/* drivers/devfreq/exynos4210_memorybus.c * * Copyright (c) 2011 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * MyungJoo Ham <myungjoo.ham@samsung.com> * * EXYNOS4 - Memory/Bus clock frequency scaling support in DEVFREQ framework * This version supports EXYNOS4210 only. This changes bus frequencies * and vddint voltages. Exynos4412/4212 should be able to be supported * with minor modifications. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include <linux/io.h> #include <linux/slab.h> #include <linux/mutex.h> #include <linux/suspend.h> #include <linux/pm_opp.h> #include <linux/devfreq.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/module.h> /* Exynos4 ASV has been in the mailing list, but not upstreamed, yet. */ #ifdef CONFIG_EXYNOS_ASV extern unsigned int exynos_result_of_asv; #endif #include <mach/map.h> #include "exynos4_bus.h" #define MAX_SAFEVOLT 1200000 /* 1.2V */ enum exynos4_busf_type { TYPE_BUSF_EXYNOS4210, TYPE_BUSF_EXYNOS4x12, }; /* Assume that the bus is saturated if the utilization is 40% */ #define BUS_SATURATION_RATIO 40 enum ppmu_counter { PPMU_PMNCNT0 = 0, PPMU_PMCCNT1, PPMU_PMNCNT2, PPMU_PMNCNT3, PPMU_PMNCNT_MAX, }; struct exynos4_ppmu { void __iomem *hw_base; unsigned int ccnt; unsigned int event; unsigned int count[PPMU_PMNCNT_MAX]; bool ccnt_overflow; bool count_overflow[PPMU_PMNCNT_MAX]; }; enum busclk_level_idx { LV_0 = 0, LV_1, LV_2, LV_3, LV_4, _LV_END }; #define EX4210_LV_MAX LV_2 #define EX4x12_LV_MAX LV_4 #define EX4210_LV_NUM (LV_2 + 1) #define EX4x12_LV_NUM (LV_4 + 1) /** * struct busfreq_opp_info - opp information for bus * @rate: Frequency in hertz * @volt: Voltage in microvolts corresponding to this OPP */ struct busfreq_opp_info { unsigned long rate; unsigned long volt; }; struct busfreq_data { enum exynos4_busf_type type; struct device *dev; struct devfreq *devfreq; bool disabled; struct regulator *vdd_int; struct regulator *vdd_mif; /* Exynos4412/4212 only */ struct busfreq_opp_info curr_oppinfo; struct exynos4_ppmu dmc[2]; struct notifier_block pm_notifier; struct mutex lock; /* Dividers calculated at boot/probe-time */ unsigned int dmc_divtable[_LV_END]; /* DMC0 */ unsigned int top_divtable[_LV_END]; }; struct bus_opp_table { unsigned int idx; unsigned long clk; unsigned long volt; }; /* 4210 controls clock of mif and voltage of int */ static struct bus_opp_table exynos4210_busclk_table[] = { {LV_0, 400000, 1150000}, {LV_1, 267000, 1050000}, {LV_2, 133000, 1025000}, {0, 0, 0}, }; /* * MIF is the main control knob clock for Exynos4x12 MIF/INT * clock and voltage of both mif/int are controlled. */ static struct bus_opp_table exynos4x12_mifclk_table[] = { {LV_0, 400000, 1100000}, {LV_1, 267000, 1000000}, {LV_2, 160000, 950000}, {LV_3, 133000, 950000}, {LV_4, 100000, 950000}, {0, 0, 0}, }; /* * INT is not the control knob of 4x12. LV_x is not meant to represent * the current performance. (MIF does) */ static struct bus_opp_table exynos4x12_intclk_table[] = { {LV_0, 200000, 1000000}, {LV_1, 160000, 950000}, {LV_2, 133000, 925000}, {LV_3, 100000, 900000}, {0, 0, 0}, }; /* TODO: asv volt definitions are "__initdata"? */ /* Some chips have different operating voltages */ static unsigned int exynos4210_asv_volt[][EX4210_LV_NUM] = { {1150000, 1050000, 1050000}, {1125000, 1025000, 1025000}, {1100000, 1000000, 1000000}, {1075000, 975000, 975000}, {1050000, 950000, 950000}, }; static unsigned int exynos4x12_mif_step_50[][EX4x12_LV_NUM] = { /* 400 267 160 133 100 */ {1050000, 950000, 900000, 900000, 900000}, /* ASV0 */ {1050000, 950000, 900000, 900000, 900000}, /* ASV1 */ {1050000, 950000, 900000, 900000, 900000}, /* ASV2 */ {1050000, 900000, 900000, 900000, 900000}, /* ASV3 */ {1050000, 900000, 900000, 900000, 850000}, /* ASV4 */ {1050000, 900000, 900000, 850000, 850000}, /* ASV5 */ {1050000, 900000, 850000, 850000, 850000}, /* ASV6 */ {1050000, 900000, 850000, 850000, 850000}, /* ASV7 */ {1050000, 900000, 850000, 850000, 850000}, /* ASV8 */ }; static unsigned int exynos4x12_int_volt[][EX4x12_LV_NUM] = { /* 200 160 133 100 */ {1000000, 950000, 925000, 900000}, /* ASV0 */ {975000, 925000, 925000, 900000}, /* ASV1 */ {950000, 925000, 900000, 875000}, /* ASV2 */ {950000, 900000, 900000, 875000}, /* ASV3 */ {925000, 875000, 875000, 875000}, /* ASV4 */ {900000, 850000, 850000, 850000}, /* ASV5 */ {900000, 850000, 850000, 850000}, /* ASV6 */ {900000, 850000, 850000, 850000}, /* ASV7 */ {900000, 850000, 850000, 850000}, /* ASV8 */ }; /*** Clock Divider Data for Exynos4210 ***/ static unsigned int exynos4210_clkdiv_dmc0[][8] = { /* * Clock divider value for following * { DIVACP, DIVACP_PCLK, DIVDPHY, DIVDMC, DIVDMCD * DIVDMCP, DIVCOPY2, DIVCORE_TIMERS } */ /* DMC L0: 400MHz */ { 3, 1, 1, 1, 1, 1, 3, 1 }, /* DMC L1: 266.7MHz */ { 4, 1, 1, 2, 1, 1, 3, 1 }, /* DMC L2: 133MHz */ { 5, 1, 1, 5, 1, 1, 3, 1 }, }; static unsigned int exynos4210_clkdiv_top[][5] = { /* * Clock divider value for following * { DIVACLK200, DIVACLK100, DIVACLK160, DIVACLK133, DIVONENAND } */ /* ACLK200 L0: 200MHz */ { 3, 7, 4, 5, 1 }, /* ACLK200 L1: 160MHz */ { 4, 7, 5, 6, 1 }, /* ACLK200 L2: 133MHz */ { 5, 7, 7, 7, 1 }, }; static unsigned int exynos4210_clkdiv_lr_bus[][2] = { /* * Clock divider value for following * { DIVGDL/R, DIVGPL/R } */ /* ACLK_GDL/R L1: 200MHz */ { 3, 1 }, /* ACLK_GDL/R L2: 160MHz */ { 4, 1 }, /* ACLK_GDL/R L3: 133MHz */ { 5, 1 }, }; /*** Clock Divider Data for Exynos4212/4412 ***/ static unsigned int exynos4x12_clkdiv_dmc0[][6] = { /* * Clock divider value for following * { DIVACP, DIVACP_PCLK, DIVDPHY, DIVDMC, DIVDMCD * DIVDMCP} */ /* DMC L0: 400MHz */ {3, 1, 1, 1, 1, 1}, /* DMC L1: 266.7MHz */ {4, 1, 1, 2, 1, 1}, /* DMC L2: 160MHz */ {5, 1, 1, 4, 1, 1}, /* DMC L3: 133MHz */ {5, 1, 1, 5, 1, 1}, /* DMC L4: 100MHz */ {7, 1, 1, 7, 1, 1}, }; static unsigned int exynos4x12_clkdiv_dmc1[][6] = { /* * Clock divider value for following * { G2DACP, DIVC2C, DIVC2C_ACLK } */ /* DMC L0: 400MHz */ {3, 1, 1}, /* DMC L1: 266.7MHz */ {4, 2, 1}, /* DMC L2: 160MHz */ {5, 4, 1}, /* DMC L3: 133MHz */ {5, 5, 1}, /* DMC L4: 100MHz */ {7, 7, 1}, }; static unsigned int exynos4x12_clkdiv_top[][5] = { /* * Clock divider value for following * { DIVACLK266_GPS, DIVACLK100, DIVACLK160, DIVACLK133, DIVONENAND } */ /* ACLK_GDL/R L0: 200MHz */ {2, 7, 4, 5, 1}, /* ACLK_GDL/R L1: 200MHz */ {2, 7, 4, 5, 1}, /* ACLK_GDL/R L2: 160MHz */ {4, 7, 5, 7, 1}, /* ACLK_GDL/R L3: 133MHz */ {4, 7, 5, 7, 1}, /* ACLK_GDL/R L4: 100MHz */ {7, 7, 7, 7, 1}, }; static unsigned int exynos4x12_clkdiv_lr_bus[][2] = { /* * Clock divider value for following * { DIVGDL/R, DIVGPL/R } */ /* ACLK_GDL/R L0: 200MHz */ {3, 1}, /* ACLK_GDL/R L1: 200MHz */ {3, 1}, /* ACLK_GDL/R L2: 160MHz */ {4, 1}, /* ACLK_GDL/R L3: 133MHz */ {5, 1}, /* ACLK_GDL/R L4: 100MHz */ {7, 1}, }; static unsigned int exynos4x12_clkdiv_sclkip[][3] = { /* * Clock divider value for following * { DIVMFC, DIVJPEG, DIVFIMC0~3} */ /* SCLK_MFC: 200MHz */ {3, 3, 4}, /* SCLK_MFC: 200MHz */ {3, 3, 4}, /* SCLK_MFC: 160MHz */ {4, 4, 5}, /* SCLK_MFC: 133MHz */ {5, 5, 5}, /* SCLK_MFC: 100MHz */ {7, 7, 7}, }; static int exynos4210_set_busclk(struct busfreq_data *data, struct busfreq_opp_info *oppi) { unsigned int index; unsigned int tmp; for (index = LV_0; index < EX4210_LV_NUM; index++) if (oppi->rate == exynos4210_busclk_table[index].clk) break; if (index == EX4210_LV_NUM) return -EINVAL; /* Change Divider - DMC0 */ tmp = data->dmc_divtable[index]; __raw_writel(tmp, EXYNOS4_CLKDIV_DMC0); do { tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_DMC0); } while (tmp & 0x11111111); /* Change Divider - TOP */ tmp = data->top_divtable[index]; __raw_writel(tmp, EXYNOS4_CLKDIV_TOP); do { tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_TOP); } while (tmp & 0x11111); /* Change Divider - LEFTBUS */ tmp = __raw_readl(EXYNOS4_CLKDIV_LEFTBUS); tmp &= ~(EXYNOS4_CLKDIV_BUS_GDLR_MASK | EXYNOS4_CLKDIV_BUS_GPLR_MASK); tmp |= ((exynos4210_clkdiv_lr_bus[index][0] << EXYNOS4_CLKDIV_BUS_GDLR_SHIFT) | (exynos4210_clkdiv_lr_bus[index][1] << EXYNOS4_CLKDIV_BUS_GPLR_SHIFT)); __raw_writel(tmp, EXYNOS4_CLKDIV_LEFTBUS); do { tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_LEFTBUS); } while (tmp & 0x11); /* Change Divider - RIGHTBUS */ tmp = __raw_readl(EXYNOS4_CLKDIV_RIGHTBUS); tmp &= ~(EXYNOS4_CLKDIV_BUS_GDLR_MASK | EXYNOS4_CLKDIV_BUS_GPLR_MASK); tmp |= ((exynos4210_clkdiv_lr_bus[index][0] << EXYNOS4_CLKDIV_BUS_GDLR_SHIFT) | (exynos4210_clkdiv_lr_bus[index][1] << EXYNOS4_CLKDIV_BUS_GPLR_SHIFT)); __raw_writel(tmp, EXYNOS4_CLKDIV_RIGHTBUS); do { tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_RIGHTBUS); } while (tmp & 0x11); return 0; } static int exynos4x12_set_busclk(struct busfreq_data *data, struct busfreq_opp_info *oppi) { unsigned int index; unsigned int tmp; for (index = LV_0; index < EX4x12_LV_NUM; index++) if (oppi->rate == exynos4x12_mifclk_table[index].clk) break; if (index == EX4x12_LV_NUM) return -EINVAL; /* Change Divider - DMC0 */ tmp = data->dmc_divtable[index]; __raw_writel(tmp, EXYNOS4_CLKDIV_DMC0); do { tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_DMC0); } while (tmp & 0x11111111); /* Change Divider - DMC1 */ tmp = __raw_readl(EXYNOS4_CLKDIV_DMC1); tmp &= ~(EXYNOS4_CLKDIV_DMC1_G2D_ACP_MASK | EXYNOS4_CLKDIV_DMC1_C2C_MASK | EXYNOS4_CLKDIV_DMC1_C2CACLK_MASK); tmp |= ((exynos4x12_clkdiv_dmc1[index][0] << EXYNOS4_CLKDIV_DMC1_G2D_ACP_SHIFT) | (exynos4x12_clkdiv_dmc1[index][1] << EXYNOS4_CLKDIV_DMC1_C2C_SHIFT) | (exynos4x12_clkdiv_dmc1[index][2] << EXYNOS4_CLKDIV_DMC1_C2CACLK_SHIFT)); __raw_writel(tmp, EXYNOS4_CLKDIV_DMC1); do { tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_DMC1); } while (tmp & 0x111111); /* Change Divider - TOP */ tmp = __raw_readl(EXYNOS4_CLKDIV_TOP); tmp &= ~(EXYNOS4_CLKDIV_TOP_ACLK266_GPS_MASK | EXYNOS4_CLKDIV_TOP_ACLK100_MASK | EXYNOS4_CLKDIV_TOP_ACLK160_MASK | EXYNOS4_CLKDIV_TOP_ACLK133_MASK | EXYNOS4_CLKDIV_TOP_ONENAND_MASK); tmp |= ((exynos4x12_clkdiv_top[index][0] << EXYNOS4_CLKDIV_TOP_ACLK266_GPS_SHIFT) | (exynos4x12_clkdiv_top[index][1] << EXYNOS4_CLKDIV_TOP_ACLK100_SHIFT) | (exynos4x12_clkdiv_top[index][2] << EXYNOS4_CLKDIV_TOP_ACLK160_SHIFT) | (exynos4x12_clkdiv_top[index][3] << EXYNOS4_CLKDIV_TOP_ACLK133_SHIFT) | (exynos4x12_clkdiv_top[index][4] << EXYNOS4_CLKDIV_TOP_ONENAND_SHIFT)); __raw_writel(tmp, EXYNOS4_CLKDIV_TOP); do { tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_TOP); } while (tmp & 0x11111); /* Change Divider - LEFTBUS */ tmp = __raw_readl(EXYNOS4_CLKDIV_LEFTBUS); tmp &= ~(EXYNOS4_CLKDIV_BUS_GDLR_MASK | EXYNOS4_CLKDIV_BUS_GPLR_MASK); tmp |= ((exynos4x12_clkdiv_lr_bus[index][0] << EXYNOS4_CLKDIV_BUS_GDLR_SHIFT) | (exynos4x12_clkdiv_lr_bus[index][1] << EXYNOS4_CLKDIV_BUS_GPLR_SHIFT)); __raw_writel(tmp, EXYNOS4_CLKDIV_LEFTBUS); do { tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_LEFTBUS); } while (tmp & 0x11); /* Change Divider - RIGHTBUS */ tmp = __raw_readl(EXYNOS4_CLKDIV_RIGHTBUS); tmp &= ~(EXYNOS4_CLKDIV_BUS_GDLR_MASK | EXYNOS4_CLKDIV_BUS_GPLR_MASK); tmp |= ((exynos4x12_clkdiv_lr_bus[index][0] << EXYNOS4_CLKDIV_BUS_GDLR_SHIFT) | (exynos4x12_clkdiv_lr_bus[index][1] << EXYNOS4_CLKDIV_BUS_GPLR_SHIFT)); __raw_writel(tmp, EXYNOS4_CLKDIV_RIGHTBUS); do { tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_RIGHTBUS); } while (tmp & 0x11); /* Change Divider - MFC */ tmp = __raw_readl(EXYNOS4_CLKDIV_MFC); tmp &= ~(EXYNOS4_CLKDIV_MFC_MASK); tmp |= ((exynos4x12_clkdiv_sclkip[index][0] << EXYNOS4_CLKDIV_MFC_SHIFT)); __raw_writel(tmp, EXYNOS4_CLKDIV_MFC); do { tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_MFC); } while (tmp & 0x1); /* Change Divider - JPEG */ tmp = __raw_readl(EXYNOS4_CLKDIV_CAM1); tmp &= ~(EXYNOS4_CLKDIV_CAM1_JPEG_MASK); tmp |= ((exynos4x12_clkdiv_sclkip[index][1] << EXYNOS4_CLKDIV_CAM1_JPEG_SHIFT)); __raw_writel(tmp, EXYNOS4_CLKDIV_CAM1); do { tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_CAM1); } while (tmp & 0x1); /* Change Divider - FIMC0~3 */ tmp = __raw_readl(EXYNOS4_CLKDIV_CAM); tmp &= ~(EXYNOS4_CLKDIV_CAM_FIMC0_MASK | EXYNOS4_CLKDIV_CAM_FIMC1_MASK | EXYNOS4_CLKDIV_CAM_FIMC2_MASK | EXYNOS4_CLKDIV_CAM_FIMC3_MASK); tmp |= ((exynos4x12_clkdiv_sclkip[index][2] << EXYNOS4_CLKDIV_CAM_FIMC0_SHIFT) | (exynos4x12_clkdiv_sclkip[index][2] << EXYNOS4_CLKDIV_CAM_FIMC1_SHIFT) | (exynos4x12_clkdiv_sclkip[index][2] << EXYNOS4_CLKDIV_CAM_FIMC2_SHIFT) | (exynos4x12_clkdiv_sclkip[index][2] << EXYNOS4_CLKDIV_CAM_FIMC3_SHIFT)); __raw_writel(tmp, EXYNOS4_CLKDIV_CAM); do { tmp = __raw_readl(EXYNOS4_CLKDIV_STAT_CAM1); } while (tmp & 0x1111); return 0; } static void busfreq_mon_reset(struct busfreq_data *data) { unsigned int i; for (i = 0; i < 2; i++) { void __iomem *ppmu_base = data->dmc[i].hw_base; /* Reset PPMU */ __raw_writel(0x8000000f, ppmu_base + 0xf010); __raw_writel(0x8000000f, ppmu_base + 0xf050); __raw_writel(0x6, ppmu_base + 0xf000); __raw_writel(0x0, ppmu_base + 0xf100); /* Set PPMU Event */ data->dmc[i].event = 0x6; __raw_writel(((data->dmc[i].event << 12) | 0x1), ppmu_base + 0xfc); /* Start PPMU */ __raw_writel(0x1, ppmu_base + 0xf000); } } static void exynos4_read_ppmu(struct busfreq_data *data) { int i, j; for (i = 0; i < 2; i++) { void __iomem *ppmu_base = data->dmc[i].hw_base; u32 overflow; /* Stop PPMU */ __raw_writel(0x0, ppmu_base + 0xf000); /* Update local data from PPMU */ overflow = __raw_readl(ppmu_base + 0xf050); data->dmc[i].ccnt = __raw_readl(ppmu_base + 0xf100); data->dmc[i].ccnt_overflow = overflow & (1 << 31); for (j = 0; j < PPMU_PMNCNT_MAX; j++) { data->dmc[i].count[j] = __raw_readl( ppmu_base + (0xf110 + (0x10 * j))); data->dmc[i].count_overflow[j] = overflow & (1 << j); } } busfreq_mon_reset(data); } static int exynos4x12_get_intspec(unsigned long mifclk) { int i = 0; while (exynos4x12_intclk_table[i].clk) { if (exynos4x12_intclk_table[i].clk <= mifclk) return i; i++; } return -EINVAL; } static int exynos4_bus_setvolt(struct busfreq_data *data, struct busfreq_opp_info *oppi, struct busfreq_opp_info *oldoppi) { int err = 0, tmp; unsigned long volt = oppi->volt; switch (data->type) { case TYPE_BUSF_EXYNOS4210: /* OPP represents DMC clock + INT voltage */ err = regulator_set_voltage(data->vdd_int, volt, MAX_SAFEVOLT); break; case TYPE_BUSF_EXYNOS4x12: /* OPP represents MIF clock + MIF voltage */ err = regulator_set_voltage(data->vdd_mif, volt, MAX_SAFEVOLT); if (err) break; tmp = exynos4x12_get_intspec(oppi->rate); if (tmp < 0) { err = tmp; regulator_set_voltage(data->vdd_mif, oldoppi->volt, MAX_SAFEVOLT); break; } err = regulator_set_voltage(data->vdd_int, exynos4x12_intclk_table[tmp].volt, MAX_SAFEVOLT); /* Try to recover */ if (err) regulator_set_voltage(data->vdd_mif, oldoppi->volt, MAX_SAFEVOLT); break; default: err = -EINVAL; } return err; } static int exynos4_bus_target(struct device *dev, unsigned long *_freq, u32 flags) { int err = 0; struct platform_device *pdev = container_of(dev, struct platform_device, dev); struct busfreq_data *data = platform_get_drvdata(pdev); struct dev_pm_opp *opp; unsigned long freq; unsigned long old_freq = data->curr_oppinfo.rate; struct busfreq_opp_info new_oppinfo; rcu_read_lock(); opp = devfreq_recommended_opp(dev, _freq, flags); if (IS_ERR(opp)) { rcu_read_unlock(); return PTR_ERR(opp); } new_oppinfo.rate = dev_pm_opp_get_freq(opp); new_oppinfo.volt = dev_pm_opp_get_voltage(opp); rcu_read_unlock(); freq = new_oppinfo.rate; if (old_freq == freq) return 0; dev_dbg(dev, "targeting %lukHz %luuV\n", freq, new_oppinfo.volt); mutex_lock(&data->lock); if (data->disabled) goto out; if (old_freq < freq) err = exynos4_bus_setvolt(data, &new_oppinfo, &data->curr_oppinfo); if (err) goto out; if (old_freq != freq) { switch (data->type) { case TYPE_BUSF_EXYNOS4210: err = exynos4210_set_busclk(data, &new_oppinfo); break; case TYPE_BUSF_EXYNOS4x12: err = exynos4x12_set_busclk(data, &new_oppinfo); break; default: err = -EINVAL; } } if (err) goto out; if (old_freq > freq) err = exynos4_bus_setvolt(data, &new_oppinfo, &data->curr_oppinfo); if (err) goto out; data->curr_oppinfo = new_oppinfo; out: mutex_unlock(&data->lock); return err; } static int exynos4_get_busier_dmc(struct busfreq_data *data) { u64 p0 = data->dmc[0].count[0]; u64 p1 = data->dmc[1].count[0]; p0 *= data->dmc[1].ccnt; p1 *= data->dmc[0].ccnt; if (data->dmc[1].ccnt == 0) return 0; if (p0 > p1) return 0; return 1; } static int exynos4_bus_get_dev_status(struct device *dev, struct devfreq_dev_status *stat) { struct busfreq_data *data = dev_get_drvdata(dev); int busier_dmc; int cycles_x2 = 2; /* 2 x cycles */ void __iomem *addr; u32 timing; u32 memctrl; exynos4_read_ppmu(data); busier_dmc = exynos4_get_busier_dmc(data); stat->current_frequency = data->curr_oppinfo.rate; if (busier_dmc) addr = S5P_VA_DMC1; else addr = S5P_VA_DMC0; memctrl = __raw_readl(addr + 0x04); /* one of DDR2/3/LPDDR2 */ timing = __raw_readl(addr + 0x38); /* CL or WL/RL values */ switch ((memctrl >> 8) & 0xf) { case 0x4: /* DDR2 */ cycles_x2 = ((timing >> 16) & 0xf) * 2; break; case 0x5: /* LPDDR2 */ case 0x6: /* DDR3 */ cycles_x2 = ((timing >> 8) & 0xf) + ((timing >> 0) & 0xf); break; default: pr_err("%s: Unknown Memory Type(%d).\n", __func__, (memctrl >> 8) & 0xf); return -EINVAL; } /* Number of cycles spent on memory access */ stat->busy_time = data->dmc[busier_dmc].count[0] / 2 * (cycles_x2 + 2); stat->busy_time *= 100 / BUS_SATURATION_RATIO; stat->total_time = data->dmc[busier_dmc].ccnt; /* If the counters have overflown, retry */ if (data->dmc[busier_dmc].ccnt_overflow || data->dmc[busier_dmc].count_overflow[0]) return -EAGAIN; return 0; } static void exynos4_bus_exit(struct device *dev) { struct busfreq_data *data = dev_get_drvdata(dev); devfreq_unregister_opp_notifier(dev, data->devfreq); } static struct devfreq_dev_profile exynos4_devfreq_profile = { .initial_freq = 400000, .polling_ms = 50, .target = exynos4_bus_target, .get_dev_status = exynos4_bus_get_dev_status, .exit = exynos4_bus_exit, }; static int exynos4210_init_tables(struct busfreq_data *data) { u32 tmp; int mgrp; int i, err = 0; tmp = __raw_readl(EXYNOS4_CLKDIV_DMC0); for (i = LV_0; i < EX4210_LV_NUM; i++) { tmp &= ~(EXYNOS4_CLKDIV_DMC0_ACP_MASK | EXYNOS4_CLKDIV_DMC0_ACPPCLK_MASK | EXYNOS4_CLKDIV_DMC0_DPHY_MASK | EXYNOS4_CLKDIV_DMC0_DMC_MASK | EXYNOS4_CLKDIV_DMC0_DMCD_MASK | EXYNOS4_CLKDIV_DMC0_DMCP_MASK | EXYNOS4_CLKDIV_DMC0_COPY2_MASK | EXYNOS4_CLKDIV_DMC0_CORETI_MASK); tmp |= ((exynos4210_clkdiv_dmc0[i][0] << EXYNOS4_CLKDIV_DMC0_ACP_SHIFT) | (exynos4210_clkdiv_dmc0[i][1] << EXYNOS4_CLKDIV_DMC0_ACPPCLK_SHIFT) | (exynos4210_clkdiv_dmc0[i][2] << EXYNOS4_CLKDIV_DMC0_DPHY_SHIFT) | (exynos4210_clkdiv_dmc0[i][3] << EXYNOS4_CLKDIV_DMC0_DMC_SHIFT) | (exynos4210_clkdiv_dmc0[i][4] << EXYNOS4_CLKDIV_DMC0_DMCD_SHIFT) | (exynos4210_clkdiv_dmc0[i][5] << EXYNOS4_CLKDIV_DMC0_DMCP_SHIFT) | (exynos4210_clkdiv_dmc0[i][6] << EXYNOS4_CLKDIV_DMC0_COPY2_SHIFT) | (exynos4210_clkdiv_dmc0[i][7] << EXYNOS4_CLKDIV_DMC0_CORETI_SHIFT)); data->dmc_divtable[i] = tmp; } tmp = __raw_readl(EXYNOS4_CLKDIV_TOP); for (i = LV_0; i < EX4210_LV_NUM; i++) { tmp &= ~(EXYNOS4_CLKDIV_TOP_ACLK200_MASK | EXYNOS4_CLKDIV_TOP_ACLK100_MASK | EXYNOS4_CLKDIV_TOP_ACLK160_MASK | EXYNOS4_CLKDIV_TOP_ACLK133_MASK | EXYNOS4_CLKDIV_TOP_ONENAND_MASK); tmp |= ((exynos4210_clkdiv_top[i][0] << EXYNOS4_CLKDIV_TOP_ACLK200_SHIFT) | (exynos4210_clkdiv_top[i][1] << EXYNOS4_CLKDIV_TOP_ACLK100_SHIFT) | (exynos4210_clkdiv_top[i][2] << EXYNOS4_CLKDIV_TOP_ACLK160_SHIFT) | (exynos4210_clkdiv_top[i][3] << EXYNOS4_CLKDIV_TOP_ACLK133_SHIFT) | (exynos4210_clkdiv_top[i][4] << EXYNOS4_CLKDIV_TOP_ONENAND_SHIFT)); data->top_divtable[i] = tmp; } #ifdef CONFIG_EXYNOS_ASV tmp = exynos4_result_of_asv; #else tmp = 0; /* Max voltages for the reliability of the unknown */ #endif pr_debug("ASV Group of Exynos4 is %d\n", tmp); /* Use merged grouping for voltage */ switch (tmp) { case 0: mgrp = 0; break; case 1: case 2: mgrp = 1; break; case 3: case 4: mgrp = 2; break; case 5: case 6: mgrp = 3; break; case 7: mgrp = 4; break; default: pr_warn("Unknown ASV Group. Use max voltage.\n"); mgrp = 0; } for (i = LV_0; i < EX4210_LV_NUM; i++) exynos4210_busclk_table[i].volt = exynos4210_asv_volt[mgrp][i]; for (i = LV_0; i < EX4210_LV_NUM; i++) { err = dev_pm_opp_add(data->dev, exynos4210_busclk_table[i].clk, exynos4210_busclk_table[i].volt); if (err) { dev_err(data->dev, "Cannot add opp entries.\n"); return err; } } return 0; } static int exynos4x12_init_tables(struct busfreq_data *data) { unsigned int i; unsigned int tmp; int ret; /* Enable pause function for DREX2 DVFS */ tmp = __raw_readl(EXYNOS4_DMC_PAUSE_CTRL); tmp |= EXYNOS4_DMC_PAUSE_ENABLE; __raw_writel(tmp, EXYNOS4_DMC_PAUSE_CTRL); tmp = __raw_readl(EXYNOS4_CLKDIV_DMC0); for (i = 0; i < EX4x12_LV_NUM; i++) { tmp &= ~(EXYNOS4_CLKDIV_DMC0_ACP_MASK | EXYNOS4_CLKDIV_DMC0_ACPPCLK_MASK | EXYNOS4_CLKDIV_DMC0_DPHY_MASK | EXYNOS4_CLKDIV_DMC0_DMC_MASK | EXYNOS4_CLKDIV_DMC0_DMCD_MASK | EXYNOS4_CLKDIV_DMC0_DMCP_MASK); tmp |= ((exynos4x12_clkdiv_dmc0[i][0] << EXYNOS4_CLKDIV_DMC0_ACP_SHIFT) | (exynos4x12_clkdiv_dmc0[i][1] << EXYNOS4_CLKDIV_DMC0_ACPPCLK_SHIFT) | (exynos4x12_clkdiv_dmc0[i][2] << EXYNOS4_CLKDIV_DMC0_DPHY_SHIFT) | (exynos4x12_clkdiv_dmc0[i][3] << EXYNOS4_CLKDIV_DMC0_DMC_SHIFT) | (exynos4x12_clkdiv_dmc0[i][4] << EXYNOS4_CLKDIV_DMC0_DMCD_SHIFT) | (exynos4x12_clkdiv_dmc0[i][5] << EXYNOS4_CLKDIV_DMC0_DMCP_SHIFT)); data->dmc_divtable[i] = tmp; } #ifdef CONFIG_EXYNOS_ASV tmp = exynos4_result_of_asv; #else tmp = 0; /* Max voltages for the reliability of the unknown */ #endif if (tmp > 8) tmp = 0; pr_debug("ASV Group of Exynos4x12 is %d\n", tmp); for (i = 0; i < EX4x12_LV_NUM; i++) { exynos4x12_mifclk_table[i].volt = exynos4x12_mif_step_50[tmp][i]; exynos4x12_intclk_table[i].volt = exynos4x12_int_volt[tmp][i]; } for (i = 0; i < EX4x12_LV_NUM; i++) { ret = dev_pm_opp_add(data->dev, exynos4x12_mifclk_table[i].clk, exynos4x12_mifclk_table[i].volt); if (ret) { dev_err(data->dev, "Fail to add opp entries.\n"); return ret; } } return 0; } static int exynos4_busfreq_pm_notifier_event(struct notifier_block *this, unsigned long event, void *ptr) { struct busfreq_data *data = container_of(this, struct busfreq_data, pm_notifier); struct dev_pm_opp *opp; struct busfreq_opp_info new_oppinfo; unsigned long maxfreq = ULONG_MAX; int err = 0; switch (event) { case PM_SUSPEND_PREPARE: /* Set Fastest and Deactivate DVFS */ mutex_lock(&data->lock); data->disabled = true; rcu_read_lock(); opp = dev_pm_opp_find_freq_floor(data->dev, &maxfreq); if (IS_ERR(opp)) { rcu_read_unlock(); dev_err(data->dev, "%s: unable to find a min freq\n", __func__); mutex_unlock(&data->lock); return PTR_ERR(opp); } new_oppinfo.rate = dev_pm_opp_get_freq(opp); new_oppinfo.volt = dev_pm_opp_get_voltage(opp); rcu_read_unlock(); err = exynos4_bus_setvolt(data, &new_oppinfo, &data->curr_oppinfo); if (err) goto unlock; switch (data->type) { case TYPE_BUSF_EXYNOS4210: err = exynos4210_set_busclk(data, &new_oppinfo); break; case TYPE_BUSF_EXYNOS4x12: err = exynos4x12_set_busclk(data, &new_oppinfo); break; default: err = -EINVAL; } if (err) goto unlock; data->curr_oppinfo = new_oppinfo; unlock: mutex_unlock(&data->lock); if (err) return err; return NOTIFY_OK; case PM_POST_RESTORE: case PM_POST_SUSPEND: /* Reactivate */ mutex_lock(&data->lock); data->disabled = false; mutex_unlock(&data->lock); return NOTIFY_OK; } return NOTIFY_DONE; } static int exynos4_busfreq_probe(struct platform_device *pdev) { struct busfreq_data *data; struct dev_pm_opp *opp; struct device *dev = &pdev->dev; int err = 0; data = devm_kzalloc(&pdev->dev, sizeof(struct busfreq_data), GFP_KERNEL); if (data == NULL) { dev_err(dev, "Cannot allocate memory.\n"); return -ENOMEM; } data->type = pdev->id_entry->driver_data; data->dmc[0].hw_base = S5P_VA_DMC0; data->dmc[1].hw_base = S5P_VA_DMC1; data->pm_notifier.notifier_call = exynos4_busfreq_pm_notifier_event; data->dev = dev; mutex_init(&data->lock); switch (data->type) { case TYPE_BUSF_EXYNOS4210: err = exynos4210_init_tables(data); break; case TYPE_BUSF_EXYNOS4x12: err = exynos4x12_init_tables(data); break; default: dev_err(dev, "Cannot determine the device id %d\n", data->type); err = -EINVAL; } if (err) return err; data->vdd_int = devm_regulator_get(dev, "vdd_int"); if (IS_ERR(data->vdd_int)) { dev_err(dev, "Cannot get the regulator \"vdd_int\"\n"); return PTR_ERR(data->vdd_int); } if (data->type == TYPE_BUSF_EXYNOS4x12) { data->vdd_mif = devm_regulator_get(dev, "vdd_mif"); if (IS_ERR(data->vdd_mif)) { dev_err(dev, "Cannot get the regulator \"vdd_mif\"\n"); return PTR_ERR(data->vdd_mif); } } rcu_read_lock(); opp = dev_pm_opp_find_freq_floor(dev, &exynos4_devfreq_profile.initial_freq); if (IS_ERR(opp)) { rcu_read_unlock(); dev_err(dev, "Invalid initial frequency %lu kHz.\n", exynos4_devfreq_profile.initial_freq); return PTR_ERR(opp); } data->curr_oppinfo.rate = dev_pm_opp_get_freq(opp); data->curr_oppinfo.volt = dev_pm_opp_get_voltage(opp); rcu_read_unlock(); platform_set_drvdata(pdev, data); busfreq_mon_reset(data); data->devfreq = devfreq_add_device(dev, &exynos4_devfreq_profile, "simple_ondemand", NULL); if (IS_ERR(data->devfreq)) return PTR_ERR(data->devfreq); devfreq_register_opp_notifier(dev, data->devfreq); err = register_pm_notifier(&data->pm_notifier); if (err) { dev_err(dev, "Failed to setup pm notifier\n"); devfreq_remove_device(data->devfreq); return err; } return 0; } static int exynos4_busfreq_remove(struct platform_device *pdev) { struct busfreq_data *data = platform_get_drvdata(pdev); unregister_pm_notifier(&data->pm_notifier); devfreq_remove_device(data->devfreq); return 0; } static int exynos4_busfreq_resume(struct device *dev) { struct busfreq_data *data = dev_get_drvdata(dev); busfreq_mon_reset(data); return 0; } static const struct dev_pm_ops exynos4_busfreq_pm = { .resume = exynos4_busfreq_resume, }; static const struct platform_device_id exynos4_busfreq_id[] = { { "exynos4210-busfreq", TYPE_BUSF_EXYNOS4210 }, { "exynos4412-busfreq", TYPE_BUSF_EXYNOS4x12 }, { "exynos4212-busfreq", TYPE_BUSF_EXYNOS4x12 }, { }, }; static struct platform_driver exynos4_busfreq_driver = { .probe = exynos4_busfreq_probe, .remove = exynos4_busfreq_remove, .id_table = exynos4_busfreq_id, .driver = { .name = "exynos4-busfreq", .owner = THIS_MODULE, .pm = &exynos4_busfreq_pm, }, }; static int __init exynos4_busfreq_init(void) { return platform_driver_register(&exynos4_busfreq_driver); } late_initcall(exynos4_busfreq_init); static void __exit exynos4_busfreq_exit(void) { platform_driver_unregister(&exynos4_busfreq_driver); } module_exit(exynos4_busfreq_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("EXYNOS4 busfreq driver with devfreq framework"); MODULE_AUTHOR("MyungJoo Ham <myungjoo.ham@samsung.com>");