/************************************************************************** * Copyright (c) 2007, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * **************************************************************************/ #include <drm/drmP.h> #include "psb_drv.h" #include "psb_reg.h" /* * Code for the SGX MMU: */ /* * clflush on one processor only: * clflush should apparently flush the cache line on all processors in an * SMP system. */ /* * kmap atomic: * The usage of the slots must be completely encapsulated within a spinlock, and * no other functions that may be using the locks for other purposed may be * called from within the locked region. * Since the slots are per processor, this will guarantee that we are the only * user. */ /* * TODO: Inserting ptes from an interrupt handler: * This may be desirable for some SGX functionality where the GPU can fault in * needed pages. For that, we need to make an atomic insert_pages function, that * may fail. * If it fails, the caller need to insert the page using a workqueue function, * but on average it should be fast. */ struct psb_mmu_driver { /* protects driver- and pd structures. Always take in read mode * before taking the page table spinlock. */ struct rw_semaphore sem; /* protects page tables, directory tables and pt tables. * and pt structures. */ spinlock_t lock; atomic_t needs_tlbflush; uint8_t __iomem *register_map; struct psb_mmu_pd *default_pd; /*uint32_t bif_ctrl;*/ int has_clflush; int clflush_add; unsigned long clflush_mask; struct drm_psb_private *dev_priv; }; struct psb_mmu_pd; struct psb_mmu_pt { struct psb_mmu_pd *pd; uint32_t index; uint32_t count; struct page *p; uint32_t *v; }; struct psb_mmu_pd { struct psb_mmu_driver *driver; int hw_context; struct psb_mmu_pt **tables; struct page *p; struct page *dummy_pt; struct page *dummy_page; uint32_t pd_mask; uint32_t invalid_pde; uint32_t invalid_pte; }; static inline uint32_t psb_mmu_pt_index(uint32_t offset) { return (offset >> PSB_PTE_SHIFT) & 0x3FF; } static inline uint32_t psb_mmu_pd_index(uint32_t offset) { return offset >> PSB_PDE_SHIFT; } static inline void psb_clflush(void *addr) { __asm__ __volatile__("clflush (%0)\n" : : "r"(addr) : "memory"); } static inline void psb_mmu_clflush(struct psb_mmu_driver *driver, void *addr) { if (!driver->has_clflush) return; mb(); psb_clflush(addr); mb(); } static void psb_page_clflush(struct psb_mmu_driver *driver, struct page* page) { uint32_t clflush_add = driver->clflush_add >> PAGE_SHIFT; uint32_t clflush_count = PAGE_SIZE / clflush_add; int i; uint8_t *clf; clf = kmap_atomic(page); mb(); for (i = 0; i < clflush_count; ++i) { psb_clflush(clf); clf += clflush_add; } mb(); kunmap_atomic(clf); } static void psb_pages_clflush(struct psb_mmu_driver *driver, struct page *page[], unsigned long num_pages) { int i; if (!driver->has_clflush) return ; for (i = 0; i < num_pages; i++) psb_page_clflush(driver, *page++); } static void psb_mmu_flush_pd_locked(struct psb_mmu_driver *driver, int force) { atomic_set(&driver->needs_tlbflush, 0); } static void psb_mmu_flush_pd(struct psb_mmu_driver *driver, int force) { down_write(&driver->sem); psb_mmu_flush_pd_locked(driver, force); up_write(&driver->sem); } void psb_mmu_flush(struct psb_mmu_driver *driver, int rc_prot) { if (rc_prot) down_write(&driver->sem); if (rc_prot) up_write(&driver->sem); } void psb_mmu_set_pd_context(struct psb_mmu_pd *pd, int hw_context) { /*ttm_tt_cache_flush(&pd->p, 1);*/ psb_pages_clflush(pd->driver, &pd->p, 1); down_write(&pd->driver->sem); wmb(); psb_mmu_flush_pd_locked(pd->driver, 1); pd->hw_context = hw_context; up_write(&pd->driver->sem); } static inline unsigned long psb_pd_addr_end(unsigned long addr, unsigned long end) { addr = (addr + PSB_PDE_MASK + 1) & ~PSB_PDE_MASK; return (addr < end) ? addr : end; } static inline uint32_t psb_mmu_mask_pte(uint32_t pfn, int type) { uint32_t mask = PSB_PTE_VALID; if (type & PSB_MMU_CACHED_MEMORY) mask |= PSB_PTE_CACHED; if (type & PSB_MMU_RO_MEMORY) mask |= PSB_PTE_RO; if (type & PSB_MMU_WO_MEMORY) mask |= PSB_PTE_WO; return (pfn << PAGE_SHIFT) | mask; } struct psb_mmu_pd *psb_mmu_alloc_pd(struct psb_mmu_driver *driver, int trap_pagefaults, int invalid_type) { struct psb_mmu_pd *pd = kmalloc(sizeof(*pd), GFP_KERNEL); uint32_t *v; int i; if (!pd) return NULL; pd->p = alloc_page(GFP_DMA32); if (!pd->p) goto out_err1; pd->dummy_pt = alloc_page(GFP_DMA32); if (!pd->dummy_pt) goto out_err2; pd->dummy_page = alloc_page(GFP_DMA32); if (!pd->dummy_page) goto out_err3; if (!trap_pagefaults) { pd->invalid_pde = psb_mmu_mask_pte(page_to_pfn(pd->dummy_pt), invalid_type); pd->invalid_pte = psb_mmu_mask_pte(page_to_pfn(pd->dummy_page), invalid_type); } else { pd->invalid_pde = 0; pd->invalid_pte = 0; } v = kmap(pd->dummy_pt); for (i = 0; i < (PAGE_SIZE / sizeof(uint32_t)); ++i) v[i] = pd->invalid_pte; kunmap(pd->dummy_pt); v = kmap(pd->p); for (i = 0; i < (PAGE_SIZE / sizeof(uint32_t)); ++i) v[i] = pd->invalid_pde; kunmap(pd->p); clear_page(kmap(pd->dummy_page)); kunmap(pd->dummy_page); pd->tables = vmalloc_user(sizeof(struct psb_mmu_pt *) * 1024); if (!pd->tables) goto out_err4; pd->hw_context = -1; pd->pd_mask = PSB_PTE_VALID; pd->driver = driver; return pd; out_err4: __free_page(pd->dummy_page); out_err3: __free_page(pd->dummy_pt); out_err2: __free_page(pd->p); out_err1: kfree(pd); return NULL; } static void psb_mmu_free_pt(struct psb_mmu_pt *pt) { __free_page(pt->p); kfree(pt); } void psb_mmu_free_pagedir(struct psb_mmu_pd *pd) { struct psb_mmu_driver *driver = pd->driver; struct psb_mmu_pt *pt; int i; down_write(&driver->sem); if (pd->hw_context != -1) psb_mmu_flush_pd_locked(driver, 1); /* Should take the spinlock here, but we don't need to do that since we have the semaphore in write mode. */ for (i = 0; i < 1024; ++i) { pt = pd->tables[i]; if (pt) psb_mmu_free_pt(pt); } vfree(pd->tables); __free_page(pd->dummy_page); __free_page(pd->dummy_pt); __free_page(pd->p); kfree(pd); up_write(&driver->sem); } static struct psb_mmu_pt *psb_mmu_alloc_pt(struct psb_mmu_pd *pd) { struct psb_mmu_pt *pt = kmalloc(sizeof(*pt), GFP_KERNEL); void *v; uint32_t clflush_add = pd->driver->clflush_add >> PAGE_SHIFT; uint32_t clflush_count = PAGE_SIZE / clflush_add; spinlock_t *lock = &pd->driver->lock; uint8_t *clf; uint32_t *ptes; int i; if (!pt) return NULL; pt->p = alloc_page(GFP_DMA32); if (!pt->p) { kfree(pt); return NULL; } spin_lock(lock); v = kmap_atomic(pt->p); clf = (uint8_t *) v; ptes = (uint32_t *) v; for (i = 0; i < (PAGE_SIZE / sizeof(uint32_t)); ++i) *ptes++ = pd->invalid_pte; if (pd->driver->has_clflush && pd->hw_context != -1) { mb(); for (i = 0; i < clflush_count; ++i) { psb_clflush(clf); clf += clflush_add; } mb(); } kunmap_atomic(v); spin_unlock(lock); pt->count = 0; pt->pd = pd; pt->index = 0; return pt; } static struct psb_mmu_pt *psb_mmu_pt_alloc_map_lock(struct psb_mmu_pd *pd, unsigned long addr) { uint32_t index = psb_mmu_pd_index(addr); struct psb_mmu_pt *pt; uint32_t *v; spinlock_t *lock = &pd->driver->lock; spin_lock(lock); pt = pd->tables[index]; while (!pt) { spin_unlock(lock); pt = psb_mmu_alloc_pt(pd); if (!pt) return NULL; spin_lock(lock); if (pd->tables[index]) { spin_unlock(lock); psb_mmu_free_pt(pt); spin_lock(lock); pt = pd->tables[index]; continue; } v = kmap_atomic(pd->p); pd->tables[index] = pt; v[index] = (page_to_pfn(pt->p) << 12) | pd->pd_mask; pt->index = index; kunmap_atomic((void *) v); if (pd->hw_context != -1) { psb_mmu_clflush(pd->driver, (void *) &v[index]); atomic_set(&pd->driver->needs_tlbflush, 1); } } pt->v = kmap_atomic(pt->p); return pt; } static struct psb_mmu_pt *psb_mmu_pt_map_lock(struct psb_mmu_pd *pd, unsigned long addr) { uint32_t index = psb_mmu_pd_index(addr); struct psb_mmu_pt *pt; spinlock_t *lock = &pd->driver->lock; spin_lock(lock); pt = pd->tables[index]; if (!pt) { spin_unlock(lock); return NULL; } pt->v = kmap_atomic(pt->p); return pt; } static void psb_mmu_pt_unmap_unlock(struct psb_mmu_pt *pt) { struct psb_mmu_pd *pd = pt->pd; uint32_t *v; kunmap_atomic(pt->v); if (pt->count == 0) { v = kmap_atomic(pd->p); v[pt->index] = pd->invalid_pde; pd->tables[pt->index] = NULL; if (pd->hw_context != -1) { psb_mmu_clflush(pd->driver, (void *) &v[pt->index]); atomic_set(&pd->driver->needs_tlbflush, 1); } kunmap_atomic(pt->v); spin_unlock(&pd->driver->lock); psb_mmu_free_pt(pt); return; } spin_unlock(&pd->driver->lock); } static inline void psb_mmu_set_pte(struct psb_mmu_pt *pt, unsigned long addr, uint32_t pte) { pt->v[psb_mmu_pt_index(addr)] = pte; } static inline void psb_mmu_invalidate_pte(struct psb_mmu_pt *pt, unsigned long addr) { pt->v[psb_mmu_pt_index(addr)] = pt->pd->invalid_pte; } void psb_mmu_mirror_gtt(struct psb_mmu_pd *pd, uint32_t mmu_offset, uint32_t gtt_start, uint32_t gtt_pages) { uint32_t *v; uint32_t start = psb_mmu_pd_index(mmu_offset); struct psb_mmu_driver *driver = pd->driver; int num_pages = gtt_pages; down_read(&driver->sem); spin_lock(&driver->lock); v = kmap_atomic(pd->p); v += start; while (gtt_pages--) { *v++ = gtt_start | pd->pd_mask; gtt_start += PAGE_SIZE; } /*ttm_tt_cache_flush(&pd->p, num_pages);*/ psb_pages_clflush(pd->driver, &pd->p, num_pages); kunmap_atomic(v); spin_unlock(&driver->lock); if (pd->hw_context != -1) atomic_set(&pd->driver->needs_tlbflush, 1); up_read(&pd->driver->sem); psb_mmu_flush_pd(pd->driver, 0); } struct psb_mmu_pd *psb_mmu_get_default_pd(struct psb_mmu_driver *driver) { struct psb_mmu_pd *pd; /* down_read(&driver->sem); */ pd = driver->default_pd; /* up_read(&driver->sem); */ return pd; } void psb_mmu_driver_takedown(struct psb_mmu_driver *driver) { psb_mmu_free_pagedir(driver->default_pd); kfree(driver); } struct psb_mmu_driver *psb_mmu_driver_init(uint8_t __iomem * registers, int trap_pagefaults, int invalid_type, struct drm_psb_private *dev_priv) { struct psb_mmu_driver *driver; driver = kmalloc(sizeof(*driver), GFP_KERNEL); if (!driver) return NULL; driver->dev_priv = dev_priv; driver->default_pd = psb_mmu_alloc_pd(driver, trap_pagefaults, invalid_type); if (!driver->default_pd) goto out_err1; spin_lock_init(&driver->lock); init_rwsem(&driver->sem); down_write(&driver->sem); driver->register_map = registers; atomic_set(&driver->needs_tlbflush, 1); driver->has_clflush = 0; if (boot_cpu_has(X86_FEATURE_CLFLSH)) { uint32_t tfms, misc, cap0, cap4, clflush_size; /* * clflush size is determined at kernel setup for x86_64 * but not for i386. We have to do it here. */ cpuid(0x00000001, &tfms, &misc, &cap0, &cap4); clflush_size = ((misc >> 8) & 0xff) * 8; driver->has_clflush = 1; driver->clflush_add = PAGE_SIZE * clflush_size / sizeof(uint32_t); driver->clflush_mask = driver->clflush_add - 1; driver->clflush_mask = ~driver->clflush_mask; } up_write(&driver->sem); return driver; out_err1: kfree(driver); return NULL; } static void psb_mmu_flush_ptes(struct psb_mmu_pd *pd, unsigned long address, uint32_t num_pages, uint32_t desired_tile_stride, uint32_t hw_tile_stride) { struct psb_mmu_pt *pt; uint32_t rows = 1; uint32_t i; unsigned long addr; unsigned long end; unsigned long next; unsigned long add; unsigned long row_add; unsigned long clflush_add = pd->driver->clflush_add; unsigned long clflush_mask = pd->driver->clflush_mask; if (!pd->driver->has_clflush) { /*ttm_tt_cache_flush(&pd->p, num_pages);*/ psb_pages_clflush(pd->driver, &pd->p, num_pages); return; } if (hw_tile_stride) rows = num_pages / desired_tile_stride; else desired_tile_stride = num_pages; add = desired_tile_stride << PAGE_SHIFT; row_add = hw_tile_stride << PAGE_SHIFT; mb(); for (i = 0; i < rows; ++i) { addr = address; end = addr + add; do { next = psb_pd_addr_end(addr, end); pt = psb_mmu_pt_map_lock(pd, addr); if (!pt) continue; do { psb_clflush(&pt->v [psb_mmu_pt_index(addr)]); } while (addr += clflush_add, (addr & clflush_mask) < next); psb_mmu_pt_unmap_unlock(pt); } while (addr = next, next != end); address += row_add; } mb(); } void psb_mmu_remove_pfn_sequence(struct psb_mmu_pd *pd, unsigned long address, uint32_t num_pages) { struct psb_mmu_pt *pt; unsigned long addr; unsigned long end; unsigned long next; unsigned long f_address = address; down_read(&pd->driver->sem); addr = address; end = addr + (num_pages << PAGE_SHIFT); do { next = psb_pd_addr_end(addr, end); pt = psb_mmu_pt_alloc_map_lock(pd, addr); if (!pt) goto out; do { psb_mmu_invalidate_pte(pt, addr); --pt->count; } while (addr += PAGE_SIZE, addr < next); psb_mmu_pt_unmap_unlock(pt); } while (addr = next, next != end); out: if (pd->hw_context != -1) psb_mmu_flush_ptes(pd, f_address, num_pages, 1, 1); up_read(&pd->driver->sem); if (pd->hw_context != -1) psb_mmu_flush(pd->driver, 0); return; } void psb_mmu_remove_pages(struct psb_mmu_pd *pd, unsigned long address, uint32_t num_pages, uint32_t desired_tile_stride, uint32_t hw_tile_stride) { struct psb_mmu_pt *pt; uint32_t rows = 1; uint32_t i; unsigned long addr; unsigned long end; unsigned long next; unsigned long add; unsigned long row_add; unsigned long f_address = address; if (hw_tile_stride) rows = num_pages / desired_tile_stride; else desired_tile_stride = num_pages; add = desired_tile_stride << PAGE_SHIFT; row_add = hw_tile_stride << PAGE_SHIFT; /* down_read(&pd->driver->sem); */ /* Make sure we only need to flush this processor's cache */ for (i = 0; i < rows; ++i) { addr = address; end = addr + add; do { next = psb_pd_addr_end(addr, end); pt = psb_mmu_pt_map_lock(pd, addr); if (!pt) continue; do { psb_mmu_invalidate_pte(pt, addr); --pt->count; } while (addr += PAGE_SIZE, addr < next); psb_mmu_pt_unmap_unlock(pt); } while (addr = next, next != end); address += row_add; } if (pd->hw_context != -1) psb_mmu_flush_ptes(pd, f_address, num_pages, desired_tile_stride, hw_tile_stride); /* up_read(&pd->driver->sem); */ if (pd->hw_context != -1) psb_mmu_flush(pd->driver, 0); } int psb_mmu_insert_pfn_sequence(struct psb_mmu_pd *pd, uint32_t start_pfn, unsigned long address, uint32_t num_pages, int type) { struct psb_mmu_pt *pt; uint32_t pte; unsigned long addr; unsigned long end; unsigned long next; unsigned long f_address = address; int ret = 0; down_read(&pd->driver->sem); addr = address; end = addr + (num_pages << PAGE_SHIFT); do { next = psb_pd_addr_end(addr, end); pt = psb_mmu_pt_alloc_map_lock(pd, addr); if (!pt) { ret = -ENOMEM; goto out; } do { pte = psb_mmu_mask_pte(start_pfn++, type); psb_mmu_set_pte(pt, addr, pte); pt->count++; } while (addr += PAGE_SIZE, addr < next); psb_mmu_pt_unmap_unlock(pt); } while (addr = next, next != end); out: if (pd->hw_context != -1) psb_mmu_flush_ptes(pd, f_address, num_pages, 1, 1); up_read(&pd->driver->sem); if (pd->hw_context != -1) psb_mmu_flush(pd->driver, 1); return ret; } int psb_mmu_insert_pages(struct psb_mmu_pd *pd, struct page **pages, unsigned long address, uint32_t num_pages, uint32_t desired_tile_stride, uint32_t hw_tile_stride, int type) { struct psb_mmu_pt *pt; uint32_t rows = 1; uint32_t i; uint32_t pte; unsigned long addr; unsigned long end; unsigned long next; unsigned long add; unsigned long row_add; unsigned long f_address = address; int ret = 0; if (hw_tile_stride) { if (num_pages % desired_tile_stride != 0) return -EINVAL; rows = num_pages / desired_tile_stride; } else { desired_tile_stride = num_pages; } add = desired_tile_stride << PAGE_SHIFT; row_add = hw_tile_stride << PAGE_SHIFT; down_read(&pd->driver->sem); for (i = 0; i < rows; ++i) { addr = address; end = addr + add; do { next = psb_pd_addr_end(addr, end); pt = psb_mmu_pt_alloc_map_lock(pd, addr); if (!pt) { ret = -ENOMEM; goto out; } do { pte = psb_mmu_mask_pte(page_to_pfn(*pages++), type); psb_mmu_set_pte(pt, addr, pte); pt->count++; } while (addr += PAGE_SIZE, addr < next); psb_mmu_pt_unmap_unlock(pt); } while (addr = next, next != end); address += row_add; } out: if (pd->hw_context != -1) psb_mmu_flush_ptes(pd, f_address, num_pages, desired_tile_stride, hw_tile_stride); up_read(&pd->driver->sem); if (pd->hw_context != -1) psb_mmu_flush(pd->driver, 1); return ret; } int psb_mmu_virtual_to_pfn(struct psb_mmu_pd *pd, uint32_t virtual, unsigned long *pfn) { int ret; struct psb_mmu_pt *pt; uint32_t tmp; spinlock_t *lock = &pd->driver->lock; down_read(&pd->driver->sem); pt = psb_mmu_pt_map_lock(pd, virtual); if (!pt) { uint32_t *v; spin_lock(lock); v = kmap_atomic(pd->p); tmp = v[psb_mmu_pd_index(virtual)]; kunmap_atomic(v); spin_unlock(lock); if (tmp != pd->invalid_pde || !(tmp & PSB_PTE_VALID) || !(pd->invalid_pte & PSB_PTE_VALID)) { ret = -EINVAL; goto out; } ret = 0; *pfn = pd->invalid_pte >> PAGE_SHIFT; goto out; } tmp = pt->v[psb_mmu_pt_index(virtual)]; if (!(tmp & PSB_PTE_VALID)) { ret = -EINVAL; } else { ret = 0; *pfn = tmp >> PAGE_SHIFT; } psb_mmu_pt_unmap_unlock(pt); out: up_read(&pd->driver->sem); return ret; }