/* * Copyright 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include <subdev/bios.h> #include <subdev/bios/pll.h> #include <subdev/timer.h> #include "pll.h" #include "nva3.h" struct nva3_clock_priv { struct nouveau_clock base; struct nva3_clock_info eng[nv_clk_src_max]; }; static u32 read_clk(struct nva3_clock_priv *, int, bool); static u32 read_pll(struct nva3_clock_priv *, int, u32); static u32 read_vco(struct nva3_clock_priv *priv, int clk) { u32 sctl = nv_rd32(priv, 0x4120 + (clk * 4)); if ((sctl & 0x00000030) != 0x00000030) return read_pll(priv, 0x41, 0x00e820); return read_pll(priv, 0x42, 0x00e8a0); } static u32 read_clk(struct nva3_clock_priv *priv, int clk, bool ignore_en) { u32 sctl, sdiv, sclk; /* refclk for the 0xe8xx plls is a fixed frequency */ if (clk >= 0x40) { if (nv_device(priv)->chipset == 0xaf) { /* no joke.. seriously.. sigh.. */ return nv_rd32(priv, 0x00471c) * 1000; } return nv_device(priv)->crystal; } sctl = nv_rd32(priv, 0x4120 + (clk * 4)); if (!ignore_en && !(sctl & 0x00000100)) return 0; switch (sctl & 0x00003000) { case 0x00000000: return nv_device(priv)->crystal; case 0x00002000: if (sctl & 0x00000040) return 108000; return 100000; case 0x00003000: sclk = read_vco(priv, clk); sdiv = ((sctl & 0x003f0000) >> 16) + 2; return (sclk * 2) / sdiv; default: return 0; } } static u32 read_pll(struct nva3_clock_priv *priv, int clk, u32 pll) { u32 ctrl = nv_rd32(priv, pll + 0); u32 sclk = 0, P = 1, N = 1, M = 1; if (!(ctrl & 0x00000008)) { if (ctrl & 0x00000001) { u32 coef = nv_rd32(priv, pll + 4); M = (coef & 0x000000ff) >> 0; N = (coef & 0x0000ff00) >> 8; P = (coef & 0x003f0000) >> 16; /* no post-divider on these.. */ if ((pll & 0x00ff00) == 0x00e800) P = 1; sclk = read_clk(priv, 0x00 + clk, false); } } else { sclk = read_clk(priv, 0x10 + clk, false); } if (M * P) return sclk * N / (M * P); return 0; } static int nva3_clock_read(struct nouveau_clock *clk, enum nv_clk_src src) { struct nva3_clock_priv *priv = (void *)clk; switch (src) { case nv_clk_src_crystal: return nv_device(priv)->crystal; case nv_clk_src_href: return 100000; case nv_clk_src_core: return read_pll(priv, 0x00, 0x4200); case nv_clk_src_shader: return read_pll(priv, 0x01, 0x4220); case nv_clk_src_mem: return read_pll(priv, 0x02, 0x4000); case nv_clk_src_disp: return read_clk(priv, 0x20, false); case nv_clk_src_vdec: return read_clk(priv, 0x21, false); case nv_clk_src_daemon: return read_clk(priv, 0x25, false); default: nv_error(clk, "invalid clock source %d\n", src); return -EINVAL; } } int nva3_clock_info(struct nouveau_clock *clock, int clk, u32 pll, u32 khz, struct nva3_clock_info *info) { struct nouveau_bios *bios = nouveau_bios(clock); struct nva3_clock_priv *priv = (void *)clock; struct nvbios_pll limits; u32 oclk, sclk, sdiv; int P, N, M, diff; int ret; info->pll = 0; info->clk = 0; switch (khz) { case 27000: info->clk = 0x00000100; return khz; case 100000: info->clk = 0x00002100; return khz; case 108000: info->clk = 0x00002140; return khz; default: sclk = read_vco(priv, clk); sdiv = min((sclk * 2) / (khz - 2999), (u32)65); /* if the clock has a PLL attached, and we can get a within * [-2, 3) MHz of a divider, we'll disable the PLL and use * the divider instead. * * divider can go as low as 2, limited here because NVIDIA * and the VBIOS on my NVA8 seem to prefer using the PLL * for 810MHz - is there a good reason? */ if (sdiv > 4) { oclk = (sclk * 2) / sdiv; diff = khz - oclk; if (!pll || (diff >= -2000 && diff < 3000)) { info->clk = (((sdiv - 2) << 16) | 0x00003100); return oclk; } } if (!pll) return -ERANGE; break; } ret = nvbios_pll_parse(bios, pll, &limits); if (ret) return ret; limits.refclk = read_clk(priv, clk - 0x10, true); if (!limits.refclk) return -EINVAL; ret = nva3_pll_calc(nv_subdev(priv), &limits, khz, &N, NULL, &M, &P); if (ret >= 0) { info->clk = nv_rd32(priv, 0x4120 + (clk * 4)); info->pll = (P << 16) | (N << 8) | M; } return ret ? ret : -ERANGE; } static int calc_clk(struct nva3_clock_priv *priv, struct nouveau_cstate *cstate, int clk, u32 pll, int idx) { int ret = nva3_clock_info(&priv->base, clk, pll, cstate->domain[idx], &priv->eng[idx]); if (ret >= 0) return 0; return ret; } static void prog_pll(struct nva3_clock_priv *priv, int clk, u32 pll, int idx) { struct nva3_clock_info *info = &priv->eng[idx]; const u32 src0 = 0x004120 + (clk * 4); const u32 src1 = 0x004160 + (clk * 4); const u32 ctrl = pll + 0; const u32 coef = pll + 4; if (info->pll) { nv_mask(priv, src0, 0x00000101, 0x00000101); nv_wr32(priv, coef, info->pll); nv_mask(priv, ctrl, 0x00000015, 0x00000015); nv_mask(priv, ctrl, 0x00000010, 0x00000000); nv_wait(priv, ctrl, 0x00020000, 0x00020000); nv_mask(priv, ctrl, 0x00000010, 0x00000010); nv_mask(priv, ctrl, 0x00000008, 0x00000000); nv_mask(priv, src1, 0x00000100, 0x00000000); nv_mask(priv, src1, 0x00000001, 0x00000000); } else { nv_mask(priv, src1, 0x003f3141, 0x00000101 | info->clk); nv_mask(priv, ctrl, 0x00000018, 0x00000018); udelay(20); nv_mask(priv, ctrl, 0x00000001, 0x00000000); nv_mask(priv, src0, 0x00000100, 0x00000000); nv_mask(priv, src0, 0x00000001, 0x00000000); } } static void prog_clk(struct nva3_clock_priv *priv, int clk, int idx) { struct nva3_clock_info *info = &priv->eng[idx]; nv_mask(priv, 0x004120 + (clk * 4), 0x003f3141, 0x00000101 | info->clk); } static int nva3_clock_calc(struct nouveau_clock *clk, struct nouveau_cstate *cstate) { struct nva3_clock_priv *priv = (void *)clk; int ret; if ((ret = calc_clk(priv, cstate, 0x10, 0x4200, nv_clk_src_core)) || (ret = calc_clk(priv, cstate, 0x11, 0x4220, nv_clk_src_shader)) || (ret = calc_clk(priv, cstate, 0x20, 0x0000, nv_clk_src_disp)) || (ret = calc_clk(priv, cstate, 0x21, 0x0000, nv_clk_src_vdec))) return ret; return 0; } static int nva3_clock_prog(struct nouveau_clock *clk) { struct nva3_clock_priv *priv = (void *)clk; prog_pll(priv, 0x00, 0x004200, nv_clk_src_core); prog_pll(priv, 0x01, 0x004220, nv_clk_src_shader); prog_clk(priv, 0x20, nv_clk_src_disp); prog_clk(priv, 0x21, nv_clk_src_vdec); return 0; } static void nva3_clock_tidy(struct nouveau_clock *clk) { } static struct nouveau_clocks nva3_domain[] = { { nv_clk_src_crystal, 0xff }, { nv_clk_src_href , 0xff }, { nv_clk_src_core , 0x00, 0, "core", 1000 }, { nv_clk_src_shader , 0x01, 0, "shader", 1000 }, { nv_clk_src_mem , 0x02, 0, "memory", 1000 }, { nv_clk_src_vdec , 0x03 }, { nv_clk_src_disp , 0x04 }, { nv_clk_src_max } }; static int nva3_clock_ctor(struct nouveau_object *parent, struct nouveau_object *engine, struct nouveau_oclass *oclass, void *data, u32 size, struct nouveau_object **pobject) { struct nva3_clock_priv *priv; int ret; ret = nouveau_clock_create(parent, engine, oclass, nva3_domain, &priv); *pobject = nv_object(priv); if (ret) return ret; priv->base.read = nva3_clock_read; priv->base.calc = nva3_clock_calc; priv->base.prog = nva3_clock_prog; priv->base.tidy = nva3_clock_tidy; return 0; } struct nouveau_oclass nva3_clock_oclass = { .handle = NV_SUBDEV(CLOCK, 0xa3), .ofuncs = &(struct nouveau_ofuncs) { .ctor = nva3_clock_ctor, .dtor = _nouveau_clock_dtor, .init = _nouveau_clock_init, .fini = _nouveau_clock_fini, }, };