/* * Copyright 2013 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include <subdev/clock.h> #include <subdev/timer.h> #include <subdev/bios.h> #include <subdev/bios/pll.h> #include "pll.h" struct nve0_clock_info { u32 freq; u32 ssel; u32 mdiv; u32 dsrc; u32 ddiv; u32 coef; }; struct nve0_clock_priv { struct nouveau_clock base; struct nve0_clock_info eng[16]; }; static u32 read_div(struct nve0_clock_priv *, int, u32, u32); static u32 read_pll(struct nve0_clock_priv *, u32); static u32 read_vco(struct nve0_clock_priv *priv, u32 dsrc) { u32 ssrc = nv_rd32(priv, dsrc); if (!(ssrc & 0x00000100)) return read_pll(priv, 0x00e800); return read_pll(priv, 0x00e820); } static u32 read_pll(struct nve0_clock_priv *priv, u32 pll) { u32 ctrl = nv_rd32(priv, pll + 0x00); u32 coef = nv_rd32(priv, pll + 0x04); u32 P = (coef & 0x003f0000) >> 16; u32 N = (coef & 0x0000ff00) >> 8; u32 M = (coef & 0x000000ff) >> 0; u32 sclk; u16 fN = 0xf000; if (!(ctrl & 0x00000001)) return 0; switch (pll) { case 0x00e800: case 0x00e820: sclk = nv_device(priv)->crystal; P = 1; break; case 0x132000: sclk = read_pll(priv, 0x132020); P = (coef & 0x10000000) ? 2 : 1; break; case 0x132020: sclk = read_div(priv, 0, 0x137320, 0x137330); fN = nv_rd32(priv, pll + 0x10) >> 16; break; case 0x137000: case 0x137020: case 0x137040: case 0x1370e0: sclk = read_div(priv, (pll & 0xff) / 0x20, 0x137120, 0x137140); break; default: return 0; } if (P == 0) P = 1; sclk = (sclk * N) + (((u16)(fN + 4096) * sclk) >> 13); return sclk / (M * P); } static u32 read_div(struct nve0_clock_priv *priv, int doff, u32 dsrc, u32 dctl) { u32 ssrc = nv_rd32(priv, dsrc + (doff * 4)); u32 sctl = nv_rd32(priv, dctl + (doff * 4)); switch (ssrc & 0x00000003) { case 0: if ((ssrc & 0x00030000) != 0x00030000) return nv_device(priv)->crystal; return 108000; case 2: return 100000; case 3: if (sctl & 0x80000000) { u32 sclk = read_vco(priv, dsrc + (doff * 4)); u32 sdiv = (sctl & 0x0000003f) + 2; return (sclk * 2) / sdiv; } return read_vco(priv, dsrc + (doff * 4)); default: return 0; } } static u32 read_mem(struct nve0_clock_priv *priv) { switch (nv_rd32(priv, 0x1373f4) & 0x0000000f) { case 1: return read_pll(priv, 0x132020); case 2: return read_pll(priv, 0x132000); default: return 0; } } static u32 read_clk(struct nve0_clock_priv *priv, int clk) { u32 sctl = nv_rd32(priv, 0x137250 + (clk * 4)); u32 sclk, sdiv; if (clk < 7) { u32 ssel = nv_rd32(priv, 0x137100); if (ssel & (1 << clk)) { sclk = read_pll(priv, 0x137000 + (clk * 0x20)); sdiv = 1; } else { sclk = read_div(priv, clk, 0x137160, 0x1371d0); sdiv = 0; } } else { u32 ssrc = nv_rd32(priv, 0x137160 + (clk * 0x04)); if ((ssrc & 0x00000003) == 0x00000003) { sclk = read_div(priv, clk, 0x137160, 0x1371d0); if (ssrc & 0x00000100) { if (ssrc & 0x40000000) sclk = read_pll(priv, 0x1370e0); sdiv = 1; } else { sdiv = 0; } } else { sclk = read_div(priv, clk, 0x137160, 0x1371d0); sdiv = 0; } } if (sctl & 0x80000000) { if (sdiv) sdiv = ((sctl & 0x00003f00) >> 8) + 2; else sdiv = ((sctl & 0x0000003f) >> 0) + 2; return (sclk * 2) / sdiv; } return sclk; } static int nve0_clock_read(struct nouveau_clock *clk, enum nv_clk_src src) { struct nouveau_device *device = nv_device(clk); struct nve0_clock_priv *priv = (void *)clk; switch (src) { case nv_clk_src_crystal: return device->crystal; case nv_clk_src_href: return 100000; case nv_clk_src_mem: return read_mem(priv); case nv_clk_src_gpc: return read_clk(priv, 0x00); case nv_clk_src_rop: return read_clk(priv, 0x01); case nv_clk_src_hubk07: return read_clk(priv, 0x02); case nv_clk_src_hubk06: return read_clk(priv, 0x07); case nv_clk_src_hubk01: return read_clk(priv, 0x08); case nv_clk_src_daemon: return read_clk(priv, 0x0c); case nv_clk_src_vdec: return read_clk(priv, 0x0e); default: nv_error(clk, "invalid clock source %d\n", src); return -EINVAL; } } static u32 calc_div(struct nve0_clock_priv *priv, int clk, u32 ref, u32 freq, u32 *ddiv) { u32 div = min((ref * 2) / freq, (u32)65); if (div < 2) div = 2; *ddiv = div - 2; return (ref * 2) / div; } static u32 calc_src(struct nve0_clock_priv *priv, int clk, u32 freq, u32 *dsrc, u32 *ddiv) { u32 sclk; /* use one of the fixed frequencies if possible */ *ddiv = 0x00000000; switch (freq) { case 27000: case 108000: *dsrc = 0x00000000; if (freq == 108000) *dsrc |= 0x00030000; return freq; case 100000: *dsrc = 0x00000002; return freq; default: *dsrc = 0x00000003; break; } /* otherwise, calculate the closest divider */ sclk = read_vco(priv, 0x137160 + (clk * 4)); if (clk < 7) sclk = calc_div(priv, clk, sclk, freq, ddiv); return sclk; } static u32 calc_pll(struct nve0_clock_priv *priv, int clk, u32 freq, u32 *coef) { struct nouveau_bios *bios = nouveau_bios(priv); struct nvbios_pll limits; int N, M, P, ret; ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits); if (ret) return 0; limits.refclk = read_div(priv, clk, 0x137120, 0x137140); if (!limits.refclk) return 0; ret = nva3_pll_calc(nv_subdev(priv), &limits, freq, &N, NULL, &M, &P); if (ret <= 0) return 0; *coef = (P << 16) | (N << 8) | M; return ret; } static int calc_clk(struct nve0_clock_priv *priv, struct nouveau_cstate *cstate, int clk, int dom) { struct nve0_clock_info *info = &priv->eng[clk]; u32 freq = cstate->domain[dom]; u32 src0, div0, div1D, div1P = 0; u32 clk0, clk1 = 0; /* invalid clock domain */ if (!freq) return 0; /* first possible path, using only dividers */ clk0 = calc_src(priv, clk, freq, &src0, &div0); clk0 = calc_div(priv, clk, clk0, freq, &div1D); /* see if we can get any closer using PLLs */ if (clk0 != freq && (0x0000ff87 & (1 << clk))) { if (clk <= 7) clk1 = calc_pll(priv, clk, freq, &info->coef); else clk1 = cstate->domain[nv_clk_src_hubk06]; clk1 = calc_div(priv, clk, clk1, freq, &div1P); } /* select the method which gets closest to target freq */ if (abs((int)freq - clk0) <= abs((int)freq - clk1)) { info->dsrc = src0; if (div0) { info->ddiv |= 0x80000000; info->ddiv |= div0 << 8; info->ddiv |= div0; } if (div1D) { info->mdiv |= 0x80000000; info->mdiv |= div1D; } info->ssel = 0; info->freq = clk0; } else { if (div1P) { info->mdiv |= 0x80000000; info->mdiv |= div1P << 8; } info->ssel = (1 << clk); info->dsrc = 0x40000100; info->freq = clk1; } return 0; } static int nve0_clock_calc(struct nouveau_clock *clk, struct nouveau_cstate *cstate) { struct nve0_clock_priv *priv = (void *)clk; int ret; if ((ret = calc_clk(priv, cstate, 0x00, nv_clk_src_gpc)) || (ret = calc_clk(priv, cstate, 0x01, nv_clk_src_rop)) || (ret = calc_clk(priv, cstate, 0x02, nv_clk_src_hubk07)) || (ret = calc_clk(priv, cstate, 0x07, nv_clk_src_hubk06)) || (ret = calc_clk(priv, cstate, 0x08, nv_clk_src_hubk01)) || (ret = calc_clk(priv, cstate, 0x0c, nv_clk_src_daemon)) || (ret = calc_clk(priv, cstate, 0x0e, nv_clk_src_vdec))) return ret; return 0; } static void nve0_clock_prog_0(struct nve0_clock_priv *priv, int clk) { struct nve0_clock_info *info = &priv->eng[clk]; if (!info->ssel) { nv_mask(priv, 0x1371d0 + (clk * 0x04), 0x80003f3f, info->ddiv); nv_wr32(priv, 0x137160 + (clk * 0x04), info->dsrc); } } static void nve0_clock_prog_1_0(struct nve0_clock_priv *priv, int clk) { nv_mask(priv, 0x137100, (1 << clk), 0x00000000); nv_wait(priv, 0x137100, (1 << clk), 0x00000000); } static void nve0_clock_prog_1_1(struct nve0_clock_priv *priv, int clk) { nv_mask(priv, 0x137160 + (clk * 0x04), 0x00000100, 0x00000000); } static void nve0_clock_prog_2(struct nve0_clock_priv *priv, int clk) { struct nve0_clock_info *info = &priv->eng[clk]; const u32 addr = 0x137000 + (clk * 0x20); nv_mask(priv, addr + 0x00, 0x00000004, 0x00000000); nv_mask(priv, addr + 0x00, 0x00000001, 0x00000000); if (info->coef) { nv_wr32(priv, addr + 0x04, info->coef); nv_mask(priv, addr + 0x00, 0x00000001, 0x00000001); nv_wait(priv, addr + 0x00, 0x00020000, 0x00020000); nv_mask(priv, addr + 0x00, 0x00020004, 0x00000004); } } static void nve0_clock_prog_3(struct nve0_clock_priv *priv, int clk) { struct nve0_clock_info *info = &priv->eng[clk]; nv_mask(priv, 0x137250 + (clk * 0x04), 0x00003f3f, info->mdiv); } static void nve0_clock_prog_4_0(struct nve0_clock_priv *priv, int clk) { struct nve0_clock_info *info = &priv->eng[clk]; if (info->ssel) { nv_mask(priv, 0x137100, (1 << clk), info->ssel); nv_wait(priv, 0x137100, (1 << clk), info->ssel); } } static void nve0_clock_prog_4_1(struct nve0_clock_priv *priv, int clk) { struct nve0_clock_info *info = &priv->eng[clk]; if (info->ssel) { nv_mask(priv, 0x137160 + (clk * 0x04), 0x40000000, 0x40000000); nv_mask(priv, 0x137160 + (clk * 0x04), 0x00000100, 0x00000100); } } static int nve0_clock_prog(struct nouveau_clock *clk) { struct nve0_clock_priv *priv = (void *)clk; struct { u32 mask; void (*exec)(struct nve0_clock_priv *, int); } stage[] = { { 0x007f, nve0_clock_prog_0 }, /* div programming */ { 0x007f, nve0_clock_prog_1_0 }, /* select div mode */ { 0xff80, nve0_clock_prog_1_1 }, { 0x00ff, nve0_clock_prog_2 }, /* (maybe) program pll */ { 0xff80, nve0_clock_prog_3 }, /* final divider */ { 0x007f, nve0_clock_prog_4_0 }, /* (maybe) select pll mode */ { 0xff80, nve0_clock_prog_4_1 }, }; int i, j; for (i = 0; i < ARRAY_SIZE(stage); i++) { for (j = 0; j < ARRAY_SIZE(priv->eng); j++) { if (!(stage[i].mask & (1 << j))) continue; if (!priv->eng[j].freq) continue; stage[i].exec(priv, j); } } return 0; } static void nve0_clock_tidy(struct nouveau_clock *clk) { struct nve0_clock_priv *priv = (void *)clk; memset(priv->eng, 0x00, sizeof(priv->eng)); } static struct nouveau_clocks nve0_domain[] = { { nv_clk_src_crystal, 0xff }, { nv_clk_src_href , 0xff }, { nv_clk_src_gpc , 0x00, NVKM_CLK_DOM_FLAG_CORE, "core", 2000 }, { nv_clk_src_hubk07 , 0x01, NVKM_CLK_DOM_FLAG_CORE }, { nv_clk_src_rop , 0x02, NVKM_CLK_DOM_FLAG_CORE }, { nv_clk_src_mem , 0x03, 0, "memory", 500 }, { nv_clk_src_hubk06 , 0x04, NVKM_CLK_DOM_FLAG_CORE }, { nv_clk_src_hubk01 , 0x05 }, { nv_clk_src_vdec , 0x06 }, { nv_clk_src_daemon , 0x07 }, { nv_clk_src_max } }; static int nve0_clock_ctor(struct nouveau_object *parent, struct nouveau_object *engine, struct nouveau_oclass *oclass, void *data, u32 size, struct nouveau_object **pobject) { struct nve0_clock_priv *priv; int ret; ret = nouveau_clock_create(parent, engine, oclass, nve0_domain, &priv); *pobject = nv_object(priv); if (ret) return ret; priv->base.read = nve0_clock_read; priv->base.calc = nve0_clock_calc; priv->base.prog = nve0_clock_prog; priv->base.tidy = nve0_clock_tidy; return 0; } struct nouveau_oclass nve0_clock_oclass = { .handle = NV_SUBDEV(CLOCK, 0xe0), .ofuncs = &(struct nouveau_ofuncs) { .ctor = nve0_clock_ctor, .dtor = _nouveau_clock_dtor, .init = _nouveau_clock_init, .fini = _nouveau_clock_fini, }, };