 level = 0; for (level = 0; level < rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; level++) { if (rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[level].clk >= boot_state->performance_levels[0].sclk) { pi->smc_state_table.GraphicsBootLevel = level; break; } } for (level = 0; level < rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.count; level++) { if (rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries[level].clk >= boot_state->performance_levels[0].mclk) { pi->smc_state_table.MemoryBootLevel = level; break; } } } static u32 ci_get_dpm_level_enable_mask_value(struct ci_single_dpm_table *dpm_table) { u32 i; u32 mask_value = 0; for (i = dpm_table->count; i > 0; i--) { mask_value = mask_value << 1; if (dpm_table->dpm_levels[i-1].enabled) mask_value |= 0x1; else mask_value &= 0xFFFFFFFE; } return mask_value; } static void ci_populate_smc_link_level(struct radeon_device *rdev, SMU7_Discrete_DpmTable *table) { struct ci_power_info *pi = ci_get_pi(rdev); struct ci_dpm_table *dpm_table = &pi->dpm_table; u32 i; for (i = 0; i < dpm_table->pcie_speed_table.count; i++) { table->LinkLevel[i].PcieGenSpeed = (u8)dpm_table->pcie_speed_table.dpm_levels[i].value; table->LinkLevel[i].PcieLaneCount = r600_encode_pci_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); table->LinkLevel[i].EnabledForActivity = 1; table->LinkLevel[i].DownT = cpu_to_be32(5); table->LinkLevel[i].UpT = cpu_to_be32(30); } pi->smc_state_table.LinkLevelCount = (u8)dpm_table->pcie_speed_table.count; pi->dpm_level_enable_mask.pcie_dpm_enable_mask = ci_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); } static int ci_populate_smc_uvd_level(struct radeon_device *rdev, SMU7_Discrete_DpmTable *table) { u32 count; struct atom_clock_dividers dividers; int ret = -EINVAL; table->UvdLevelCount = rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count; for (count = 0; count < table->UvdLevelCount; count++) { table->UvdLevel[count].VclkFrequency = rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[count].vclk; table->UvdLevel[count].DclkFrequency = rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[count].dclk; table->UvdLevel[count].MinVddc = rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[count].v * VOLTAGE_SCALE; table->UvdLevel[count].MinVddcPhases = 1; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, table->UvdLevel[count].VclkFrequency, false, ÷rs); if (ret) return ret; table->UvdLevel[count].VclkDivider = (u8)dividers.post_divider; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, table->UvdLevel[count].DclkFrequency, false, ÷rs); if (ret) return ret; table->UvdLevel[count].DclkDivider = (u8)dividers.post_divider; table->UvdLevel[count].VclkFrequency = cpu_to_be32(table->UvdLevel[count].VclkFrequency); table->UvdLevel[count].DclkFrequency = cpu_to_be32(table->UvdLevel[count].DclkFrequency); table->UvdLevel[count].MinVddc = cpu_to_be16(table->UvdLevel[count].MinVddc); } return ret; } static int ci_populate_smc_vce_level(struct radeon_device *rdev, SMU7_Discrete_DpmTable *table) { u32 count; struct atom_clock_dividers dividers; int ret = -EINVAL; table->VceLevelCount = rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count; for (count = 0; count < table->VceLevelCount; count++) { table->VceLevel[count].Frequency = rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[count].evclk; table->VceLevel[count].MinVoltage = (u16)rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[count].v * VOLTAGE_SCALE; table->VceLevel[count].MinPhases = 1; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, table->VceLevel[count].Frequency, false, ÷rs); if (ret) return ret; table->VceLevel[count].Divider = (u8)dividers.post_divider; table->VceLevel[count].Frequency = cpu_to_be32(table->VceLevel[count].Frequency); table->VceLevel[count].MinVoltage = cpu_to_be16(table->VceLevel[count].MinVoltage); } return ret; } static int ci_populate_smc_acp_level(struct radeon_device *rdev, SMU7_Discrete_DpmTable *table) { u32 count; struct atom_clock_dividers dividers; int ret = -EINVAL; table->AcpLevelCount = (u8) (rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count); for (count = 0; count < table->AcpLevelCount; count++) { table->AcpLevel[count].Frequency = rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[count].clk; table->AcpLevel[count].MinVoltage = rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[count].v; table->AcpLevel[count].MinPhases = 1; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, table->AcpLevel[count].Frequency, false, ÷rs); if (ret) return ret; table->AcpLevel[count].Divider = (u8)dividers.post_divider; table->AcpLevel[count].Frequency = cpu_to_be32(table->AcpLevel[count].Frequency); table->AcpLevel[count].MinVoltage = cpu_to_be16(table->AcpLevel[count].MinVoltage); } return ret; } static int ci_populate_smc_samu_level(struct radeon_device *rdev, SMU7_Discrete_DpmTable *table) { u32 count; struct atom_clock_dividers dividers; int ret = -EINVAL; table->SamuLevelCount = rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count; for (count = 0; count < table->SamuLevelCount; count++) { table->SamuLevel[count].Frequency = rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[count].clk; table->SamuLevel[count].MinVoltage = rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[count].v * VOLTAGE_SCALE; table->SamuLevel[count].MinPhases = 1; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, table->SamuLevel[count].Frequency, false, ÷rs); if (ret) return ret; table->SamuLevel[count].Divider = (u8)dividers.post_divider; table->SamuLevel[count].Frequency = cpu_to_be32(table->SamuLevel[count].Frequency); table->SamuLevel[count].MinVoltage = cpu_to_be16(table->SamuLevel[count].MinVoltage); } return ret; } static int ci_calculate_mclk_params(struct radeon_device *rdev, u32 memory_clock, SMU7_Discrete_MemoryLevel *mclk, bool strobe_mode, bool dll_state_on) { struct ci_power_info *pi = ci_get_pi(rdev); u32 dll_cntl = pi->clock_registers.dll_cntl; u32 mclk_pwrmgt_cntl = pi->clock_registers.mclk_pwrmgt_cntl; u32 mpll_ad_func_cntl = pi->clock_registers.mpll_ad_func_cntl; u32 mpll_dq_func_cntl = pi->clock_registers.mpll_dq_func_cntl; u32 mpll_func_cntl = pi->clock_registers.mpll_func_cntl; u32 mpll_func_cntl_1 = pi->clock_registers.mpll_func_cntl_1; u32 mpll_func_cntl_2 = pi->clock_registers.mpll_func_cntl_2; u32 mpll_ss1 = pi->clock_registers.mpll_ss1; u32 mpll_ss2 = pi->clock_registers.mpll_ss2; struct atom_mpll_param mpll_param; int ret; ret = radeon_atom_get_memory_pll_dividers(rdev, memory_clock, strobe_mode, &mpll_param); if (ret) return ret; mpll_func_cntl &= ~BWCTRL_MASK; mpll_func_cntl |= BWCTRL(mpll_param.bwcntl); mpll_func_cntl_1 &= ~(CLKF_MASK | CLKFRAC_MASK | VCO_MODE_MASK); mpll_func_cntl_1 |= CLKF(mpll_param.clkf) | CLKFRAC(mpll_param.clkfrac) | VCO_MODE(mpll_param.vco_mode); mpll_ad_func_cntl &= ~YCLK_POST_DIV_MASK; mpll_ad_func_cntl |= YCLK_POST_DIV(mpll_param.post_div); if (pi->mem_gddr5) { mpll_dq_func_cntl &= ~(YCLK_SEL_MASK | YCLK_POST_DIV_MASK); mpll_dq_func_cntl |= YCLK_SEL(mpll_param.yclk_sel) | YCLK_POST_DIV(mpll_param.post_div); } if (pi->caps_mclk_ss_support) { struct radeon_atom_ss ss; u32 freq_nom; u32 tmp; u32 reference_clock = rdev->clock.mpll.reference_freq; if (pi->mem_gddr5) freq_nom = memory_clock * 4; else freq_nom = memory_clock * 2; tmp = (freq_nom / reference_clock); tmp = tmp * tmp; if (radeon_atombios_get_asic_ss_info(rdev, &ss, ASIC_INTERNAL_MEMORY_SS, freq_nom)) { u32 clks = reference_clock * 5 / ss.rate; u32 clkv = (u32)((((131 * ss.percentage * ss.rate) / 100) * tmp) / freq_nom); mpll_ss1 &= ~CLKV_MASK; mpll_ss1 |= CLKV(clkv); mpll_ss2 &= ~CLKS_MASK; mpll_ss2 |= CLKS(clks); } } mclk_pwrmgt_cntl &= ~DLL_SPEED_MASK; mclk_pwrmgt_cntl |= DLL_SPEED(mpll_param.dll_speed); if (dll_state_on) mclk_pwrmgt_cntl |= MRDCK0_PDNB | MRDCK1_PDNB; else mclk_pwrmgt_cntl &= ~(MRDCK0_PDNB | MRDCK1_PDNB); mclk->MclkFrequency = memory_clock; mclk->MpllFuncCntl = mpll_func_cntl; mclk->MpllFuncCntl_1 = mpll_func_cntl_1; mclk->MpllFuncCntl_2 = mpll_func_cntl_2; mclk->MpllAdFuncCntl = mpll_ad_func_cntl; mclk->MpllDqFuncCntl = mpll_dq_func_cntl; mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; mclk->DllCntl = dll_cntl; mclk->MpllSs1 = mpll_ss1; mclk->MpllSs2 = mpll_ss2; return 0; } static int ci_populate_single_memory_level(struct radeon_device *rdev, u32 memory_clock, SMU7_Discrete_MemoryLevel *memory_level) { struct ci_power_info *pi = ci_get_pi(rdev); int ret; bool dll_state_on; if (rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries) { ret = ci_get_dependency_volt_by_clk(rdev, &rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc); if (ret) return ret; } if (rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries) { ret = ci_get_dependency_volt_by_clk(rdev, &rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk, memory_clock, &memory_level->MinVddci); if (ret) return ret; } if (rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.entries) { ret = ci_get_dependency_volt_by_clk(rdev, &rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk, memory_clock, &memory_level->MinMvdd); if (ret) return ret; } memory_level->MinVddcPhases = 1; if (pi->vddc_phase_shed_control) ci_populate_phase_value_based_on_mclk(rdev, &rdev->pm.dpm.dyn_state.phase_shedding_limits_table, memory_clock, &memory_level->MinVddcPhases); memory_level->EnabledForThrottle = 1; memory_level->EnabledForActivity = 1; memory_level->UpH = 0; memory_level->DownH = 100; memory_level->VoltageDownH = 0; memory_level->ActivityLevel = (u16)pi->mclk_activity_target; memory_level->StutterEnable = false; memory_level->StrobeEnable = false; memory_level->EdcReadEnable = false; memory_level->EdcWriteEnable = false; memory_level->RttEnable = false; memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; if (pi->mclk_stutter_mode_threshold && (memory_clock <= pi->mclk_stutter_mode_threshold) && (pi->uvd_enabled == false) && (RREG32(DPG_PIPE_STUTTER_CONTROL) & STUTTER_ENABLE) && (rdev->pm.dpm.new_active_crtc_count <= 2)) memory_level->StutterEnable = true; if (pi->mclk_strobe_mode_threshold && (memory_clock <= pi->mclk_strobe_mode_threshold)) memory_level->StrobeEnable = 1; if (pi->mem_gddr5) { memory_level->StrobeRatio = si_get_mclk_frequency_ratio(memory_clock, memory_level->StrobeEnable); if (pi->mclk_edc_enable_threshold && (memory_clock > pi->mclk_edc_enable_threshold)) memory_level->EdcReadEnable = true; if (pi->mclk_edc_wr_enable_threshold && (memory_clock > pi->mclk_edc_wr_enable_threshold)) memory_level->EdcWriteEnable = true; if (memory_level->StrobeEnable) { if (si_get_mclk_frequency_ratio(memory_clock, true) >= ((RREG32(MC_SEQ_MISC7) >> 16) & 0xf)) dll_state_on = ((RREG32(MC_SEQ_MISC5) >> 1) & 0x1) ? true : false; else dll_state_on = ((RREG32(MC_SEQ_MISC6) >> 1) & 0x1) ? true : false; } else { dll_state_on = pi->dll_default_on; } } else { memory_level->StrobeRatio = si_get_ddr3_mclk_frequency_ratio(memory_clock); dll_state_on = ((RREG32(MC_SEQ_MISC5) >> 1) & 0x1) ? true : false; } ret = ci_calculate_mclk_params(rdev, memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); if (ret) return ret; memory_level->MinVddc = cpu_to_be32(memory_level->MinVddc * VOLTAGE_SCALE); memory_level->MinVddcPhases = cpu_to_be32(memory_level->MinVddcPhases); memory_level->MinVddci = cpu_to_be32(memory_level->MinVddci * VOLTAGE_SCALE); memory_level->MinMvdd = cpu_to_be32(memory_level->MinMvdd * VOLTAGE_SCALE); memory_level->MclkFrequency = cpu_to_be32(memory_level->MclkFrequency); memory_level->ActivityLevel = cpu_to_be16(memory_level->ActivityLevel); memory_level->MpllFuncCntl = cpu_to_be32(memory_level->MpllFuncCntl); memory_level->MpllFuncCntl_1 = cpu_to_be32(memory_level->MpllFuncCntl_1); memory_level->MpllFuncCntl_2 = cpu_to_be32(memory_level->MpllFuncCntl_2); memory_level->MpllAdFuncCntl = cpu_to_be32(memory_level->MpllAdFuncCntl); memory_level->MpllDqFuncCntl = cpu_to_be32(memory_level->MpllDqFuncCntl); memory_level->MclkPwrmgtCntl = cpu_to_be32(memory_level->MclkPwrmgtCntl); memory_level->DllCntl = cpu_to_be32(memory_level->DllCntl); memory_level->MpllSs1 = cpu_to_be32(memory_level->MpllSs1); memory_level->MpllSs2 = cpu_to_be32(memory_level->MpllSs2); return 0; } static int ci_populate_smc_acpi_level(struct radeon_device *rdev, SMU7_Discrete_DpmTable *table) { struct ci_power_info *pi = ci_get_pi(rdev); struct atom_clock_dividers dividers; SMU7_Discrete_VoltageLevel voltage_level; u32 spll_func_cntl = pi->clock_registers.cg_spll_func_cntl; u32 spll_func_cntl_2 = pi->clock_registers.cg_spll_func_cntl_2; u32 dll_cntl = pi->clock_registers.dll_cntl; u32 mclk_pwrmgt_cntl = pi->clock_registers.mclk_pwrmgt_cntl; int ret; table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; if (pi->acpi_vddc) table->ACPILevel.MinVddc = cpu_to_be32(pi->acpi_vddc * VOLTAGE_SCALE); else table->ACPILevel.MinVddc = cpu_to_be32(pi->min_vddc_in_pp_table * VOLTAGE_SCALE); table->ACPILevel.MinVddcPhases = pi->vddc_phase_shed_control ? 0 : 1; table->ACPILevel.SclkFrequency = rdev->clock.spll.reference_freq; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_GPUCLK_INPUT_FLAG_SCLK, table->ACPILevel.SclkFrequency, false, ÷rs); if (ret) return ret; table->ACPILevel.SclkDid = (u8)dividers.post_divider; table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; table->ACPILevel.DeepSleepDivId = 0; spll_func_cntl &= ~SPLL_PWRON; spll_func_cntl |= SPLL_RESET; spll_func_cntl_2 &= ~SCLK_MUX_SEL_MASK; spll_func_cntl_2 |= SCLK_MUX_SEL(4); table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; table->ACPILevel.CgSpllFuncCntl3 = pi->clock_registers.cg_spll_func_cntl_3; table->ACPILevel.CgSpllFuncCntl4 = pi->clock_registers.cg_spll_func_cntl_4; table->ACPILevel.SpllSpreadSpectrum = pi->clock_registers.cg_spll_spread_spectrum; table->ACPILevel.SpllSpreadSpectrum2 = pi->clock_registers.cg_spll_spread_spectrum_2; table->ACPILevel.CcPwrDynRm = 0; table->ACPILevel.CcPwrDynRm1 = 0; table->ACPILevel.Flags = cpu_to_be32(table->ACPILevel.Flags); table->ACPILevel.MinVddcPhases = cpu_to_be32(table->ACPILevel.MinVddcPhases); table->ACPILevel.SclkFrequency = cpu_to_be32(table->ACPILevel.SclkFrequency); table->ACPILevel.CgSpllFuncCntl = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl); table->ACPILevel.CgSpllFuncCntl2 = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl2); table->ACPILevel.CgSpllFuncCntl3 = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl3); table->ACPILevel.CgSpllFuncCntl4 = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl4); table->ACPILevel.SpllSpreadSpectrum = cpu_to_be32(table->ACPILevel.SpllSpreadSpectrum); table->ACPILevel.SpllSpreadSpectrum2 = cpu_to_be32(table->ACPILevel.SpllSpreadSpectrum2); table->ACPILevel.CcPwrDynRm = cpu_to_be32(table->ACPILevel.CcPwrDynRm); table->ACPILevel.CcPwrDynRm1 = cpu_to_be32(table->ACPILevel.CcPwrDynRm1); table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc; table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases; if (pi->vddci_control != CISLANDS_VOLTAGE_CONTROL_NONE) { if (pi->acpi_vddci) table->MemoryACPILevel.MinVddci = cpu_to_be32(pi->acpi_vddci * VOLTAGE_SCALE); else table->MemoryACPILevel.MinVddci = cpu_to_be32(pi->min_vddci_in_pp_table * VOLTAGE_SCALE); } if (ci_populate_mvdd_value(rdev, 0, &voltage_level)) table->MemoryACPILevel.MinMvdd = 0; else table->MemoryACPILevel.MinMvdd = cpu_to_be32(voltage_level.Voltage * VOLTAGE_SCALE); mclk_pwrmgt_cntl |= MRDCK0_RESET | MRDCK1_RESET; mclk_pwrmgt_cntl &= ~(MRDCK0_PDNB | MRDCK1_PDNB); dll_cntl &= ~(MRDCK0_BYPASS | MRDCK1_BYPASS); table->MemoryACPILevel.DllCntl = cpu_to_be32(dll_cntl); table->MemoryACPILevel.MclkPwrmgtCntl = cpu_to_be32(mclk_pwrmgt_cntl); table->MemoryACPILevel.MpllAdFuncCntl = cpu_to_be32(pi->clock_registers.mpll_ad_func_cntl); table->MemoryACPILevel.MpllDqFuncCntl = cpu_to_be32(pi->clock_registers.mpll_dq_func_cntl); table->MemoryACPILevel.MpllFuncCntl = cpu_to_be32(pi->clock_registers.mpll_func_cntl); table->MemoryACPILevel.MpllFuncCntl_1 = cpu_to_be32(pi->clock_registers.mpll_func_cntl_1); table->MemoryACPILevel.MpllFuncCntl_2 = cpu_to_be32(pi->clock_registers.mpll_func_cntl_2); table->MemoryACPILevel.MpllSs1 = cpu_to_be32(pi->clock_registers.mpll_ss1); table->MemoryACPILevel.MpllSs2 = cpu_to_be32(pi->clock_registers.mpll_ss2); table->MemoryACPILevel.EnabledForThrottle = 0; table->MemoryACPILevel.EnabledForActivity = 0; table->MemoryACPILevel.UpH = 0; table->MemoryACPILevel.DownH = 100; table->MemoryACPILevel.VoltageDownH = 0; table->MemoryACPILevel.ActivityLevel = cpu_to_be16((u16)pi->mclk_activity_target); table->MemoryACPILevel.StutterEnable = false; table->MemoryACPILevel.StrobeEnable = false; table->MemoryACPILevel.EdcReadEnable = false; table->MemoryACPILevel.EdcWriteEnable = false; table->MemoryACPILevel.RttEnable = false; return 0; } static int ci_enable_ulv(struct radeon_device *rdev, bool enable) { struct ci_power_info *pi = ci_get_pi(rdev); struct ci_ulv_parm *ulv = &pi->ulv; if (ulv->supported) { if (enable) return (ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableULV) == PPSMC_Result_OK) ? 0 : -EINVAL; else return (ci_send_msg_to_smc(rdev, PPSMC_MSG_DisableULV) == PPSMC_Result_OK) ? 0 : -EINVAL; } return 0; } static int ci_populate_ulv_level(struct radeon_device *rdev, SMU7_Discrete_Ulv *state) { struct ci_power_info *pi = ci_get_pi(rdev); u16 ulv_voltage = rdev->pm.dpm.backbias_response_time; state->CcPwrDynRm = 0; state->CcPwrDynRm1 = 0; if (ulv_voltage == 0) { pi->ulv.supported = false; return 0; } if (pi->voltage_control != CISLANDS_VOLTAGE_CONTROL_BY_SVID2) { if (ulv_voltage > rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v) state->VddcOffset = 0; else state->VddcOffset = rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v - ulv_voltage; } else { if (ulv_voltage > rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v) state->VddcOffsetVid = 0; else state->VddcOffsetVid = (u8) ((rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v - ulv_voltage) * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); } state->VddcPhase = pi->vddc_phase_shed_control ? 0 : 1; state->CcPwrDynRm = cpu_to_be32(state->CcPwrDynRm); state->CcPwrDynRm1 = cpu_to_be32(state->CcPwrDynRm1); state->VddcOffset = cpu_to_be16(state->VddcOffset); return 0; } static int ci_calculate_sclk_params(struct radeon_device *rdev, u32 engine_clock, SMU7_Discrete_GraphicsLevel *sclk) { struct ci_power_info *pi = ci_get_pi(rdev); struct atom_clock_dividers dividers; u32 spll_func_cntl_3 = pi->clock_registers.cg_spll_func_cntl_3; u32 spll_func_cntl_4 = pi->clock_registers.cg_spll_func_cntl_4; u32 cg_spll_spread_spectrum = pi->clock_registers.cg_spll_spread_spectrum; u32 cg_spll_spread_spectrum_2 = pi->clock_registers.cg_spll_spread_spectrum_2; u32 reference_clock = rdev->clock.spll.reference_freq; u32 reference_divider; u32 fbdiv; int ret; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_GPUCLK_INPUT_FLAG_SCLK, engine_clock, false, ÷rs); if (ret) return ret; reference_divider = 1 + dividers.ref_div; fbdiv = dividers.fb_div & 0x3FFFFFF; spll_func_cntl_3 &= ~SPLL_FB_DIV_MASK; spll_func_cntl_3 |= SPLL_FB_DIV(fbdiv); spll_func_cntl_3 |= SPLL_DITHEN; if (pi->caps_sclk_ss_support) { struct radeon_atom_ss ss; u32 vco_freq = engine_clock * dividers.post_div; if (radeon_atombios_get_asic_ss_info(rdev, &ss, ASIC_INTERNAL_ENGINE_SS, vco_freq)) { u32 clk_s = reference_clock * 5 / (reference_divider * ss.rate); u32 clk_v = 4 * ss.percentage * fbdiv / (clk_s * 10000); cg_spll_spread_spectrum &= ~CLK_S_MASK; cg_spll_spread_spectrum |= CLK_S(clk_s); cg_spll_spread_spectrum |= SSEN; cg_spll_spread_spectrum_2 &= ~CLK_V_MASK; cg_spll_spread_spectrum_2 |= CLK_V(clk_v); } } sclk->SclkFrequency = engine_clock; sclk->CgSpllFuncCntl3 = spll_func_cntl_3; sclk->CgSpllFuncCntl4 = spll_func_cntl_4; sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; sclk->SclkDid = (u8)dividers.post_divider; return 0; } static int ci_populate_single_graphic_level(struct radeon_device *rdev, u32 engine_clock, u16 sclk_activity_level_t, SMU7_Discrete_GraphicsLevel *graphic_level) { struct ci_power_info *pi = ci_get_pi(rdev); int ret; ret = ci_calculate_sclk_params(rdev, engine_clock, graphic_level); if (ret) return ret; ret = ci_get_dependency_volt_by_clk(rdev, &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk, engine_clock, &graphic_level->MinVddc); if (ret) return ret; graphic_level->SclkFrequency = engine_clock; graphic_level->Flags = 0; graphic_level->MinVddcPhases = 1; if (pi->vddc_phase_shed_control) ci_populate_phase_value_based_on_sclk(rdev, &rdev->pm.dpm.dyn_state.phase_shedding_limits_table, engine_clock, &graphic_level->MinVddcPhases); graphic_level->ActivityLevel = sclk_activity_level_t; graphic_level->CcPwrDynRm = 0; graphic_level->CcPwrDynRm1 = 0; graphic_level->EnabledForActivity = 1; graphic_level->EnabledForThrottle = 1; graphic_level->UpH = 0; graphic_level->DownH = 0; graphic_level->VoltageDownH = 0; graphic_level->PowerThrottle = 0; if (pi->caps_sclk_ds) graphic_level->DeepSleepDivId = ci_get_sleep_divider_id_from_clock(rdev, engine_clock, CISLAND_MINIMUM_ENGINE_CLOCK); graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; graphic_level->Flags = cpu_to_be32(graphic_level->Flags); graphic_level->MinVddc = cpu_to_be32(graphic_level->MinVddc * VOLTAGE_SCALE); graphic_level->MinVddcPhases = cpu_to_be32(graphic_level->MinVddcPhases); graphic_level->SclkFrequency = cpu_to_be32(graphic_level->SclkFrequency); graphic_level->ActivityLevel = cpu_to_be16(graphic_level->ActivityLevel); graphic_level->CgSpllFuncCntl3 = cpu_to_be32(graphic_level->CgSpllFuncCntl3); graphic_level->CgSpllFuncCntl4 = cpu_to_be32(graphic_level->CgSpllFuncCntl4); graphic_level->SpllSpreadSpectrum = cpu_to_be32(graphic_level->SpllSpreadSpectrum); graphic_level->SpllSpreadSpectrum2 = cpu_to_be32(graphic_level->SpllSpreadSpectrum2); graphic_level->CcPwrDynRm = cpu_to_be32(graphic_level->CcPwrDynRm); graphic_level->CcPwrDynRm1 = cpu_to_be32(graphic_level->CcPwrDynRm1); return 0; } static int ci_populate_all_graphic_levels(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); struct ci_dpm_table *dpm_table = &pi->dpm_table; u32 level_array_address = pi->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, GraphicsLevel); u32 level_array_size = sizeof(SMU7_Discrete_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS; SMU7_Discrete_GraphicsLevel *levels = pi->smc_state_table.GraphicsLevel; u32 i, ret; memset(levels, 0, level_array_size); for (i = 0; i < dpm_table->sclk_table.count; i++) { ret = ci_populate_single_graphic_level(rdev, dpm_table->sclk_table.dpm_levels[i].value, (u16)pi->activity_target[i], &pi->smc_state_table.GraphicsLevel[i]); if (ret) return ret; if (i == (dpm_table->sclk_table.count - 1)) pi->smc_state_table.GraphicsLevel[i].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; } pi->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count; pi->dpm_level_enable_mask.sclk_dpm_enable_mask = ci_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); ret = ci_copy_bytes_to_smc(rdev, level_array_address, (u8 *)levels, level_array_size, pi->sram_end); if (ret) return ret; return 0; } static int ci_populate_ulv_state(struct radeon_device *rdev, SMU7_Discrete_Ulv *ulv_level) { return ci_populate_ulv_level(rdev, ulv_level); } static int ci_populate_all_memory_levels(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); struct ci_dpm_table *dpm_table = &pi->dpm_table; u32 level_array_address = pi->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel); u32 level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY; SMU7_Discrete_MemoryLevel *levels = pi->smc_state_table.MemoryLevel; u32 i, ret; memset(levels, 0, level_array_size); for (i = 0; i < dpm_table->mclk_table.count; i++) { if (dpm_table->mclk_table.dpm_levels[i].value == 0) return -EINVAL; ret = ci_populate_single_memory_level(rdev, dpm_table->mclk_table.dpm_levels[i].value, &pi->smc_state_table.MemoryLevel[i]); if (ret) return ret; } pi->smc_state_table.MemoryLevel[0].ActivityLevel = cpu_to_be16(0x1F); pi->smc_state_table.MemoryDpmLevelCount = (u8)dpm_table->mclk_table.count; pi->dpm_level_enable_mask.mclk_dpm_enable_mask = ci_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); pi->smc_state_table.MemoryLevel[dpm_table->mclk_table.count - 1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; ret = ci_copy_bytes_to_smc(rdev, level_array_address, (u8 *)levels, level_array_size, pi->sram_end); if (ret) return ret; return 0; } static void ci_reset_single_dpm_table(struct radeon_device *rdev, struct ci_single_dpm_table* dpm_table, u32 count) { u32 i; dpm_table->count = count; for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) dpm_table->dpm_levels[i].enabled = false; } static void ci_setup_pcie_table_entry(struct ci_single_dpm_table* dpm_table, u32 index, u32 pcie_gen, u32 pcie_lanes) { dpm_table->dpm_levels[index].value = pcie_gen; dpm_table->dpm_levels[index].param1 = pcie_lanes; dpm_table->dpm_levels[index].enabled = true; } static int ci_setup_default_pcie_tables(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); if (!pi->use_pcie_performance_levels && !pi->use_pcie_powersaving_levels) return -EINVAL; if (pi->use_pcie_performance_levels && !pi->use_pcie_powersaving_levels) { pi->pcie_gen_powersaving = pi->pcie_gen_performance; pi->pcie_lane_powersaving = pi->pcie_lane_performance; } else if (!pi->use_pcie_performance_levels && pi->use_pcie_powersaving_levels) { pi->pcie_gen_performance = pi->pcie_gen_powersaving; pi->pcie_lane_performance = pi->pcie_lane_powersaving; } ci_reset_single_dpm_table(rdev, &pi->dpm_table.pcie_speed_table, SMU7_MAX_LEVELS_LINK); ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 0, pi->pcie_gen_powersaving.min, pi->pcie_lane_powersaving.min); ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 1, pi->pcie_gen_performance.min, pi->pcie_lane_performance.min); ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 2, pi->pcie_gen_powersaving.min, pi->pcie_lane_powersaving.max); ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 3, pi->pcie_gen_performance.min, pi->pcie_lane_performance.max); ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 4, pi->pcie_gen_powersaving.max, pi->pcie_lane_powersaving.max); ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 5, pi->pcie_gen_performance.max, pi->pcie_lane_performance.max); pi->dpm_table.pcie_speed_table.count = 6; return 0; } static int ci_setup_default_dpm_tables(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); struct radeon_clock_voltage_dependency_table *allowed_sclk_vddc_table = &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk; struct radeon_clock_voltage_dependency_table *allowed_mclk_table = &rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk; struct radeon_cac_leakage_table *std_voltage_table = &rdev->pm.dpm.dyn_state.cac_leakage_table; u32 i; if (allowed_sclk_vddc_table == NULL) return -EINVAL; if (allowed_sclk_vddc_table->count < 1) return -EINVAL; if (allowed_mclk_table == NULL) return -EINVAL; if (allowed_mclk_table->count < 1) return -EINVAL; memset(&pi->dpm_table, 0, sizeof(struct ci_dpm_table)); ci_reset_single_dpm_table(rdev, &pi->dpm_table.sclk_table, SMU7_MAX_LEVELS_GRAPHICS); ci_reset_single_dpm_table(rdev, &pi->dpm_table.mclk_table, SMU7_MAX_LEVELS_MEMORY); ci_reset_single_dpm_table(rdev, &pi->dpm_table.vddc_table, SMU7_MAX_LEVELS_VDDC); ci_reset_single_dpm_table(rdev, &pi->dpm_table.vddci_table, SMU7_MAX_LEVELS_VDDCI); ci_reset_single_dpm_table(rdev, &pi->dpm_table.mvdd_table, SMU7_MAX_LEVELS_MVDD); pi->dpm_table.sclk_table.count = 0; for (i = 0; i < allowed_sclk_vddc_table->count; i++) { if ((i == 0) || (pi->dpm_table.sclk_table.dpm_levels[pi->dpm_table.sclk_table.count-1].value != allowed_sclk_vddc_table->entries[i].clk)) { pi->dpm_table.sclk_table.dpm_levels[pi->dpm_table.sclk_table.count].value = allowed_sclk_vddc_table->entries[i].clk; pi->dpm_table.sclk_table.dpm_levels[pi->dpm_table.sclk_table.count].enabled = true; pi->dpm_table.sclk_table.count++; } } pi->dpm_table.mclk_table.count = 0; for (i = 0; i < allowed_mclk_table->count; i++) { if ((i==0) || (pi->dpm_table.mclk_table.dpm_levels[pi->dpm_table.mclk_table.count-1].value != allowed_mclk_table->entries[i].clk)) { pi->dpm_table.mclk_table.dpm_levels[pi->dpm_table.mclk_table.count].value = allowed_mclk_table->entries[i].clk; pi->dpm_table.mclk_table.dpm_levels[pi->dpm_table.mclk_table.count].enabled = true; pi->dpm_table.mclk_table.count++; } } for (i = 0; i < allowed_sclk_vddc_table->count; i++) { pi->dpm_table.vddc_table.dpm_levels[i].value = allowed_sclk_vddc_table->entries[i].v; pi->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].leakage; pi->dpm_table.vddc_table.dpm_levels[i].enabled = true; } pi->dpm_table.vddc_table.count = allowed_sclk_vddc_table->count; allowed_mclk_table = &rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk; if (allowed_mclk_table) { for (i = 0; i < allowed_mclk_table->count; i++) { pi->dpm_table.vddci_table.dpm_levels[i].value = allowed_mclk_table->entries[i].v; pi->dpm_table.vddci_table.dpm_levels[i].enabled = true; } pi->dpm_table.vddci_table.count = allowed_mclk_table->count; } allowed_mclk_table = &rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk; if (allowed_mclk_table) { for (i = 0; i < allowed_mclk_table->count; i++) { pi->dpm_table.mvdd_table.dpm_levels[i].value = allowed_mclk_table->entries[i].v; pi->dpm_table.mvdd_table.dpm_levels[i].enabled = true; } pi->dpm_table.mvdd_table.count = allowed_mclk_table->count; } ci_setup_default_pcie_tables(rdev); return 0; } static int ci_find_boot_level(struct ci_single_dpm_table *table, u32 value, u32 *boot_level) { u32 i; int ret = -EINVAL; for(i = 0; i < table->count; i++) { if (value == table->dpm_levels[i].value) { *boot_level = i; ret = 0; } } return ret; } static int ci_init_smc_table(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); struct ci_ulv_parm *ulv = &pi->ulv; struct radeon_ps *radeon_boot_state = rdev->pm.dpm.boot_ps; SMU7_Discrete_DpmTable *table = &pi->smc_state_table; int ret; ret = ci_setup_default_dpm_tables(rdev); if (ret) return ret; if (pi->voltage_control != CISLANDS_VOLTAGE_CONTROL_NONE) ci_populate_smc_voltage_tables(rdev, table); ci_init_fps_limits(rdev); if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC) table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC) table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; if (pi->mem_gddr5) table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; if (ulv->supported) { ret = ci_populate_ulv_state(rdev, &pi->smc_state_table.Ulv); if (ret) return ret; WREG32_SMC(CG_ULV_PARAMETER, ulv->cg_ulv_parameter); } ret = ci_populate_all_graphic_levels(rdev); if (ret) return ret; ret = ci_populate_all_memory_levels(rdev); if (ret) return ret; ci_populate_smc_link_level(rdev, table); ret = ci_populate_smc_acpi_level(rdev, table); if (ret) return ret; ret = ci_populate_smc_vce_level(rdev, table); if (ret) return ret; ret = ci_populate_smc_acp_level(rdev, table); if (ret) return ret; ret = ci_populate_smc_samu_level(rdev, table); if (ret) return ret; ret = ci_do_program_memory_timing_parameters(rdev); if (ret) return ret; ret = ci_populate_smc_uvd_level(rdev, table); if (ret) return ret; table->UvdBootLevel = 0; table->VceBootLevel = 0; table->AcpBootLevel = 0; table->SamuBootLevel = 0; table->GraphicsBootLevel = 0; table->MemoryBootLevel = 0; ret = ci_find_boot_level(&pi->dpm_table.sclk_table, pi->vbios_boot_state.sclk_bootup_value, (u32 *)&pi->smc_state_table.GraphicsBootLevel); ret = ci_find_boot_level(&pi->dpm_table.mclk_table, pi->vbios_boot_state.mclk_bootup_value, (u32 *)&pi->smc_state_table.MemoryBootLevel); table->BootVddc = pi->vbios_boot_state.vddc_bootup_value; table->BootVddci = pi->vbios_boot_state.vddci_bootup_value; table->BootMVdd = pi->vbios_boot_state.mvdd_bootup_value; ci_populate_smc_initial_state(rdev, radeon_boot_state); ret = ci_populate_bapm_parameters_in_dpm_table(rdev); if (ret) return ret; table->UVDInterval = 1; table->VCEInterval = 1; table->ACPInterval = 1; table->SAMUInterval = 1; table->GraphicsVoltageChangeEnable = 1; table->GraphicsThermThrottleEnable = 1; table->GraphicsInterval = 1; table->VoltageInterval = 1; table->ThermalInterval = 1; table->TemperatureLimitHigh = (u16)((pi->thermal_temp_setting.temperature_high * CISLANDS_Q88_FORMAT_CONVERSION_UNIT) / 1000); table->TemperatureLimitLow = (u16)((pi->thermal_temp_setting.temperature_low * CISLANDS_Q88_FORMAT_CONVERSION_UNIT) / 1000); table->MemoryVoltageChangeEnable = 1; table->MemoryInterval = 1; table->VoltageResponseTime = 0; table->VddcVddciDelta = 4000; table->PhaseResponseTime = 0; table->MemoryThermThrottleEnable = 1; table->PCIeBootLinkLevel = 0; table->PCIeGenInterval = 1; if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2) table->SVI2Enable = 1; else table->SVI2Enable = 0; table->ThermGpio = 17; table->SclkStepSize = 0x4000; table->SystemFlags = cpu_to_be32(table->SystemFlags); table->SmioMaskVddcVid = cpu_to_be32(table->SmioMaskVddcVid); table->SmioMaskVddcPhase = cpu_to_be32(table->SmioMaskVddcPhase); table->SmioMaskVddciVid = cpu_to_be32(table->SmioMaskVddciVid); table->SmioMaskMvddVid = cpu_to_be32(table->SmioMaskMvddVid); table->SclkStepSize = cpu_to_be32(table->SclkStepSize); table->TemperatureLimitHigh = cpu_to_be16(table->TemperatureLimitHigh); table->TemperatureLimitLow = cpu_to_be16(table->TemperatureLimitLow); table->VddcVddciDelta = cpu_to_be16(table->VddcVddciDelta); table->VoltageResponseTime = cpu_to_be16(table->VoltageResponseTime); table->PhaseResponseTime = cpu_to_be16(table->PhaseResponseTime); table->BootVddc = cpu_to_be16(table->BootVddc * VOLTAGE_SCALE); table->BootVddci = cpu_to_be16(table->BootVddci * VOLTAGE_SCALE); table->BootMVdd = cpu_to_be16(table->BootMVdd * VOLTAGE_SCALE); ret = ci_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, SystemFlags), (u8 *)&table->SystemFlags, sizeof(SMU7_Discrete_DpmTable) - 3 * sizeof(SMU7_PIDController), pi->sram_end); if (ret) return ret; return 0; } static void ci_trim_single_dpm_states(struct radeon_device *rdev, struct ci_single_dpm_table *dpm_table, u32 low_limit, u32 high_limit) { u32 i; for (i = 0; i < dpm_table->count; i++) { if ((dpm_table->dpm_levels[i].value < low_limit) || (dpm_table->dpm_levels[i].value > high_limit)) dpm_table->dpm_levels[i].enabled = false; else dpm_table->dpm_levels[i].enabled = true; } } static void ci_trim_pcie_dpm_states(struct radeon_device *rdev, u32 speed_low, u32 lanes_low, u32 speed_high, u32 lanes_high) { struct ci_power_info *pi = ci_get_pi(rdev); struct ci_single_dpm_table *pcie_table = &pi->dpm_table.pcie_speed_table; u32 i, j; for (i = 0; i < pcie_table->count; i++) { if ((pcie_table->dpm_levels[i].value < speed_low) || (pcie_table->dpm_levels[i].param1 < lanes_low) || (pcie_table->dpm_levels[i].value > speed_high) || (pcie_table->dpm_levels[i].param1 > lanes_high)) pcie_table->dpm_levels[i].enabled = false; else pcie_table->dpm_levels[i].enabled = true; } for (i = 0; i < pcie_table->count; i++) { if (pcie_table->dpm_levels[i].enabled) { for (j = i + 1; j < pcie_table->count; j++) { if (pcie_table->dpm_levels[j].enabled) { if ((pcie_table->dpm_levels[i].value == pcie_table->dpm_levels[j].value) && (pcie_table->dpm_levels[i].param1 == pcie_table->dpm_levels[j].param1)) pcie_table->dpm_levels[j].enabled = false; } } } } } static int ci_trim_dpm_states(struct radeon_device *rdev, struct radeon_ps *radeon_state) { struct ci_ps *state = ci_get_ps(radeon_state); struct ci_power_info *pi = ci_get_pi(rdev); u32 high_limit_count; if (state->performance_level_count < 1) return -EINVAL; if (state->performance_level_count == 1) high_limit_count = 0; else high_limit_count = 1; ci_trim_single_dpm_states(rdev, &pi->dpm_table.sclk_table, state->performance_levels[0].sclk, state->performance_levels[high_limit_count].sclk); ci_trim_single_dpm_states(rdev, &pi->dpm_table.mclk_table, state->performance_levels[0].mclk, state->performance_levels[high_limit_count].mclk); ci_trim_pcie_dpm_states(rdev, state->performance_levels[0].pcie_gen, state->performance_levels[0].pcie_lane, state->performance_levels[high_limit_count].pcie_gen, state->performance_levels[high_limit_count].pcie_lane); return 0; } static int ci_apply_disp_minimum_voltage_request(struct radeon_device *rdev) { struct radeon_clock_voltage_dependency_table *disp_voltage_table = &rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk; struct radeon_clock_voltage_dependency_table *vddc_table = &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk; u32 requested_voltage = 0; u32 i; if (disp_voltage_table == NULL) return -EINVAL; if (!disp_voltage_table->count) return -EINVAL; for (i = 0; i < disp_voltage_table->count; i++) { if (rdev->clock.current_dispclk == disp_voltage_table->entries[i].clk) requested_voltage = disp_voltage_table->entries[i].v; } for (i = 0; i < vddc_table->count; i++) { if (requested_voltage <= vddc_table->entries[i].v) { requested_voltage = vddc_table->entries[i].v; return (ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_VddC_Request, requested_voltage * VOLTAGE_SCALE) == PPSMC_Result_OK) ? 0 : -EINVAL; } } return -EINVAL; } static int ci_upload_dpm_level_enable_mask(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); PPSMC_Result result; if (!pi->sclk_dpm_key_disabled) { if (pi->dpm_level_enable_mask.sclk_dpm_enable_mask) { result = ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SCLKDPM_SetEnabledMask, pi->dpm_level_enable_mask.sclk_dpm_enable_mask); if (result != PPSMC_Result_OK) return -EINVAL; } } if (!pi->mclk_dpm_key_disabled) { if (pi->dpm_level_enable_mask.mclk_dpm_enable_mask) { result = ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_MCLKDPM_SetEnabledMask, pi->dpm_level_enable_mask.mclk_dpm_enable_mask); if (result != PPSMC_Result_OK) return -EINVAL; } } if (!pi->pcie_dpm_key_disabled) { if (pi->dpm_level_enable_mask.pcie_dpm_enable_mask) { result = ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_PCIeDPM_SetEnabledMask, pi->dpm_level_enable_mask.pcie_dpm_enable_mask); if (result != PPSMC_Result_OK) return -EINVAL; } } ci_apply_disp_minimum_voltage_request(rdev); return 0; } static void ci_find_dpm_states_clocks_in_dpm_table(struct radeon_device *rdev, struct radeon_ps *radeon_state) { struct ci_power_info *pi = ci_get_pi(rdev); struct ci_ps *state = ci_get_ps(radeon_state); struct ci_single_dpm_table *sclk_table = &pi->dpm_table.sclk_table; u32 sclk = state->performance_levels[state->performance_level_count-1].sclk; struct ci_single_dpm_table *mclk_table = &pi->dpm_table.mclk_table; u32 mclk = state->performance_levels[state->performance_level_count-1].mclk; u32 i; pi->need_update_smu7_dpm_table = 0; for (i = 0; i < sclk_table->count; i++) { if (sclk == sclk_table->dpm_levels[i].value) break; } if (i >= sclk_table->count) { pi->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; } else { /* XXX check display min clock requirements */ if (0 != CISLAND_MINIMUM_ENGINE_CLOCK) pi->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK; } for (i = 0; i < mclk_table->count; i++) { if (mclk == mclk_table->dpm_levels[i].value) break; } if (i >= mclk_table->count) pi->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; if (rdev->pm.dpm.current_active_crtc_count != rdev->pm.dpm.new_active_crtc_count) pi->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK; } static int ci_populate_and_upload_sclk_mclk_dpm_levels(struct radeon_device *rdev, struct radeon_ps *radeon_state) { struct ci_power_info *pi = ci_get_pi(rdev); struct ci_ps *state = ci_get_ps(radeon_state); u32 sclk = state->performance_levels[state->performance_level_count-1].sclk; u32 mclk = state->performance_levels[state->performance_level_count-1].mclk; struct ci_dpm_table *dpm_table = &pi->dpm_table; int ret; if (!pi->need_update_smu7_dpm_table) return 0; if (pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) dpm_table->sclk_table.dpm_levels[dpm_table->sclk_table.count-1].value = sclk; if (pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) dpm_table->mclk_table.dpm_levels[dpm_table->mclk_table.count-1].value = mclk; if (pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK)) { ret = ci_populate_all_graphic_levels(rdev); if (ret) return ret; } if (pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) { ret = ci_populate_all_memory_levels(rdev); if (ret) return ret; } return 0; } static int ci_enable_uvd_dpm(struct radeon_device *rdev, bool enable) { struct ci_power_info *pi = ci_get_pi(rdev); const struct radeon_clock_and_voltage_limits *max_limits; int i; if (rdev->pm.dpm.ac_power) max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac; else max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc; if (enable) { pi->dpm_level_enable_mask.uvd_dpm_enable_mask = 0; for (i = rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count - 1; i >= 0; i--) { if (rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) { pi->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i; if (!pi->caps_uvd_dpm) break; } } ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_UVDDPM_SetEnabledMask, pi->dpm_level_enable_mask.uvd_dpm_enable_mask); if (pi->last_mclk_dpm_enable_mask & 0x1) { pi->uvd_enabled = true; pi->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE; ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_MCLKDPM_SetEnabledMask, pi->dpm_level_enable_mask.mclk_dpm_enable_mask); } } else { if (pi->last_mclk_dpm_enable_mask & 0x1) { pi->uvd_enabled = false; pi->dpm_level_enable_mask.mclk_dpm_enable_mask |= 1; ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_MCLKDPM_SetEnabledMask, pi->dpm_level_enable_mask.mclk_dpm_enable_mask); } } return (ci_send_msg_to_smc(rdev, enable ? PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable) == PPSMC_Result_OK) ? 0 : -EINVAL; } #if 0 static int ci_enable_vce_dpm(struct radeon_device *rdev, bool enable) { struct ci_power_info *pi = ci_get_pi(rdev); const struct radeon_clock_and_voltage_limits *max_limits; int i; if (rdev->pm.dpm.ac_power) max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac; else max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc; if (enable) { pi->dpm_level_enable_mask.vce_dpm_enable_mask = 0; for (i = rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count - 1; i >= 0; i--) { if (rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) { pi->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i; if (!pi->caps_vce_dpm) break; } } ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_VCEDPM_SetEnabledMask, pi->dpm_level_enable_mask.vce_dpm_enable_mask); } return (ci_send_msg_to_smc(rdev, enable ? PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable) == PPSMC_Result_OK) ? 0 : -EINVAL; } static int ci_enable_samu_dpm(struct radeon_device *rdev, bool enable) { struct ci_power_info *pi = ci_get_pi(rdev); const struct radeon_clock_and_voltage_limits *max_limits; int i; if (rdev->pm.dpm.ac_power) max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac; else max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc; if (enable) { pi->dpm_level_enable_mask.samu_dpm_enable_mask = 0; for (i = rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count - 1; i >= 0; i--) { if (rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) { pi->dpm_level_enable_mask.samu_dpm_enable_mask |= 1 << i; if (!pi->caps_samu_dpm) break; } } ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SAMUDPM_SetEnabledMask, pi->dpm_level_enable_mask.samu_dpm_enable_mask); } return (ci_send_msg_to_smc(rdev, enable ? PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable) == PPSMC_Result_OK) ? 0 : -EINVAL; } static int ci_enable_acp_dpm(struct radeon_device *rdev, bool enable) { struct ci_power_info *pi = ci_get_pi(rdev); const struct radeon_clock_and_voltage_limits *max_limits; int i; if (rdev->pm.dpm.ac_power) max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac; else max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc; if (enable) { pi->dpm_level_enable_mask.acp_dpm_enable_mask = 0; for (i = rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count - 1; i >= 0; i--) { if (rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) { pi->dpm_level_enable_mask.acp_dpm_enable_mask |= 1 << i; if (!pi->caps_acp_dpm) break; } } ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_ACPDPM_SetEnabledMask, pi->dpm_level_enable_mask.acp_dpm_enable_mask); } return (ci_send_msg_to_smc(rdev, enable ? PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable) == PPSMC_Result_OK) ? 0 : -EINVAL; } #endif static int ci_update_uvd_dpm(struct radeon_device *rdev, bool gate) { struct ci_power_info *pi = ci_get_pi(rdev); u32 tmp; if (!gate) { if (pi->caps_uvd_dpm || (rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count <= 0)) pi->smc_state_table.UvdBootLevel = 0; else pi->smc_state_table.UvdBootLevel = rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count - 1; tmp = RREG32_SMC(DPM_TABLE_475); tmp &= ~UvdBootLevel_MASK; tmp |= UvdBootLevel(pi->smc_state_table.UvdBootLevel); WREG32_SMC(DPM_TABLE_475, tmp); } return ci_enable_uvd_dpm(rdev, !gate); } #if 0 static u8 ci_get_vce_boot_level(struct radeon_device *rdev) { u8 i; u32 min_evclk = 30000; /* ??? */ struct radeon_vce_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table; for (i = 0; i < table->count; i++) { if (table->entries[i].evclk >= min_evclk) return i; } return table->count - 1; } static int ci_update_vce_dpm(struct radeon_device *rdev, struct radeon_ps *radeon_new_state, struct radeon_ps *radeon_current_state) { struct ci_power_info *pi = ci_get_pi(rdev); bool new_vce_clock_non_zero = (radeon_new_state->evclk != 0); bool old_vce_clock_non_zero = (radeon_current_state->evclk != 0); int ret = 0; u32 tmp; if (new_vce_clock_non_zero != old_vce_clock_non_zero) { if (new_vce_clock_non_zero) { pi->smc_state_table.VceBootLevel = ci_get_vce_boot_level(rdev); tmp = RREG32_SMC(DPM_TABLE_475); tmp &= ~VceBootLevel_MASK; tmp |= VceBootLevel(pi->smc_state_table.VceBootLevel); WREG32_SMC(DPM_TABLE_475, tmp); ret = ci_enable_vce_dpm(rdev, true); } else { ret = ci_enable_vce_dpm(rdev, false); } } return ret; } static int ci_update_samu_dpm(struct radeon_device *rdev, bool gate) { return ci_enable_samu_dpm(rdev, gate); } static int ci_update_acp_dpm(struct radeon_device *rdev, bool gate) { struct ci_power_info *pi = ci_get_pi(rdev); u32 tmp; if (!gate) { pi->smc_state_table.AcpBootLevel = 0; tmp = RREG32_SMC(DPM_TABLE_475); tmp &= ~AcpBootLevel_MASK; tmp |= AcpBootLevel(pi->smc_state_table.AcpBootLevel); WREG32_SMC(DPM_TABLE_475, tmp); } return ci_enable_acp_dpm(rdev, !gate); } #endif static int ci_generate_dpm_level_enable_mask(struct radeon_device *rdev, struct radeon_ps *radeon_state) { struct ci_power_info *pi = ci_get_pi(rdev); int ret; ret = ci_trim_dpm_states(rdev, radeon_state); if (ret) return ret; pi->dpm_level_enable_mask.sclk_dpm_enable_mask = ci_get_dpm_level_enable_mask_value(&pi->dpm_table.sclk_table); pi->dpm_level_enable_mask.mclk_dpm_enable_mask = ci_get_dpm_level_enable_mask_value(&pi->dpm_table.mclk_table); pi->last_mclk_dpm_enable_mask = pi->dpm_level_enable_mask.mclk_dpm_enable_mask; if (pi->uvd_enabled) { if (pi->dpm_level_enable_mask.mclk_dpm_enable_mask & 1) pi->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE; } pi->dpm_level_enable_mask.pcie_dpm_enable_mask = ci_get_dpm_level_enable_mask_value(&pi->dpm_table.pcie_speed_table); return 0; } static u32 ci_get_lowest_enabled_level(struct radeon_device *rdev, u32 level_mask) { u32 level = 0; while ((level_mask & (1 << level)) == 0) level++; return level; } int ci_dpm_force_performance_level(struct radeon_device *rdev, enum radeon_dpm_forced_level level) { struct ci_power_info *pi = ci_get_pi(rdev); PPSMC_Result smc_result; u32 tmp, levels, i; int ret; if (level == RADEON_DPM_FORCED_LEVEL_HIGH) { if ((!pi->sclk_dpm_key_disabled) && pi->dpm_level_enable_mask.sclk_dpm_enable_mask) { levels = 0; tmp = pi->dpm_level_enable_mask.sclk_dpm_enable_mask; while (tmp >>= 1) levels++; if (levels) { ret = ci_dpm_force_state_sclk(rdev, levels); if (ret) return ret; for (i = 0; i < rdev->usec_timeout; i++) { tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >> CURR_SCLK_INDEX_SHIFT; if (tmp == levels) break; udelay(1); } } } if ((!pi->mclk_dpm_key_disabled) && pi->dpm_level_enable_mask.mclk_dpm_enable_mask) { levels = 0; tmp = pi->dpm_level_enable_mask.mclk_dpm_enable_mask; while (tmp >>= 1) levels++; if (levels) { ret = ci_dpm_force_state_mclk(rdev, levels); if (ret) return ret; for (i = 0; i < rdev->usec_timeout; i++) { tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_MCLK_INDEX_MASK) >> CURR_MCLK_INDEX_SHIFT; if (tmp == levels) break; udelay(1); } } } if ((!pi->pcie_dpm_key_disabled) && pi->dpm_level_enable_mask.pcie_dpm_enable_mask) { levels = 0; tmp = pi->dpm_level_enable_mask.pcie_dpm_enable_mask; while (tmp >>= 1) levels++; if (levels) { ret = ci_dpm_force_state_pcie(rdev, level); if (ret) return ret; for (i = 0; i < rdev->usec_timeout; i++) { tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX_1) & CURR_PCIE_INDEX_MASK) >> CURR_PCIE_INDEX_SHIFT; if (tmp == levels) break; udelay(1); } } } } else if (level == RADEON_DPM_FORCED_LEVEL_LOW) { if ((!pi->sclk_dpm_key_disabled) && pi->dpm_level_enable_mask.sclk_dpm_enable_mask) { levels = ci_get_lowest_enabled_level(rdev, pi->dpm_level_enable_mask.sclk_dpm_enable_mask); ret = ci_dpm_force_state_sclk(rdev, levels); if (ret) return ret; for (i = 0; i < rdev->usec_timeout; i++) { tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >> CURR_SCLK_INDEX_SHIFT; if (tmp == levels) break; udelay(1); } } if ((!pi->mclk_dpm_key_disabled) && pi->dpm_level_enable_mask.mclk_dpm_enable_mask) { levels = ci_get_lowest_enabled_level(rdev, pi->dpm_level_enable_mask.mclk_dpm_enable_mask); ret = ci_dpm_force_state_mclk(rdev, levels); if (ret) return ret; for (i = 0; i < rdev->usec_timeout; i++) { tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_MCLK_INDEX_MASK) >> CURR_MCLK_INDEX_SHIFT; if (tmp == levels) break; udelay(1); } } if ((!pi->pcie_dpm_key_disabled) && pi->dpm_level_enable_mask.pcie_dpm_enable_mask) { levels = ci_get_lowest_enabled_level(rdev, pi->dpm_level_enable_mask.pcie_dpm_enable_mask); ret = ci_dpm_force_state_pcie(rdev, levels); if (ret) return ret; for (i = 0; i < rdev->usec_timeout; i++) { tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX_1) & CURR_PCIE_INDEX_MASK) >> CURR_PCIE_INDEX_SHIFT; if (tmp == levels) break; udelay(1); } } } else if (level == RADEON_DPM_FORCED_LEVEL_AUTO) { if (!pi->sclk_dpm_key_disabled) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_NoForcedLevel); if (smc_result != PPSMC_Result_OK) return -EINVAL; } if (!pi->mclk_dpm_key_disabled) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_NoForcedLevel); if (smc_result != PPSMC_Result_OK) return -EINVAL; } if (!pi->pcie_dpm_key_disabled) { smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_PCIeDPM_UnForceLevel); if (smc_result != PPSMC_Result_OK) return -EINVAL; } } rdev->pm.dpm.forced_level = level; return 0; } static int ci_set_mc_special_registers(struct radeon_device *rdev, struct ci_mc_reg_table *table) { struct ci_power_info *pi = ci_get_pi(rdev); u8 i, j, k; u32 temp_reg; for (i = 0, j = table->last; i < table->last; i++) { if (j >= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE) return -EINVAL; switch(table->mc_reg_address[i].s1 << 2) { case MC_SEQ_MISC1: temp_reg = RREG32(MC_PMG_CMD_EMRS); table->mc_reg_address[j].s1 = MC_PMG_CMD_EMRS >> 2; table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_EMRS_LP >> 2; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = ((temp_reg & 0xffff0000)) | ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); } j++; if (j >= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE) return -EINVAL; temp_reg = RREG32(MC_PMG_CMD_MRS); table->mc_reg_address[j].s1 = MC_PMG_CMD_MRS >> 2; table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_MRS_LP >> 2; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = (temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); if (!pi->mem_gddr5) table->mc_reg_table_entry[k].mc_data[j] |= 0x100; } j++; if (j > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE) return -EINVAL; if (!pi->mem_gddr5) { table->mc_reg_address[j].s1 = MC_PMG_AUTO_CMD >> 2; table->mc_reg_address[j].s0 = MC_PMG_AUTO_CMD >> 2; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; } j++; if (j > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE) return -EINVAL; } break; case MC_SEQ_RESERVE_M: temp_reg = RREG32(MC_PMG_CMD_MRS1); table->mc_reg_address[j].s1 = MC_PMG_CMD_MRS1 >> 2; table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_MRS1_LP >> 2; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = (temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); } j++; if (j > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE) return -EINVAL; break; default: break; } } table->last = j; return 0; } static bool ci_check_s0_mc_reg_index(u16 in_reg, u16 *out_reg) { bool result = true; switch(in_reg) { case MC_SEQ_RAS_TIMING >> 2: *out_reg = MC_SEQ_RAS_TIMING_LP >> 2; break; case MC_SEQ_DLL_STBY >> 2: *out_reg = MC_SEQ_DLL_STBY_LP >> 2; break; case MC_SEQ_G5PDX_CMD0 >> 2: *out_reg = MC_SEQ_G5PDX_CMD0_LP >> 2; break; case MC_SEQ_G5PDX_CMD1 >> 2: *out_reg = MC_SEQ_G5PDX_CMD1_LP >> 2; break; case MC_SEQ_G5PDX_CTRL >> 2: *out_reg = MC_SEQ_G5PDX_CTRL_LP >> 2; break; case MC_SEQ_CAS_TIMING >> 2: *out_reg = MC_SEQ_CAS_TIMING_LP >> 2; break; case MC_SEQ_MISC_TIMING >> 2: *out_reg = MC_SEQ_MISC_TIMING_LP >> 2; break; case MC_SEQ_MISC_TIMING2 >> 2: *out_reg = MC_SEQ_MISC_TIMING2_LP >> 2; break; case MC_SEQ_PMG_DVS_CMD >> 2: *out_reg = MC_SEQ_PMG_DVS_CMD_LP >> 2; break; case MC_SEQ_PMG_DVS_CTL >> 2: *out_reg = MC_SEQ_PMG_DVS_CTL_LP >> 2; break; case MC_SEQ_RD_CTL_D0 >> 2: *out_reg = MC_SEQ_RD_CTL_D0_LP >> 2; break; case MC_SEQ_RD_CTL_D1 >> 2: *out_reg = MC_SEQ_RD_CTL_D1_LP >> 2; break; case MC_SEQ_WR_CTL_D0 >> 2: *out_reg = MC_SEQ_WR_CTL_D0_LP >> 2; break; case MC_SEQ_WR_CTL_D1 >> 2: *out_reg = MC_SEQ_WR_CTL_D1_LP >> 2; break; case MC_PMG_CMD_EMRS >> 2: *out_reg = MC_SEQ_PMG_CMD_EMRS_LP >> 2; break; case MC_PMG_CMD_MRS >> 2: *out_reg = MC_SEQ_PMG_CMD_MRS_LP >> 2; break; case MC_PMG_CMD_MRS1 >> 2: *out_reg = MC_SEQ_PMG_CMD_MRS1_LP >> 2; break; case MC_SEQ_PMG_TIMING >> 2: *out_reg = MC_SEQ_PMG_TIMING_LP >> 2; break; case MC_PMG_CMD_MRS2 >> 2: *out_reg = MC_SEQ_PMG_CMD_MRS2_LP >> 2; break; case MC_SEQ_WR_CTL_2 >> 2: *out_reg = MC_SEQ_WR_CTL_2_LP >> 2; break; default: result = false; break; } return result; } static void ci_set_valid_flag(struct ci_mc_reg_table *table) { u8 i, j; for (i = 0; i < table->last; i++) { for (j = 1; j < table->num_entries; j++) { if (table->mc_reg_table_entry[j-1].mc_data[i] != table->mc_reg_table_entry[j].mc_data[i]) { table->valid_flag |= 1 << i; break; } } } } static void ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table) { u32 i; u16 address; for (i = 0; i < table->last; i++) { table->mc_reg_address[i].s0 = ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) ? address : table->mc_reg_address[i].s1; } } static int ci_copy_vbios_mc_reg_table(const struct atom_mc_reg_table *table, struct ci_mc_reg_table *ci_table) { u8 i, j; if (table->last > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE) return -EINVAL; if (table->num_entries > MAX_AC_TIMING_ENTRIES) return -EINVAL; for (i = 0; i < table->last; i++) ci_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; ci_table->last = table->last; for (i = 0; i < table->num_entries; i++) { ci_table->mc_reg_table_entry[i].mclk_max = table->mc_reg_table_entry[i].mclk_max; for (j = 0; j < table->last; j++) ci_table->mc_reg_table_entry[i].mc_data[j] = table->mc_reg_table_entry[i].mc_data[j]; } ci_table->num_entries = table->num_entries; return 0; } static int ci_initialize_mc_reg_table(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); struct atom_mc_reg_table *table; struct ci_mc_reg_table *ci_table = &pi->mc_reg_table; u8 module_index = rv770_get_memory_module_index(rdev); int ret; table = kzalloc(sizeof(struct atom_mc_reg_table), GFP_KERNEL); if (!table) return -ENOMEM; WREG32(MC_SEQ_RAS_TIMING_LP, RREG32(MC_SEQ_RAS_TIMING)); WREG32(MC_SEQ_CAS_TIMING_LP, RREG32(MC_SEQ_CAS_TIMING)); WREG32(MC_SEQ_DLL_STBY_LP, RREG32(MC_SEQ_DLL_STBY)); WREG32(MC_SEQ_G5PDX_CMD0_LP, RREG32(MC_SEQ_G5PDX_CMD0)); WREG32(MC_SEQ_G5PDX_CMD1_LP, RREG32(MC_SEQ_G5PDX_CMD1)); WREG32(MC_SEQ_G5PDX_CTRL_LP, RREG32(MC_SEQ_G5PDX_CTRL)); WREG32(MC_SEQ_PMG_DVS_CMD_LP, RREG32(MC_SEQ_PMG_DVS_CMD)); WREG32(MC_SEQ_PMG_DVS_CTL_LP, RREG32(MC_SEQ_PMG_DVS_CTL)); WREG32(MC_SEQ_MISC_TIMING_LP, RREG32(MC_SEQ_MISC_TIMING)); WREG32(MC_SEQ_MISC_TIMING2_LP, RREG32(MC_SEQ_MISC_TIMING2)); WREG32(MC_SEQ_PMG_CMD_EMRS_LP, RREG32(MC_PMG_CMD_EMRS)); WREG32(MC_SEQ_PMG_CMD_MRS_LP, RREG32(MC_PMG_CMD_MRS)); WREG32(MC_SEQ_PMG_CMD_MRS1_LP, RREG32(MC_PMG_CMD_MRS1)); WREG32(MC_SEQ_WR_CTL_D0_LP, RREG32(MC_SEQ_WR_CTL_D0)); WREG32(MC_SEQ_WR_CTL_D1_LP, RREG32(MC_SEQ_WR_CTL_D1)); WREG32(MC_SEQ_RD_CTL_D0_LP, RREG32(MC_SEQ_RD_CTL_D0)); WREG32(MC_SEQ_RD_CTL_D1_LP, RREG32(MC_SEQ_RD_CTL_D1)); WREG32(MC_SEQ_PMG_TIMING_LP, RREG32(MC_SEQ_PMG_TIMING)); WREG32(MC_SEQ_PMG_CMD_MRS2_LP, RREG32(MC_PMG_CMD_MRS2)); WREG32(MC_SEQ_WR_CTL_2_LP, RREG32(MC_SEQ_WR_CTL_2)); ret = radeon_atom_init_mc_reg_table(rdev, module_index, table); if (ret) goto init_mc_done; ret = ci_copy_vbios_mc_reg_table(table, ci_table); if (ret) goto init_mc_done; ci_set_s0_mc_reg_index(ci_table); ret = ci_set_mc_special_registers(rdev, ci_table); if (ret) goto init_mc_done; ci_set_valid_flag(ci_table); init_mc_done: kfree(table); return ret; } static int ci_populate_mc_reg_addresses(struct radeon_device *rdev, SMU7_Discrete_MCRegisters *mc_reg_table) { struct ci_power_info *pi = ci_get_pi(rdev); u32 i, j; for (i = 0, j = 0; j < pi->mc_reg_table.last; j++) { if (pi->mc_reg_table.valid_flag & (1 << j)) { if (i >= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE) return -EINVAL; mc_reg_table->address[i].s0 = cpu_to_be16(pi->mc_reg_table.mc_reg_address[j].s0); mc_reg_table->address[i].s1 = cpu_to_be16(pi->mc_reg_table.mc_reg_address[j].s1); i++; } } mc_reg_table->last = (u8)i; return 0; } static void ci_convert_mc_registers(const struct ci_mc_reg_entry *entry, SMU7_Discrete_MCRegisterSet *data, u32 num_entries, u32 valid_flag) { u32 i, j; for (i = 0, j = 0; j < num_entries; j++) { if (valid_flag & (1 << j)) { data->value[i] = cpu_to_be32(entry->mc_data[j]); i++; } } } static void ci_convert_mc_reg_table_entry_to_smc(struct radeon_device *rdev, const u32 memory_clock, SMU7_Discrete_MCRegisterSet *mc_reg_table_data) { struct ci_power_info *pi = ci_get_pi(rdev); u32 i = 0; for(i = 0; i < pi->mc_reg_table.num_entries; i++) { if (memory_clock <= pi->mc_reg_table.mc_reg_table_entry[i].mclk_max) break; } if ((i == pi->mc_reg_table.num_entries) && (i > 0)) --i; ci_convert_mc_registers(&pi->mc_reg_table.mc_reg_table_entry[i], mc_reg_table_data, pi->mc_reg_table.last, pi->mc_reg_table.valid_flag); } static void ci_convert_mc_reg_table_to_smc(struct radeon_device *rdev, SMU7_Discrete_MCRegisters *mc_reg_table) { struct ci_power_info *pi = ci_get_pi(rdev); u32 i; for (i = 0; i < pi->dpm_table.mclk_table.count; i++) ci_convert_mc_reg_table_entry_to_smc(rdev, pi->dpm_table.mclk_table.dpm_levels[i].value, &mc_reg_table->data[i]); } static int ci_populate_initial_mc_reg_table(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); int ret; memset(&pi->smc_mc_reg_table, 0, sizeof(SMU7_Discrete_MCRegisters)); ret = ci_populate_mc_reg_addresses(rdev, &pi->smc_mc_reg_table); if (ret) return ret; ci_convert_mc_reg_table_to_smc(rdev, &pi->smc_mc_reg_table); return ci_copy_bytes_to_smc(rdev, pi->mc_reg_table_start, (u8 *)&pi->smc_mc_reg_table, sizeof(SMU7_Discrete_MCRegisters), pi->sram_end); } static int ci_update_and_upload_mc_reg_table(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); if (!(pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) return 0; memset(&pi->smc_mc_reg_table, 0, sizeof(SMU7_Discrete_MCRegisters)); ci_convert_mc_reg_table_to_smc(rdev, &pi->smc_mc_reg_table); return ci_copy_bytes_to_smc(rdev, pi->mc_reg_table_start + offsetof(SMU7_Discrete_MCRegisters, data[0]), (u8 *)&pi->smc_mc_reg_table.data[0], sizeof(SMU7_Discrete_MCRegisterSet) * pi->dpm_table.mclk_table.count, pi->sram_end); } static void ci_enable_voltage_control(struct radeon_device *rdev) { u32 tmp = RREG32_SMC(GENERAL_PWRMGT); tmp |= VOLT_PWRMGT_EN; WREG32_SMC(GENERAL_PWRMGT, tmp); } static enum radeon_pcie_gen ci_get_maximum_link_speed(struct radeon_device *rdev, struct radeon_ps *radeon_state) { struct ci_ps *state = ci_get_ps(radeon_state); int i; u16 pcie_speed, max_speed = 0; for (i = 0; i < state->performance_level_count; i++) { pcie_speed = state->performance_levels[i].pcie_gen; if (max_speed < pcie_speed) max_speed = pcie_speed; } return max_speed; } static u16 ci_get_current_pcie_speed(struct radeon_device *rdev) { u32 speed_cntl = 0; speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL) & LC_CURRENT_DATA_RATE_MASK; speed_cntl >>= LC_CURRENT_DATA_RATE_SHIFT; return (u16)speed_cntl; } static int ci_get_current_pcie_lane_number(struct radeon_device *rdev) { u32 link_width = 0; link_width = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL) & LC_LINK_WIDTH_RD_MASK; link_width >>= LC_LINK_WIDTH_RD_SHIFT; switch (link_width) { case RADEON_PCIE_LC_LINK_WIDTH_X1: return 1; case RADEON_PCIE_LC_LINK_WIDTH_X2: return 2; case RADEON_PCIE_LC_LINK_WIDTH_X4: return 4; case RADEON_PCIE_LC_LINK_WIDTH_X8: return 8; case RADEON_PCIE_LC_LINK_WIDTH_X12: /* not actually supported */ return 12; case RADEON_PCIE_LC_LINK_WIDTH_X0: case RADEON_PCIE_LC_LINK_WIDTH_X16: default: return 16; } } static void ci_request_link_speed_change_before_state_change(struct radeon_device *rdev, struct radeon_ps *radeon_new_state, struct radeon_ps *radeon_current_state) { struct ci_power_info *pi = ci_get_pi(rdev); enum radeon_pcie_gen target_link_speed = ci_get_maximum_link_speed(rdev, radeon_new_state); enum radeon_pcie_gen current_link_speed; if (pi->force_pcie_gen == RADEON_PCIE_GEN_INVALID) current_link_speed = ci_get_maximum_link_speed(rdev, radeon_current_state); else current_link_speed = pi->force_pcie_gen; pi->force_pcie_gen = RADEON_PCIE_GEN_INVALID; pi->pspp_notify_required = false; if (target_link_speed > current_link_speed) { switch (target_link_speed) { #ifdef CONFIG_ACPI case RADEON_PCIE_GEN3: if (radeon_acpi_pcie_performance_request(rdev, PCIE_PERF_REQ_PECI_GEN3, false) == 0) break; pi->force_pcie_gen = RADEON_PCIE_GEN2; if (current_link_speed == RADEON_PCIE_GEN2) break; case RADEON_PCIE_GEN2: if (radeon_acpi_pcie_performance_request(rdev, PCIE_PERF_REQ_PECI_GEN2, false) == 0) break; #endif default: pi->force_pcie_gen = ci_get_current_pcie_speed(rdev); break; } } else { if (target_link_speed < current_link_speed) pi->pspp_notify_required = true; } } static void ci_notify_link_speed_change_after_state_change(struct radeon_device *rdev, struct radeon_ps *radeon_new_state, struct radeon_ps *radeon_current_state) { struct ci_power_info *pi = ci_get_pi(rdev); enum radeon_pcie_gen target_link_speed = ci_get_maximum_link_speed(rdev, radeon_new_state); u8 request; if (pi->pspp_notify_required) { if (target_link_speed == RADEON_PCIE_GEN3) request = PCIE_PERF_REQ_PECI_GEN3; else if (target_link_speed == RADEON_PCIE_GEN2) request = PCIE_PERF_REQ_PECI_GEN2; else request = PCIE_PERF_REQ_PECI_GEN1; if ((request == PCIE_PERF_REQ_PECI_GEN1) && (ci_get_current_pcie_speed(rdev) > 0)) return; #ifdef CONFIG_ACPI radeon_acpi_pcie_performance_request(rdev, request, false); #endif } } static int ci_set_private_data_variables_based_on_pptable(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); struct radeon_clock_voltage_dependency_table *allowed_sclk_vddc_table = &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk; struct radeon_clock_voltage_dependency_table *allowed_mclk_vddc_table = &rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk; struct radeon_clock_voltage_dependency_table *allowed_mclk_vddci_table = &rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk; if (allowed_sclk_vddc_table == NULL) return -EINVAL; if (allowed_sclk_vddc_table->count < 1) return -EINVAL; if (allowed_mclk_vddc_table == NULL) return -EINVAL; if (allowed_mclk_vddc_table->count < 1) return -EINVAL; if (allowed_mclk_vddci_table == NULL) return -EINVAL; if (allowed_mclk_vddci_table->count < 1) return -EINVAL; pi->min_vddc_in_pp_table = allowed_sclk_vddc_table->entries[0].v; pi->max_vddc_in_pp_table = allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v; pi->min_vddci_in_pp_table = allowed_mclk_vddci_table->entries[0].v; pi->max_vddci_in_pp_table = allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v; rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk = allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk; rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.mclk = allowed_mclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk; rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddc = allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v; rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddci = allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v; return 0; } static void ci_patch_with_vddc_leakage(struct radeon_device *rdev, u16 *vddc) { struct ci_power_info *pi = ci_get_pi(rdev); struct ci_leakage_voltage *leakage_table = &pi->vddc_leakage; u32 leakage_index; for (leakage_index = 0; leakage_index < leakage_table->count; leakage_index++) { if (leakage_table->leakage_id[leakage_index] == *vddc) { *vddc = leakage_table->actual_voltage[leakage_index]; break; } } } static void ci_patch_with_vddci_leakage(struct radeon_device *rdev, u16 *vddci) { struct ci_power_info *pi = ci_get_pi(rdev); struct ci_leakage_voltage *leakage_table = &pi->vddci_leakage; u32 leakage_index; for (leakage_index = 0; leakage_index < leakage_table->count; leakage_index++) { if (leakage_table->leakage_id[leakage_index] == *vddci) { *vddci = leakage_table->actual_voltage[leakage_index]; break; } } } static void ci_patch_clock_voltage_dependency_table_with_vddc_leakage(struct radeon_device *rdev, struct radeon_clock_voltage_dependency_table *table) { u32 i; if (table) { for (i = 0; i < table->count; i++) ci_patch_with_vddc_leakage(rdev, &table->entries[i].v); } } static void ci_patch_clock_voltage_dependency_table_with_vddci_leakage(struct radeon_device *rdev, struct radeon_clock_voltage_dependency_table *table) { u32 i; if (table) { for (i = 0; i < table->count; i++) ci_patch_with_vddci_leakage(rdev, &table->entries[i].v); } } static void ci_patch_vce_clock_voltage_dependency_table_with_vddc_leakage(struct radeon_device *rdev, struct radeon_vce_clock_voltage_dependency_table *table) { u32 i; if (table) { for (i = 0; i < table->count; i++) ci_patch_with_vddc_leakage(rdev, &table->entries[i].v); } } static void ci_patch_uvd_clock_voltage_dependency_table_with_vddc_leakage(struct radeon_device *rdev, struct radeon_uvd_clock_voltage_dependency_table *table) { u32 i; if (table) { for (i = 0; i < table->count; i++) ci_patch_with_vddc_leakage(rdev, &table->entries[i].v); } } static void ci_patch_vddc_phase_shed_limit_table_with_vddc_leakage(struct radeon_device *rdev, struct radeon_phase_shedding_limits_table *table) { u32 i; if (table) { for (i = 0; i < table->count; i++) ci_patch_with_vddc_leakage(rdev, &table->entries[i].voltage); } } static void ci_patch_clock_voltage_limits_with_vddc_leakage(struct radeon_device *rdev, struct radeon_clock_and_voltage_limits *table) { if (table) { ci_patch_with_vddc_leakage(rdev, (u16 *)&table->vddc); ci_patch_with_vddci_leakage(rdev, (u16 *)&table->vddci); } } static void ci_patch_cac_leakage_table_with_vddc_leakage(struct radeon_device *rdev, struct radeon_cac_leakage_table *table) { u32 i; if (table) { for (i = 0; i < table->count; i++) ci_patch_with_vddc_leakage(rdev, &table->entries[i].vddc); } } static void ci_patch_dependency_tables_with_leakage(struct radeon_device *rdev) { ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev, &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk); ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev, &rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk); ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev, &rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk); ci_patch_clock_voltage_dependency_table_with_vddci_leakage(rdev, &rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk); ci_patch_vce_clock_voltage_dependency_table_with_vddc_leakage(rdev, &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table); ci_patch_uvd_clock_voltage_dependency_table_with_vddc_leakage(rdev, &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table); ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev, &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table); ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev, &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table); ci_patch_vddc_phase_shed_limit_table_with_vddc_leakage(rdev, &rdev->pm.dpm.dyn_state.phase_shedding_limits_table); ci_patch_clock_voltage_limits_with_vddc_leakage(rdev, &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac); ci_patch_clock_voltage_limits_with_vddc_leakage(rdev, &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc); ci_patch_cac_leakage_table_with_vddc_leakage(rdev, &rdev->pm.dpm.dyn_state.cac_leakage_table); } static void ci_get_memory_type(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); u32 tmp; tmp = RREG32(MC_SEQ_MISC0); if (((tmp & MC_SEQ_MISC0_GDDR5_MASK) >> MC_SEQ_MISC0_GDDR5_SHIFT) == MC_SEQ_MISC0_GDDR5_VALUE) pi->mem_gddr5 = true; else pi->mem_gddr5 = false; } static void ci_update_current_ps(struct radeon_device *rdev, struct radeon_ps *rps) { struct ci_ps *new_ps = ci_get_ps(rps); struct ci_power_info *pi = ci_get_pi(rdev); pi->current_rps = *rps; pi->current_ps = *new_ps; pi->current_rps.ps_priv = &pi->current_ps; } static void ci_update_requested_ps(struct radeon_device *rdev, struct radeon_ps *rps) { struct ci_ps *new_ps = ci_get_ps(rps); struct ci_power_info *pi = ci_get_pi(rdev); pi->requested_rps = *rps; pi->requested_ps = *new_ps; pi->requested_rps.ps_priv = &pi->requested_ps; } int ci_dpm_pre_set_power_state(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps; struct radeon_ps *new_ps = &requested_ps; ci_update_requested_ps(rdev, new_ps); ci_apply_state_adjust_rules(rdev, &pi->requested_rps); return 0; } void ci_dpm_post_set_power_state(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); struct radeon_ps *new_ps = &pi->requested_rps; ci_update_current_ps(rdev, new_ps); } void ci_dpm_setup_asic(struct radeon_device *rdev) { int r; r = ci_mc_load_microcode(rdev); if (r) DRM_ERROR("Failed to load MC firmware!\n"); ci_read_clock_registers(rdev); ci_get_memory_type(rdev); ci_enable_acpi_power_management(rdev); ci_init_sclk_t(rdev); } int ci_dpm_enable(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps; int ret; if (ci_is_smc_running(rdev)) return -EINVAL; if (pi->voltage_control != CISLANDS_VOLTAGE_CONTROL_NONE) { ci_enable_voltage_control(rdev); ret = ci_construct_voltage_tables(rdev); if (ret) { DRM_ERROR("ci_construct_voltage_tables failed\n"); return ret; } } if (pi->caps_dynamic_ac_timing) { ret = ci_initialize_mc_reg_table(rdev); if (ret) pi->caps_dynamic_ac_timing = false; } if (pi->dynamic_ss) ci_enable_spread_spectrum(rdev, true); if (pi->thermal_protection) ci_enable_thermal_protection(rdev, true); ci_program_sstp(rdev); ci_enable_display_gap(rdev); ci_program_vc(rdev); ret = ci_upload_firmware(rdev); if (ret) { DRM_ERROR("ci_upload_firmware failed\n"); return ret; } ret = ci_process_firmware_header(rdev); if (ret) { DRM_ERROR("ci_process_firmware_header failed\n"); return ret; } ret = ci_initial_switch_from_arb_f0_to_f1(rdev); if (ret) { DRM_ERROR("ci_initial_switch_from_arb_f0_to_f1 failed\n"); return ret; } ret = ci_init_smc_table(rdev); if (ret) { DRM_ERROR("ci_init_smc_table failed\n"); return ret; } ret = ci_init_arb_table_index(rdev); if (ret) { DRM_ERROR("ci_init_arb_table_index failed\n"); return ret; } if (pi->caps_dynamic_ac_timing) { ret = ci_populate_initial_mc_reg_table(rdev); if (ret) { DRM_ERROR("ci_populate_initial_mc_reg_table failed\n"); return ret; } } ret = ci_populate_pm_base(rdev); if (ret) { DRM_ERROR("ci_populate_pm_base failed\n"); return ret; } ci_dpm_start_smc(rdev); ci_enable_vr_hot_gpio_interrupt(rdev); ret = ci_notify_smc_display_change(rdev, false); if (ret) { DRM_ERROR("ci_notify_smc_display_change failed\n"); return ret; } ci_enable_sclk_control(rdev, true); ret = ci_enable_ulv(rdev, true); if (ret) { DRM_ERROR("ci_enable_ulv failed\n"); return ret; } ret = ci_enable_ds_master_switch(rdev, true); if (ret) { DRM_ERROR("ci_enable_ds_master_switch failed\n"); return ret; } ret = ci_start_dpm(rdev); if (ret) { DRM_ERROR("ci_start_dpm failed\n"); return ret; } ret = ci_enable_didt(rdev, true); if (ret) { DRM_ERROR("ci_enable_didt failed\n"); return ret; } ret = ci_enable_smc_cac(rdev, true); if (ret) { DRM_ERROR("ci_enable_smc_cac failed\n"); return ret; } ret = ci_enable_power_containment(rdev, true); if (ret) { DRM_ERROR("ci_enable_power_containment failed\n"); return ret; } ci_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, true); ci_update_current_ps(rdev, boot_ps); return 0; } int ci_dpm_late_enable(struct radeon_device *rdev) { int ret; if (rdev->irq.installed && r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { #if 0 PPSMC_Result result; #endif ret = ci_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX); if (ret) { DRM_ERROR("ci_set_thermal_temperature_range failed\n"); return ret; } rdev->irq.dpm_thermal = true; radeon_irq_set(rdev); #if 0 result = ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableThermalInterrupt); if (result != PPSMC_Result_OK) DRM_DEBUG_KMS("Could not enable thermal interrupts.\n"); #endif } ci_dpm_powergate_uvd(rdev, true); return 0; } void ci_dpm_disable(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps; ci_dpm_powergate_uvd(rdev, false); if (!ci_is_smc_running(rdev)) return; if (pi->thermal_protection) ci_enable_thermal_protection(rdev, false); ci_enable_power_containment(rdev, false); ci_enable_smc_cac(rdev, false); ci_enable_didt(rdev, false); ci_enable_spread_spectrum(rdev, false); ci_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, false); ci_stop_dpm(rdev); ci_enable_ds_master_switch(rdev, true); ci_enable_ulv(rdev, false); ci_clear_vc(rdev); ci_reset_to_default(rdev); ci_dpm_stop_smc(rdev); ci_force_switch_to_arb_f0(rdev); ci_update_current_ps(rdev, boot_ps); } int ci_dpm_set_power_state(struct radeon_device *rdev) { struct ci_power_info *pi = ci_get_pi(rdev); struct radeon_ps *new_ps = &pi->requested_rps; struct radeon_ps *old_ps = &pi->current_rps; int ret; ci_find_dpm_states_clocks_in_dpm_table(rdev, new_ps); if (pi->pcie_performance_request) ci_request_link_speed_change_before_state_change(rdev, new_ps, old_ps); ret = ci_freeze_sclk_mclk_dpm(rdev); if (ret) { DRM_ERROR("ci_freeze_sclk_mclk_dpm failed\n"); return ret; } ret = ci_populate_and_upload_sclk_mclk_dpm_levels(rdev, new_ps); if (ret) { DRM_ERROR("ci_populate_and_upload_sclk_mclk_dpm_levels failed\n"); return ret; } ret = ci_generate_dpm_level_enable_mask(rdev, new_ps); if (ret) { DRM_ERROR("ci_generate_dpm_level_enable_mask failed\n"); return ret; } #if 0 ret = ci_update_vce_dpm(rdev, new_ps, old_ps); if (ret) { DRM_ERROR("ci_update_vce_dpm failed\n"); return ret; } #endif ret = ci_update_sclk_t(rdev); if (ret) { DRM_ERROR("ci_update_sclk_t failed\n"); return ret; } if (pi->caps_dynamic_ac_timing) { ret = ci_update_and_upload_mc_reg_table(rdev); if (ret) { DRM_ERROR("ci_update_and_upload_mc_reg_table failed\n"); return ret; } } ret = ci_program_memory_timing_parameters(rdev); if (ret) { DRM_ERROR("ci_program_memory_timing_parameters failed\n"); return ret; } ret = ci_unfreeze_sclk_mclk_dpm(rdev); if (ret) { DRM_ERROR("ci_unfreeze_sclk_mclk_dpm failed\n"); return ret; } ret = ci_upload_dpm_level_enable_mask(rdev); if (ret) { DRM_ERROR("ci_upload_dpm_level_enable_mask failed\n"); return ret; } if (pi->pcie_performance_request) ci_notify_link_speed_change_after_state_change(rdev, new_ps, old_ps); return 0; } int ci_dpm_power_control_set_level(struct radeon_device *rdev) { return ci_power_control_set_level(rdev); } void ci_dpm_reset_asic(struct radeon_device *rdev) { ci_set_boot_state(rdev); } void ci_dpm_display_configuration_changed(struct radeon_device *rdev) { ci_program_display_gap(rdev); } union power_info { struct _ATOM_POWERPLAY_INFO info; struct _ATOM_POWERPLAY_INFO_V2 info_2; struct _ATOM_POWERPLAY_INFO_V3 info_3; struct _ATOM_PPLIB_POWERPLAYTABLE pplib; struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; }; union pplib_clock_info { struct _ATOM_PPLIB_R600_CLOCK_INFO r600; struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780; struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen; struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo; struct _ATOM_PPLIB_SI_CLOCK_INFO si; struct _ATOM_PPLIB_CI_CLOCK_INFO ci; }; union pplib_power_state { struct _ATOM_PPLIB_STATE v1; struct _ATOM_PPLIB_STATE_V2 v2; }; static void ci_parse_pplib_non_clock_info(struct radeon_device *rdev, struct radeon_ps *rps, struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info, u8 table_rev) { rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings); rps->class = le16_to_cpu(non_clock_info->usClassification); rps->class2 = le16_to_cpu(non_clock_info->usClassification2); if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) { rps->vclk = le32_to_cpu(non_clock_info->ulVCLK); rps->dclk = le32_to_cpu(non_clock_info->ulDCLK); } else { rps->vclk = 0; rps->dclk = 0; } if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) rdev->pm.dpm.boot_ps = rps; if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) rdev->pm.dpm.uvd_ps = rps; } static void ci_parse_pplib_clock_info(struct radeon_device *rdev, struct radeon_ps *rps, int index, union pplib_clock_info *clock_info) { struct ci_power_info *pi = ci_get_pi(rdev); struct ci_ps *ps = ci_get_ps(rps); struct ci_pl *pl = &ps->performance_levels[index]; ps->performance_level_count = index + 1; pl->sclk = le16_to_cpu(clock_info->ci.usEngineClockLow); pl->sclk |= clock_info->ci.ucEngineClockHigh << 16; pl->mclk = le16_to_cpu(clock_info->ci.usMemoryClockLow); pl->mclk |= clock_info->ci.ucMemoryClockHigh << 16; pl->pcie_gen = r600_get_pcie_gen_support(rdev, pi->sys_pcie_mask, pi->vbios_boot_state.pcie_gen_bootup_value, clock_info->ci.ucPCIEGen); pl->pcie_lane = r600_get_pcie_lane_support(rdev, pi->vbios_boot_state.pcie_lane_bootup_value, le16_to_cpu(clock_info->ci.usPCIELane)); if (rps->class & ATOM_PPLIB_CLASSIFICATION_ACPI) { pi->acpi_pcie_gen = pl->pcie_gen; } if (rps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) { pi->ulv.supported = true; pi->ulv.pl = *pl; pi->ulv.cg_ulv_parameter = CISLANDS_CGULVPARAMETER_DFLT; } /* patch up boot state */ if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) { pl->mclk = pi->vbios_boot_state.mclk_bootup_value; pl->sclk = pi->vbios_boot_state.sclk_bootup_value; pl->pcie_gen = pi->vbios_boot_state.pcie_gen_bootup_value; pl->pcie_lane = pi->vbios_boot_state.pcie_lane_bootup_value; } switch (rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) { case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY: pi->use_pcie_powersaving_levels = true; if (pi->pcie_gen_powersaving.max < pl->pcie_gen) pi->pcie_gen_powersaving.max = pl->pcie_gen; if (pi->pcie_gen_powersaving.min > pl->pcie_gen) pi->pcie_gen_powersaving.min = pl->pcie_gen; if (pi->pcie_lane_powersaving.max < pl->pcie_lane) pi->pcie_lane_powersaving.max = pl->pcie_lane; if (pi->pcie_lane_powersaving.min > pl->pcie_lane) pi->pcie_lane_powersaving.min = pl->pcie_lane; break; case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE: pi->use_pcie_performance_levels = true; if (pi->pcie_gen_performance.max < pl->pcie_gen) pi->pcie_gen_performance.max = pl->pcie_gen; if (pi->pcie_gen_performance.min > pl->pcie_gen) pi->pcie_gen_performance.min = pl->pcie_gen; if (pi->pcie_lane_performance.max < pl->pcie_lane) pi->pcie_lane_performance.max = pl->pcie_lane; if (pi->pcie_lane_performance.min > pl->pcie_lane) pi->pcie_lane_performance.min = pl->pcie_lane; break; default: break; } } static int ci_parse_power_table(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info; union pplib_power_state *power_state; int i, j, k, non_clock_array_index, clock_array_index; union pplib_clock_info *clock_info; struct _StateArray *state_array; struct _ClockInfoArray *clock_info_array; struct _NonClockInfoArray *non_clock_info_array; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; u8 *power_state_offset; struct ci_ps *ps; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return -EINVAL; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); state_array = (struct _StateArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usStateArrayOffset)); clock_info_array = (struct _ClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usClockInfoArrayOffset)); non_clock_info_array = (struct _NonClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset)); rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) * state_array->ucNumEntries, GFP_KERNEL); if (!rdev->pm.dpm.ps) return -ENOMEM; power_state_offset = (u8 *)state_array->states; rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps); rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime); rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime); for (i = 0; i < state_array->ucNumEntries; i++) { u8 *idx; power_state = (union pplib_power_state *)power_state_offset; non_clock_array_index = power_state->v2.nonClockInfoIndex; non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *) &non_clock_info_array->nonClockInfo[non_clock_array_index]; if (!rdev->pm.power_state[i].clock_info) return -EINVAL; ps = kzalloc(sizeof(struct ci_ps), GFP_KERNEL); if (ps == NULL) { kfree(rdev->pm.dpm.ps); return -ENOMEM; } rdev->pm.dpm.ps[i].ps_priv = ps; ci_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i], non_clock_info, non_clock_info_array->ucEntrySize); k = 0; idx = (u8 *)&power_state->v2.clockInfoIndex[0]; for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) { clock_array_index = idx[j]; if (clock_array_index >= clock_info_array->ucNumEntries) continue; if (k >= CISLANDS_MAX_HARDWARE_POWERLEVELS) break; clock_info = (union pplib_clock_info *) ((u8 *)&clock_info_array->clockInfo[0] + (clock_array_index * clock_info_array->ucEntrySize)); ci_parse_pplib_clock_info(rdev, &rdev->pm.dpm.ps[i], k, clock_info); k++; } power_state_offset += 2 + power_state->v2.ucNumDPMLevels; } rdev->pm.dpm.num_ps = state_array->ucNumEntries; return 0; } static int ci_get_vbios_boot_values(struct radeon_device *rdev, struct ci_vbios_boot_state *boot_state) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); ATOM_FIRMWARE_INFO_V2_2 *firmware_info; u8 frev, crev; u16 data_offset; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { firmware_info = (ATOM_FIRMWARE_INFO_V2_2 *)(mode_info->atom_context->bios + data_offset); boot_state->mvdd_bootup_value = le16_to_cpu(firmware_info->usBootUpMVDDCVoltage); boot_state->vddc_bootup_value = le16_to_cpu(firmware_info->usBootUpVDDCVoltage); boot_state->vddci_bootup_value = le16_to_cpu(firmware_info->usBootUpVDDCIVoltage); boot_state->pcie_gen_bootup_value = ci_get_current_pcie_speed(rdev); boot_state->pcie_lane_bootup_value = ci_get_current_pcie_lane_number(rdev); boot_state->sclk_bootup_value = le32_to_cpu(firmware_info->ulDefaultEngineClock); boot_state->mclk_bootup_value = le32_to_cpu(firmware_info->ulDefaultMemoryClock); return 0; } return -EINVAL; } void ci_dpm_fini(struct radeon_device *rdev) { int i; for (i = 0; i < rdev->pm.dpm.num_ps; i++) { kfree(rdev->pm.dpm.ps[i].ps_priv); } kfree(rdev->pm.dpm.ps); kfree(rdev->pm.dpm.priv); kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries); r600_free_extended_power_table(rdev); } int ci_dpm_init(struct radeon_device *rdev) { int index = GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info); u16 data_offset, size; u8 frev, crev; struct ci_power_info *pi; int ret; u32 mask; pi = kzalloc(sizeof(struct ci_power_info), GFP_KERNEL); if (pi == NULL) return -ENOMEM; rdev->pm.dpm.priv = pi; ret = drm_pcie_get_speed_cap_mask(rdev->ddev, &mask); if (ret) pi->sys_pcie_mask = 0; else pi->sys_pcie_mask = mask; pi->force_pcie_gen = RADEON_PCIE_GEN_INVALID; pi->pcie_gen_performance.max = RADEON_PCIE_GEN1; pi->pcie_gen_performance.min = RADEON_PCIE_GEN3; pi->pcie_gen_powersaving.max = RADEON_PCIE_GEN1; pi->pcie_gen_powersaving.min = RADEON_PCIE_GEN3; pi->pcie_lane_performance.max = 0; pi->pcie_lane_performance.min = 16; pi->pcie_lane_powersaving.max = 0; pi->pcie_lane_powersaving.min = 16; ret = ci_get_vbios_boot_values(rdev, &pi->vbios_boot_state); if (ret) { ci_dpm_fini(rdev); return ret; } ret = ci_parse_power_table(rdev); if (ret) { ci_dpm_fini(rdev); return ret; } ret = r600_parse_extended_power_table(rdev); if (ret) { ci_dpm_fini(rdev); return ret; } pi->dll_default_on = false; pi->sram_end = SMC_RAM_END; pi->activity_target[0] = CISLAND_TARGETACTIVITY_DFLT; pi->activity_target[1] = CISLAND_TARGETACTIVITY_DFLT; pi->activity_target[2] = CISLAND_TARGETACTIVITY_DFLT; pi->activity_target[3] = CISLAND_TARGETACTIVITY_DFLT; pi->activity_target[4] = CISLAND_TARGETACTIVITY_DFLT; pi->activity_target[5] = CISLAND_TARGETACTIVITY_DFLT; pi->activity_target[6] = CISLAND_TARGETACTIVITY_DFLT; pi->activity_target[7] = CISLAND_TARGETACTIVITY_DFLT; pi->mclk_activity_target = CISLAND_MCLK_TARGETACTIVITY_DFLT; pi->sclk_dpm_key_disabled = 0; pi->mclk_dpm_key_disabled = 0; pi->pcie_dpm_key_disabled = 0; pi->caps_sclk_ds = true; pi->mclk_strobe_mode_threshold = 40000; pi->mclk_stutter_mode_threshold = 40000; pi->mclk_edc_enable_threshold = 40000; pi->mclk_edc_wr_enable_threshold = 40000; ci_initialize_powertune_defaults(rdev); pi->caps_fps = false; pi->caps_sclk_throttle_low_notification = false; pi->caps_uvd_dpm = true; ci_get_leakage_voltages(rdev); ci_patch_dependency_tables_with_leakage(rdev); ci_set_private_data_variables_based_on_pptable(rdev); rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries = kzalloc(4 * sizeof(struct radeon_clock_voltage_dependency_entry), GFP_KERNEL); if (!rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries) { ci_dpm_fini(rdev); return -ENOMEM; } rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.count = 4; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[0].clk = 0; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[0].v = 0; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[1].clk = 36000; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[1].v = 720; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[2].clk = 54000; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[2].v = 810; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[3].clk = 72000; rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[3].v = 900; rdev->pm.dpm.dyn_state.mclk_sclk_ratio = 4; rdev->pm.dpm.dyn_state.sclk_mclk_delta = 15000; rdev->pm.dpm.dyn_state.vddc_vddci_delta = 200; rdev->pm.dpm.dyn_state.valid_sclk_values.count = 0; rdev->pm.dpm.dyn_state.valid_sclk_values.values = NULL; rdev->pm.dpm.dyn_state.valid_mclk_values.count = 0; rdev->pm.dpm.dyn_state.valid_mclk_values.values = NULL; if (rdev->family == CHIP_HAWAII) { pi->thermal_temp_setting.temperature_low = 94500; pi->thermal_temp_setting.temperature_high = 95000; pi->thermal_temp_setting.temperature_shutdown = 104000; } else { pi->thermal_temp_setting.temperature_low = 99500; pi->thermal_temp_setting.temperature_high = 100000; pi->thermal_temp_setting.temperature_shutdown = 104000; } pi->uvd_enabled = false; pi->voltage_control = CISLANDS_VOLTAGE_CONTROL_NONE; pi->vddci_control = CISLANDS_VOLTAGE_CONTROL_NONE; pi->mvdd_control = CISLANDS_VOLTAGE_CONTROL_NONE; if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT)) pi->voltage_control = CISLANDS_VOLTAGE_CONTROL_BY_GPIO; else if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) pi->voltage_control = CISLANDS_VOLTAGE_CONTROL_BY_SVID2; if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_VDDCI_CONTROL) { if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) pi->vddci_control = CISLANDS_VOLTAGE_CONTROL_BY_GPIO; else if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2)) pi->vddci_control = CISLANDS_VOLTAGE_CONTROL_BY_SVID2; else rdev->pm.dpm.platform_caps &= ~ATOM_PP_PLATFORM_CAP_VDDCI_CONTROL; } if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_MVDDCONTROL) { if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) pi->mvdd_control = CISLANDS_VOLTAGE_CONTROL_BY_GPIO; else if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) pi->mvdd_control = CISLANDS_VOLTAGE_CONTROL_BY_SVID2; else rdev->pm.dpm.platform_caps &= ~ATOM_PP_PLATFORM_CAP_MVDDCONTROL; } pi->vddc_phase_shed_control = true; #if defined(CONFIG_ACPI) pi->pcie_performance_request = radeon_acpi_is_pcie_performance_request_supported(rdev); #else pi->pcie_performance_request = false; #endif if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size, &frev, &crev, &data_offset)) { pi->caps_sclk_ss_support = true; pi->caps_mclk_ss_support = true; pi->dynamic_ss = true; } else { pi->caps_sclk_ss_support = false; pi->caps_mclk_ss_support = false; pi->dynamic_ss = true; } if (rdev->pm.int_thermal_type != THERMAL_TYPE_NONE) pi->thermal_protection = true; else pi->thermal_protection = false; pi->caps_dynamic_ac_timing = true; pi->uvd_power_gated = false; /* make sure dc limits are valid */ if ((rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk == 0) || (rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk == 0)) rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc = rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac; return 0; } void ci_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev, struct seq_file *m) { u32 sclk = ci_get_average_sclk_freq(rdev); u32 mclk = ci_get_average_mclk_freq(rdev); seq_printf(m, "power level avg sclk: %u mclk: %u\n", sclk, mclk); } void ci_dpm_print_power_state(struct radeon_device *rdev, struct radeon_ps *rps) { struct ci_ps *ps = ci_get_ps(rps); struct ci_pl *pl; int i; r600_dpm_print_class_info(rps->class, rps->class2); r600_dpm_print_cap_info(rps->caps); printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); for (i = 0; i < ps->performance_level_count; i++) { pl = &ps->performance_levels[i]; printk("\t\tpower level %d sclk: %u mclk: %u pcie gen: %u pcie lanes: %u\n", i, pl->sclk, pl->mclk, pl->pcie_gen + 1, pl->pcie_lane); } r600_dpm_print_ps_status(rdev, rps); } u32 ci_dpm_get_sclk(struct radeon_device *rdev, bool low) { struct ci_power_info *pi = ci_get_pi(rdev); struct ci_ps *requested_state = ci_get_ps(&pi->requested_rps); if (low) return requested_state->performance_levels[0].sclk; else return requested_state->performance_levels[requested_state->performance_level_count - 1].sclk; } u32 ci_dpm_get_mclk(struct radeon_device *rdev, bool low) { struct ci_power_info *pi = ci_get_pi(rdev); struct ci_ps *requested_state = ci_get_ps(&pi->requested_rps); if (low) return requested_state->performance_levels[0].mclk; else return requested_state->performance_levels[requested_state->performance_level_count - 1].mclk; }