/* * Copyright © 2006-2011 Intel Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * * Authors: * Eric Anholt <eric@anholt.net> */ #include <linux/i2c.h> #include <drm/drmP.h> #include "framebuffer.h" #include "psb_drv.h" #include "psb_intel_drv.h" #include "psb_intel_reg.h" #include "gma_display.h" #include "power.h" #define INTEL_LIMIT_I9XX_SDVO_DAC 0 #define INTEL_LIMIT_I9XX_LVDS 1 static const struct gma_limit_t psb_intel_limits[] = { { /* INTEL_LIMIT_I9XX_SDVO_DAC */ .dot = {.min = 20000, .max = 400000}, .vco = {.min = 1400000, .max = 2800000}, .n = {.min = 1, .max = 6}, .m = {.min = 70, .max = 120}, .m1 = {.min = 8, .max = 18}, .m2 = {.min = 3, .max = 7}, .p = {.min = 5, .max = 80}, .p1 = {.min = 1, .max = 8}, .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5}, .find_pll = gma_find_best_pll, }, { /* INTEL_LIMIT_I9XX_LVDS */ .dot = {.min = 20000, .max = 400000}, .vco = {.min = 1400000, .max = 2800000}, .n = {.min = 1, .max = 6}, .m = {.min = 70, .max = 120}, .m1 = {.min = 8, .max = 18}, .m2 = {.min = 3, .max = 7}, .p = {.min = 7, .max = 98}, .p1 = {.min = 1, .max = 8}, /* The single-channel range is 25-112Mhz, and dual-channel * is 80-224Mhz. Prefer single channel as much as possible. */ .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7}, .find_pll = gma_find_best_pll, }, }; static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc, int refclk) { const struct gma_limit_t *limit; if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS]; else limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC]; return limit; } static void psb_intel_clock(int refclk, struct gma_clock_t *clock) { clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); clock->p = clock->p1 * clock->p2; clock->vco = refclk * clock->m / (clock->n + 2); clock->dot = clock->vco / clock->p; } /** * Return the pipe currently connected to the panel fitter, * or -1 if the panel fitter is not present or not in use */ static int psb_intel_panel_fitter_pipe(struct drm_device *dev) { u32 pfit_control; pfit_control = REG_READ(PFIT_CONTROL); /* See if the panel fitter is in use */ if ((pfit_control & PFIT_ENABLE) == 0) return -1; /* Must be on PIPE 1 for PSB */ return 1; } static int psb_intel_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct drm_psb_private *dev_priv = dev->dev_private; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; int pipe = gma_crtc->pipe; const struct psb_offset *map = &dev_priv->regmap[pipe]; int refclk; struct gma_clock_t clock; u32 dpll = 0, fp = 0, dspcntr, pipeconf; bool ok, is_sdvo = false; bool is_lvds = false, is_tv = false; struct drm_mode_config *mode_config = &dev->mode_config; struct drm_connector *connector; const struct gma_limit_t *limit; /* No scan out no play */ if (crtc->fb == NULL) { crtc_funcs->mode_set_base(crtc, x, y, old_fb); return 0; } list_for_each_entry(connector, &mode_config->connector_list, head) { struct gma_encoder *gma_encoder = gma_attached_encoder(connector); if (!connector->encoder || connector->encoder->crtc != crtc) continue; switch (gma_encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; case INTEL_OUTPUT_SDVO: is_sdvo = true; break; case INTEL_OUTPUT_TVOUT: is_tv = true; break; } } refclk = 96000; limit = gma_crtc->clock_funcs->limit(crtc, refclk); ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock); if (!ok) { DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d", adjusted_mode->clock, clock.dot); return 0; } fp = clock.n << 16 | clock.m1 << 8 | clock.m2; dpll = DPLL_VGA_MODE_DIS; if (is_lvds) { dpll |= DPLLB_MODE_LVDS; dpll |= DPLL_DVO_HIGH_SPEED; } else dpll |= DPLLB_MODE_DAC_SERIAL; if (is_sdvo) { int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock; dpll |= DPLL_DVO_HIGH_SPEED; dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; } /* compute bitmask from p1 value */ dpll |= (1 << (clock.p1 - 1)) << 16; switch (clock.p2) { case 5: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; break; case 7: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; break; case 10: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; break; case 14: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; break; } if (is_tv) { /* XXX: just matching BIOS for now */ /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ dpll |= 3; } dpll |= PLL_REF_INPUT_DREFCLK; /* setup pipeconf */ pipeconf = REG_READ(map->conf); /* Set up the display plane register */ dspcntr = DISPPLANE_GAMMA_ENABLE; if (pipe == 0) dspcntr |= DISPPLANE_SEL_PIPE_A; else dspcntr |= DISPPLANE_SEL_PIPE_B; dspcntr |= DISPLAY_PLANE_ENABLE; pipeconf |= PIPEACONF_ENABLE; dpll |= DPLL_VCO_ENABLE; /* Disable the panel fitter if it was on our pipe */ if (psb_intel_panel_fitter_pipe(dev) == pipe) REG_WRITE(PFIT_CONTROL, 0); drm_mode_debug_printmodeline(mode); if (dpll & DPLL_VCO_ENABLE) { REG_WRITE(map->fp0, fp); REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE); REG_READ(map->dpll); udelay(150); } /* The LVDS pin pair needs to be on before the DPLLs are enabled. * This is an exception to the general rule that mode_set doesn't turn * things on. */ if (is_lvds) { u32 lvds = REG_READ(LVDS); lvds &= ~LVDS_PIPEB_SELECT; if (pipe == 1) lvds |= LVDS_PIPEB_SELECT; lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP; /* Set the B0-B3 data pairs corresponding to * whether we're going to * set the DPLLs for dual-channel mode or not. */ lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); if (clock.p2 == 7) lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) * appropriately here, but we need to look more * thoroughly into how panels behave in the two modes. */ REG_WRITE(LVDS, lvds); REG_READ(LVDS); } REG_WRITE(map->fp0, fp); REG_WRITE(map->dpll, dpll); REG_READ(map->dpll); /* Wait for the clocks to stabilize. */ udelay(150); /* write it again -- the BIOS does, after all */ REG_WRITE(map->dpll, dpll); REG_READ(map->dpll); /* Wait for the clocks to stabilize. */ udelay(150); REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) | ((adjusted_mode->crtc_vtotal - 1) << 16)); REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) | ((adjusted_mode->crtc_vblank_end - 1) << 16)); REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); /* pipesrc and dspsize control the size that is scaled from, * which should always be the user's requested size. */ REG_WRITE(map->size, ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); REG_WRITE(map->pos, 0); REG_WRITE(map->src, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); REG_WRITE(map->conf, pipeconf); REG_READ(map->conf); gma_wait_for_vblank(dev); REG_WRITE(map->cntr, dspcntr); /* Flush the plane changes */ crtc_funcs->mode_set_base(crtc, x, y, old_fb); gma_wait_for_vblank(dev); return 0; } /* Returns the clock of the currently programmed mode of the given pipe. */ static int psb_intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc) { struct gma_crtc *gma_crtc = to_gma_crtc(crtc); struct drm_psb_private *dev_priv = dev->dev_private; int pipe = gma_crtc->pipe; const struct psb_offset *map = &dev_priv->regmap[pipe]; u32 dpll; u32 fp; struct gma_clock_t clock; bool is_lvds; struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; if (gma_power_begin(dev, false)) { dpll = REG_READ(map->dpll); if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = REG_READ(map->fp0); else fp = REG_READ(map->fp1); is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN); gma_power_end(dev); } else { dpll = p->dpll; if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = p->fp0; else fp = p->fp1; is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN); } clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; if (is_lvds) { clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> DPLL_FPA01_P1_POST_DIV_SHIFT); clock.p2 = 14; if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) { /* XXX: might not be 66MHz */ psb_intel_clock(66000, &clock); } else psb_intel_clock(48000, &clock); } else { if (dpll & PLL_P1_DIVIDE_BY_TWO) clock.p1 = 2; else { clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; } if (dpll & PLL_P2_DIVIDE_BY_4) clock.p2 = 4; else clock.p2 = 2; psb_intel_clock(48000, &clock); } /* XXX: It would be nice to validate the clocks, but we can't reuse * i830PllIsValid() because it relies on the xf86_config connector * configuration being accurate, which it isn't necessarily. */ return clock.dot; } /** Returns the currently programmed mode of the given pipe. */ struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev, struct drm_crtc *crtc) { struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int pipe = gma_crtc->pipe; struct drm_display_mode *mode; int htot; int hsync; int vtot; int vsync; struct drm_psb_private *dev_priv = dev->dev_private; struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; const struct psb_offset *map = &dev_priv->regmap[pipe]; if (gma_power_begin(dev, false)) { htot = REG_READ(map->htotal); hsync = REG_READ(map->hsync); vtot = REG_READ(map->vtotal); vsync = REG_READ(map->vsync); gma_power_end(dev); } else { htot = p->htotal; hsync = p->hsync; vtot = p->vtotal; vsync = p->vsync; } mode = kzalloc(sizeof(*mode), GFP_KERNEL); if (!mode) return NULL; mode->clock = psb_intel_crtc_clock_get(dev, crtc); mode->hdisplay = (htot & 0xffff) + 1; mode->htotal = ((htot & 0xffff0000) >> 16) + 1; mode->hsync_start = (hsync & 0xffff) + 1; mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; mode->vdisplay = (vtot & 0xffff) + 1; mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; mode->vsync_start = (vsync & 0xffff) + 1; mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; drm_mode_set_name(mode); drm_mode_set_crtcinfo(mode, 0); return mode; } const struct drm_crtc_helper_funcs psb_intel_helper_funcs = { .dpms = gma_crtc_dpms, .mode_fixup = gma_crtc_mode_fixup, .mode_set = psb_intel_crtc_mode_set, .mode_set_base = gma_pipe_set_base, .prepare = gma_crtc_prepare, .commit = gma_crtc_commit, .disable = gma_crtc_disable, }; const struct drm_crtc_funcs psb_intel_crtc_funcs = { .save = gma_crtc_save, .restore = gma_crtc_restore, .cursor_set = gma_crtc_cursor_set, .cursor_move = gma_crtc_cursor_move, .gamma_set = gma_crtc_gamma_set, .set_config = gma_crtc_set_config, .destroy = gma_crtc_destroy, }; const struct gma_clock_funcs psb_clock_funcs = { .clock = psb_intel_clock, .limit = psb_intel_limit, .pll_is_valid = gma_pll_is_valid, }; /* * Set the default value of cursor control and base register * to zero. This is a workaround for h/w defect on Oaktrail */ static void psb_intel_cursor_init(struct drm_device *dev, struct gma_crtc *gma_crtc) { struct drm_psb_private *dev_priv = dev->dev_private; u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR }; u32 base[3] = { CURABASE, CURBBASE, CURCBASE }; struct gtt_range *cursor_gt; if (dev_priv->ops->cursor_needs_phys) { /* Allocate 4 pages of stolen mem for a hardware cursor. That * is enough for the 64 x 64 ARGB cursors we support. */ cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1); if (!cursor_gt) { gma_crtc->cursor_gt = NULL; goto out; } gma_crtc->cursor_gt = cursor_gt; gma_crtc->cursor_addr = dev_priv->stolen_base + cursor_gt->offset; } else { gma_crtc->cursor_gt = NULL; } out: REG_WRITE(control[gma_crtc->pipe], 0); REG_WRITE(base[gma_crtc->pipe], 0); } void psb_intel_crtc_init(struct drm_device *dev, int pipe, struct psb_intel_mode_device *mode_dev) { struct drm_psb_private *dev_priv = dev->dev_private; struct gma_crtc *gma_crtc; int i; uint16_t *r_base, *g_base, *b_base; /* We allocate a extra array of drm_connector pointers * for fbdev after the crtc */ gma_crtc = kzalloc(sizeof(struct gma_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL); if (gma_crtc == NULL) return; gma_crtc->crtc_state = kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL); if (!gma_crtc->crtc_state) { dev_err(dev->dev, "Crtc state error: No memory\n"); kfree(gma_crtc); return; } /* Set the CRTC operations from the chip specific data */ drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs); /* Set the CRTC clock functions from chip specific data */ gma_crtc->clock_funcs = dev_priv->ops->clock_funcs; drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256); gma_crtc->pipe = pipe; gma_crtc->plane = pipe; r_base = gma_crtc->base.gamma_store; g_base = r_base + 256; b_base = g_base + 256; for (i = 0; i < 256; i++) { gma_crtc->lut_r[i] = i; gma_crtc->lut_g[i] = i; gma_crtc->lut_b[i] = i; r_base[i] = i << 8; g_base[i] = i << 8; b_base[i] = i << 8; gma_crtc->lut_adj[i] = 0; } gma_crtc->mode_dev = mode_dev; gma_crtc->cursor_addr = 0; drm_crtc_helper_add(&gma_crtc->base, dev_priv->ops->crtc_helper); /* Setup the array of drm_connector pointer array */ gma_crtc->mode_set.crtc = &gma_crtc->base; BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL); dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base; dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base; gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1); gma_crtc->mode_set.num_connectors = 0; psb_intel_cursor_init(dev, gma_crtc); /* Set to true so that the pipe is forced off on initial config. */ gma_crtc->active = true; } int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_psb_private *dev_priv = dev->dev_private; struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data; struct drm_mode_object *drmmode_obj; struct gma_crtc *crtc; if (!dev_priv) { dev_err(dev->dev, "called with no initialization\n"); return -EINVAL; } drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id, DRM_MODE_OBJECT_CRTC); if (!drmmode_obj) { dev_err(dev->dev, "no such CRTC id\n"); return -ENOENT; } crtc = to_gma_crtc(obj_to_crtc(drmmode_obj)); pipe_from_crtc_id->pipe = crtc->pipe; return 0; } struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe) { struct drm_crtc *crtc = NULL; list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct gma_crtc *gma_crtc = to_gma_crtc(crtc); if (gma_crtc->pipe == pipe) break; } return crtc; } int gma_connector_clones(struct drm_device *dev, int type_mask) { int index_mask = 0; struct drm_connector *connector; int entry = 0; list_for_each_entry(connector, &dev->mode_config.connector_list, head) { struct gma_encoder *gma_encoder = gma_attached_encoder(connector); if (type_mask & (1 << gma_encoder->type)) index_mask |= (1 << entry); entry++; } return index_mask; }