/* * drivers/ata/sata_dwc_460ex.c * * Synopsys DesignWare Cores (DWC) SATA host driver * * Author: Mark Miesfeld <mmiesfeld@amcc.com> * * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de> * Copyright 2008 DENX Software Engineering * * Based on versions provided by AMCC and Synopsys which are: * Copyright 2006 Applied Micro Circuits Corporation * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #ifdef CONFIG_SATA_DWC_DEBUG #define DEBUG #endif #ifdef CONFIG_SATA_DWC_VDEBUG #define VERBOSE_DEBUG #define DEBUG_NCQ #endif #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/device.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/libata.h> #include <linux/slab.h> #include "libata.h" #include <scsi/scsi_host.h> #include <scsi/scsi_cmnd.h> /* These two are defined in "libata.h" */ #undef DRV_NAME #undef DRV_VERSION #define DRV_NAME "sata-dwc" #define DRV_VERSION "1.3" /* SATA DMA driver Globals */ #define DMA_NUM_CHANS 1 #define DMA_NUM_CHAN_REGS 8 /* SATA DMA Register definitions */ #define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length*/ struct dmareg { u32 low; /* Low bits 0-31 */ u32 high; /* High bits 32-63 */ }; /* DMA Per Channel registers */ struct dma_chan_regs { struct dmareg sar; /* Source Address */ struct dmareg dar; /* Destination address */ struct dmareg llp; /* Linked List Pointer */ struct dmareg ctl; /* Control */ struct dmareg sstat; /* Source Status not implemented in core */ struct dmareg dstat; /* Destination Status not implemented in core*/ struct dmareg sstatar; /* Source Status Address not impl in core */ struct dmareg dstatar; /* Destination Status Address not implemente */ struct dmareg cfg; /* Config */ struct dmareg sgr; /* Source Gather */ struct dmareg dsr; /* Destination Scatter */ }; /* Generic Interrupt Registers */ struct dma_interrupt_regs { struct dmareg tfr; /* Transfer Interrupt */ struct dmareg block; /* Block Interrupt */ struct dmareg srctran; /* Source Transfer Interrupt */ struct dmareg dsttran; /* Dest Transfer Interrupt */ struct dmareg error; /* Error */ }; struct ahb_dma_regs { struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS]; struct dma_interrupt_regs interrupt_raw; /* Raw Interrupt */ struct dma_interrupt_regs interrupt_status; /* Interrupt Status */ struct dma_interrupt_regs interrupt_mask; /* Interrupt Mask */ struct dma_interrupt_regs interrupt_clear; /* Interrupt Clear */ struct dmareg statusInt; /* Interrupt combined*/ struct dmareg rq_srcreg; /* Src Trans Req */ struct dmareg rq_dstreg; /* Dst Trans Req */ struct dmareg rq_sgl_srcreg; /* Sngl Src Trans Req*/ struct dmareg rq_sgl_dstreg; /* Sngl Dst Trans Req*/ struct dmareg rq_lst_srcreg; /* Last Src Trans Req*/ struct dmareg rq_lst_dstreg; /* Last Dst Trans Req*/ struct dmareg dma_cfg; /* DMA Config */ struct dmareg dma_chan_en; /* DMA Channel Enable*/ struct dmareg dma_id; /* DMA ID */ struct dmareg dma_test; /* DMA Test */ struct dmareg res1; /* reserved */ struct dmareg res2; /* reserved */ /* * DMA Comp Params * Param 6 = dma_param[0], Param 5 = dma_param[1], * Param 4 = dma_param[2] ... */ struct dmareg dma_params[6]; }; /* Data structure for linked list item */ struct lli { u32 sar; /* Source Address */ u32 dar; /* Destination address */ u32 llp; /* Linked List Pointer */ struct dmareg ctl; /* Control */ struct dmareg dstat; /* Destination Status */ }; enum { SATA_DWC_DMAC_LLI_SZ = (sizeof(struct lli)), SATA_DWC_DMAC_LLI_NUM = 256, SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \ SATA_DWC_DMAC_LLI_NUM), SATA_DWC_DMAC_TWIDTH_BYTES = 4, SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \ SATA_DWC_DMAC_TWIDTH_BYTES), }; /* DMA Register Operation Bits */ enum { DMA_EN = 0x00000001, /* Enable AHB DMA */ DMA_CTL_LLP_SRCEN = 0x10000000, /* Blk chain enable Src */ DMA_CTL_LLP_DSTEN = 0x08000000, /* Blk chain enable Dst */ }; #define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */ #define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */ /* Enable channel */ #define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \ ((0x000000001 << (ch)) << 8)) /* Disable channel */ #define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8)) /* Transfer Type & Flow Controller */ #define DMA_CTL_TTFC(type) (((type) & 0x7) << 20) #define DMA_CTL_SMS(num) (((num) & 0x3) << 25) /* Src Master Select */ #define DMA_CTL_DMS(num) (((num) & 0x3) << 23)/* Dst Master Select */ /* Src Burst Transaction Length */ #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14) /* Dst Burst Transaction Length */ #define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11) /* Source Transfer Width */ #define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4) /* Destination Transfer Width */ #define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1) /* Assign HW handshaking interface (x) to destination / source peripheral */ #define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11) #define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7) #define DMA_CFG_HW_CH_PRIOR(int_num) (((int_num) & 0xF) << 5) #define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master)) /* * This define is used to set block chaining disabled in the control low * register. It is already in little endian format so it can be &'d dirctly. * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN)) */ enum { DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7, DMA_CTL_TTFC_P2M_DMAC = 0x00000002, /* Per to mem, DMAC cntr */ DMA_CTL_TTFC_M2P_PER = 0x00000003, /* Mem to per, peripheral cntr */ DMA_CTL_SINC_INC = 0x00000000, /* Source Address Increment */ DMA_CTL_SINC_DEC = 0x00000200, DMA_CTL_SINC_NOCHANGE = 0x00000400, DMA_CTL_DINC_INC = 0x00000000, /* Destination Address Increment */ DMA_CTL_DINC_DEC = 0x00000080, DMA_CTL_DINC_NOCHANGE = 0x00000100, DMA_CTL_INT_EN = 0x00000001, /* Interrupt Enable */ /* Channel Configuration Register high bits */ DMA_CFG_FCMOD_REQ = 0x00000001, /* Flow Control - request based */ DMA_CFG_PROTCTL = (0x00000003 << 2),/* Protection Control */ /* Channel Configuration Register low bits */ DMA_CFG_RELD_DST = 0x80000000, /* Reload Dest / Src Addr */ DMA_CFG_RELD_SRC = 0x40000000, DMA_CFG_HS_SELSRC = 0x00000800, /* Software handshake Src/ Dest */ DMA_CFG_HS_SELDST = 0x00000400, DMA_CFG_FIFOEMPTY = (0x00000001 << 9), /* FIFO Empty bit */ /* Channel Linked List Pointer Register */ DMA_LLP_AHBMASTER1 = 0, /* List Master Select */ DMA_LLP_AHBMASTER2 = 1, SATA_DWC_MAX_PORTS = 1, SATA_DWC_SCR_OFFSET = 0x24, SATA_DWC_REG_OFFSET = 0x64, }; /* DWC SATA Registers */ struct sata_dwc_regs { u32 fptagr; /* 1st party DMA tag */ u32 fpbor; /* 1st party DMA buffer offset */ u32 fptcr; /* 1st party DMA Xfr count */ u32 dmacr; /* DMA Control */ u32 dbtsr; /* DMA Burst Transac size */ u32 intpr; /* Interrupt Pending */ u32 intmr; /* Interrupt Mask */ u32 errmr; /* Error Mask */ u32 llcr; /* Link Layer Control */ u32 phycr; /* PHY Control */ u32 physr; /* PHY Status */ u32 rxbistpd; /* Recvd BIST pattern def register */ u32 rxbistpd1; /* Recvd BIST data dword1 */ u32 rxbistpd2; /* Recvd BIST pattern data dword2 */ u32 txbistpd; /* Trans BIST pattern def register */ u32 txbistpd1; /* Trans BIST data dword1 */ u32 txbistpd2; /* Trans BIST data dword2 */ u32 bistcr; /* BIST Control Register */ u32 bistfctr; /* BIST FIS Count Register */ u32 bistsr; /* BIST Status Register */ u32 bistdecr; /* BIST Dword Error count register */ u32 res[15]; /* Reserved locations */ u32 testr; /* Test Register */ u32 versionr; /* Version Register */ u32 idr; /* ID Register */ u32 unimpl[192]; /* Unimplemented */ u32 dmadr[256]; /* FIFO Locations in DMA Mode */ }; enum { SCR_SCONTROL_DET_ENABLE = 0x00000001, SCR_SSTATUS_DET_PRESENT = 0x00000001, SCR_SERROR_DIAG_X = 0x04000000, /* DWC SATA Register Operations */ SATA_DWC_TXFIFO_DEPTH = 0x01FF, SATA_DWC_RXFIFO_DEPTH = 0x01FF, SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004, SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN), SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN), SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN, SATA_DWC_INTPR_DMAT = 0x00000001, SATA_DWC_INTPR_NEWFP = 0x00000002, SATA_DWC_INTPR_PMABRT = 0x00000004, SATA_DWC_INTPR_ERR = 0x00000008, SATA_DWC_INTPR_NEWBIST = 0x00000010, SATA_DWC_INTPR_IPF = 0x10000000, SATA_DWC_INTMR_DMATM = 0x00000001, SATA_DWC_INTMR_NEWFPM = 0x00000002, SATA_DWC_INTMR_PMABRTM = 0x00000004, SATA_DWC_INTMR_ERRM = 0x00000008, SATA_DWC_INTMR_NEWBISTM = 0x00000010, SATA_DWC_LLCR_SCRAMEN = 0x00000001, SATA_DWC_LLCR_DESCRAMEN = 0x00000002, SATA_DWC_LLCR_RPDEN = 0x00000004, /* This is all error bits, zero's are reserved fields. */ SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03 }; #define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F) #define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\ SATA_DWC_DMACR_TMOD_TXCHEN) #define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\ SATA_DWC_DMACR_TMOD_TXCHEN) #define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH) #define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\ << 16) struct sata_dwc_device { struct device *dev; /* generic device struct */ struct ata_probe_ent *pe; /* ptr to probe-ent */ struct ata_host *host; u8 *reg_base; struct sata_dwc_regs *sata_dwc_regs; /* DW Synopsys SATA specific */ int irq_dma; }; #define SATA_DWC_QCMD_MAX 32 struct sata_dwc_device_port { struct sata_dwc_device *hsdev; int cmd_issued[SATA_DWC_QCMD_MAX]; struct lli *llit[SATA_DWC_QCMD_MAX]; /* DMA LLI table */ dma_addr_t llit_dma[SATA_DWC_QCMD_MAX]; u32 dma_chan[SATA_DWC_QCMD_MAX]; int dma_pending[SATA_DWC_QCMD_MAX]; }; /* * Commonly used DWC SATA driver Macros */ #define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)\ (host)->private_data) #define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)\ (ap)->host->private_data) #define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)\ (ap)->private_data) #define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)\ (qc)->ap->host->private_data) #define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)\ (hsdevp)->hsdev) enum { SATA_DWC_CMD_ISSUED_NOT = 0, SATA_DWC_CMD_ISSUED_PEND = 1, SATA_DWC_CMD_ISSUED_EXEC = 2, SATA_DWC_CMD_ISSUED_NODATA = 3, SATA_DWC_DMA_PENDING_NONE = 0, SATA_DWC_DMA_PENDING_TX = 1, SATA_DWC_DMA_PENDING_RX = 2, }; struct sata_dwc_host_priv { void __iomem *scr_addr_sstatus; u32 sata_dwc_sactive_issued ; u32 sata_dwc_sactive_queued ; u32 dma_interrupt_count; struct ahb_dma_regs *sata_dma_regs; struct device *dwc_dev; int dma_channel; }; struct sata_dwc_host_priv host_pvt; /* * Prototypes */ static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag); static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, u32 check_status); static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status); static void sata_dwc_port_stop(struct ata_port *ap); static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag); static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq); static void dma_dwc_exit(struct sata_dwc_device *hsdev); static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems, struct lli *lli, dma_addr_t dma_lli, void __iomem *addr, int dir); static void dma_dwc_xfer_start(int dma_ch); static const char *get_prot_descript(u8 protocol) { switch ((enum ata_tf_protocols)protocol) { case ATA_PROT_NODATA: return "ATA no data"; case ATA_PROT_PIO: return "ATA PIO"; case ATA_PROT_DMA: return "ATA DMA"; case ATA_PROT_NCQ: return "ATA NCQ"; case ATAPI_PROT_NODATA: return "ATAPI no data"; case ATAPI_PROT_PIO: return "ATAPI PIO"; case ATAPI_PROT_DMA: return "ATAPI DMA"; default: return "unknown"; } } static const char *get_dma_dir_descript(int dma_dir) { switch ((enum dma_data_direction)dma_dir) { case DMA_BIDIRECTIONAL: return "bidirectional"; case DMA_TO_DEVICE: return "to device"; case DMA_FROM_DEVICE: return "from device"; default: return "none"; } } static void sata_dwc_tf_dump(struct ata_taskfile *tf) { dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:" "0x%lx device: %x\n", tf->command, get_prot_descript(tf->protocol), tf->flags, tf->device); dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x " "lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal, tf->lbam, tf->lbah); dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x " "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n", tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, tf->hob_lbah); } /* * Function: get_burst_length_encode * arguments: datalength: length in bytes of data * returns value to be programmed in register corresponding to data length * This value is effectively the log(base 2) of the length */ static int get_burst_length_encode(int datalength) { int items = datalength >> 2; /* div by 4 to get lword count */ if (items >= 64) return 5; if (items >= 32) return 4; if (items >= 16) return 3; if (items >= 8) return 2; if (items >= 4) return 1; return 0; } static void clear_chan_interrupts(int c) { out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low), DMA_CHANNEL(c)); out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low), DMA_CHANNEL(c)); out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low), DMA_CHANNEL(c)); out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low), DMA_CHANNEL(c)); out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low), DMA_CHANNEL(c)); } /* * Function: dma_request_channel * arguments: None * returns channel number if available else -1 * This function assigns the next available DMA channel from the list to the * requester */ static int dma_request_channel(void) { /* Check if the channel is not currently in use */ if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) & DMA_CHANNEL(host_pvt.dma_channel))) return host_pvt.dma_channel; dev_err(host_pvt.dwc_dev, "%s Channel %d is currently in use\n", __func__, host_pvt.dma_channel); return -1; } /* * Function: dma_dwc_interrupt * arguments: irq, dev_id, pt_regs * returns channel number if available else -1 * Interrupt Handler for DW AHB SATA DMA */ static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance) { int chan; u32 tfr_reg, err_reg; unsigned long flags; struct sata_dwc_device *hsdev = (struct sata_dwc_device *)hsdev_instance; struct ata_host *host = (struct ata_host *)hsdev->host; struct ata_port *ap; struct sata_dwc_device_port *hsdevp; u8 tag = 0; unsigned int port = 0; spin_lock_irqsave(&host->lock, flags); ap = host->ports[port]; hsdevp = HSDEVP_FROM_AP(ap); tag = ap->link.active_tag; tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\ .low)); err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\ .low)); dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n", tfr_reg, err_reg, hsdevp->dma_pending[tag], port); chan = host_pvt.dma_channel; if (chan >= 0) { /* Check for end-of-transfer interrupt. */ if (tfr_reg & DMA_CHANNEL(chan)) { /* * Each DMA command produces 2 interrupts. Only * complete the command after both interrupts have been * seen. (See sata_dwc_isr()) */ host_pvt.dma_interrupt_count++; sata_dwc_clear_dmacr(hsdevp, tag); if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) { dev_err(ap->dev, "DMA not pending eot=0x%08x " "err=0x%08x tag=0x%02x pending=%d\n", tfr_reg, err_reg, tag, hsdevp->dma_pending[tag]); } if ((host_pvt.dma_interrupt_count % 2) == 0) sata_dwc_dma_xfer_complete(ap, 1); /* Clear the interrupt */ out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\ .tfr.low), DMA_CHANNEL(chan)); } /* Check for error interrupt. */ if (err_reg & DMA_CHANNEL(chan)) { /* TODO Need error handler ! */ dev_err(ap->dev, "error interrupt err_reg=0x%08x\n", err_reg); /* Clear the interrupt. */ out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\ .error.low), DMA_CHANNEL(chan)); } } spin_unlock_irqrestore(&host->lock, flags); return IRQ_HANDLED; } /* * Function: dma_request_interrupts * arguments: hsdev * returns status * This function registers ISR for a particular DMA channel interrupt */ static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq) { int retval = 0; int chan = host_pvt.dma_channel; if (chan >= 0) { /* Unmask error interrupt */ out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low, DMA_ENABLE_CHAN(chan)); /* Unmask end-of-transfer interrupt */ out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low, DMA_ENABLE_CHAN(chan)); } retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev); if (retval) { dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n", __func__, irq); return -ENODEV; } /* Mark this interrupt as requested */ hsdev->irq_dma = irq; return 0; } /* * Function: map_sg_to_lli * The Synopsis driver has a comment proposing that better performance * is possible by only enabling interrupts on the last item in the linked list. * However, it seems that could be a problem if an error happened on one of the * first items. The transfer would halt, but no error interrupt would occur. * Currently this function sets interrupts enabled for each linked list item: * DMA_CTL_INT_EN. */ static int map_sg_to_lli(struct scatterlist *sg, int num_elems, struct lli *lli, dma_addr_t dma_lli, void __iomem *dmadr_addr, int dir) { int i, idx = 0; int fis_len = 0; dma_addr_t next_llp; int bl; int sms_val, dms_val; sms_val = 0; dms_val = 1 + host_pvt.dma_channel; dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x" " dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli, (u32)dmadr_addr); bl = get_burst_length_encode(AHB_DMA_BRST_DFLT); for (i = 0; i < num_elems; i++, sg++) { u32 addr, offset; u32 sg_len, len; addr = (u32) sg_dma_address(sg); sg_len = sg_dma_len(sg); dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len" "=%d\n", __func__, i, addr, sg_len); while (sg_len) { if (idx >= SATA_DWC_DMAC_LLI_NUM) { /* The LLI table is not large enough. */ dev_err(host_pvt.dwc_dev, "LLI table overrun " "(idx=%d)\n", idx); break; } len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ? SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len; offset = addr & 0xffff; if ((offset + sg_len) > 0x10000) len = 0x10000 - offset; /* * Make sure a LLI block is not created that will span * 8K max FIS boundary. If the block spans such a FIS * boundary, there is a chance that a DMA burst will * cross that boundary -- this results in an error in * the host controller. */ if (fis_len + len > 8192) { dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len=" "%d(0x%x) len=%d(0x%x)\n", fis_len, fis_len, len, len); len = 8192 - fis_len; fis_len = 0; } else { fis_len += len; } if (fis_len == 8192) fis_len = 0; /* * Set DMA addresses and lower half of control register * based on direction. */ if (dir == DMA_FROM_DEVICE) { lli[idx].dar = cpu_to_le32(addr); lli[idx].sar = cpu_to_le32((u32)dmadr_addr); lli[idx].ctl.low = cpu_to_le32( DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) | DMA_CTL_SMS(sms_val) | DMA_CTL_DMS(dms_val) | DMA_CTL_SRC_MSIZE(bl) | DMA_CTL_DST_MSIZE(bl) | DMA_CTL_SINC_NOCHANGE | DMA_CTL_SRC_TRWID(2) | DMA_CTL_DST_TRWID(2) | DMA_CTL_INT_EN | DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN); } else { /* DMA_TO_DEVICE */ lli[idx].sar = cpu_to_le32(addr); lli[idx].dar = cpu_to_le32((u32)dmadr_addr); lli[idx].ctl.low = cpu_to_le32( DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) | DMA_CTL_SMS(dms_val) | DMA_CTL_DMS(sms_val) | DMA_CTL_SRC_MSIZE(bl) | DMA_CTL_DST_MSIZE(bl) | DMA_CTL_DINC_NOCHANGE | DMA_CTL_SRC_TRWID(2) | DMA_CTL_DST_TRWID(2) | DMA_CTL_INT_EN | DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN); } dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: " "0x%08x val: 0x%08x\n", __func__, len, DMA_CTL_BLK_TS(len / 4)); /* Program the LLI CTL high register */ lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\ (len / 4)); /* Program the next pointer. The next pointer must be * the physical address, not the virtual address. */ next_llp = (dma_lli + ((idx + 1) * sizeof(struct \ lli))); /* The last 2 bits encode the list master select. */ next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2); lli[idx].llp = cpu_to_le32(next_llp); idx++; sg_len -= len; addr += len; } } /* * The last next ptr has to be zero and the last control low register * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source * and destination enable) set back to 0 (disabled.) This is what tells * the core that this is the last item in the linked list. */ if (idx) { lli[idx-1].llp = 0x00000000; lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32; /* Flush cache to memory */ dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx), DMA_BIDIRECTIONAL); } return idx; } /* * Function: dma_dwc_xfer_start * arguments: Channel number * Return : None * Enables the DMA channel */ static void dma_dwc_xfer_start(int dma_ch) { /* Enable the DMA channel */ out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low), in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) | DMA_ENABLE_CHAN(dma_ch)); } static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems, struct lli *lli, dma_addr_t dma_lli, void __iomem *addr, int dir) { int dma_ch; int num_lli; /* Acquire DMA channel */ dma_ch = dma_request_channel(); if (dma_ch == -1) { dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n", __func__); return -EAGAIN; } /* Convert SG list to linked list of items (LLIs) for AHB DMA */ num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir); dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:" " 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems, lli, (u32)dma_lli, addr, num_lli); clear_chan_interrupts(dma_ch); /* Program the CFG register. */ out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high), DMA_CFG_HW_HS_SRC(dma_ch) | DMA_CFG_HW_HS_DEST(dma_ch) | DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ); out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low), DMA_CFG_HW_CH_PRIOR(dma_ch)); /* Program the address of the linked list */ out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low), DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2)); /* Program the CTL register with src enable / dst enable */ out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low), DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN); return dma_ch; } /* * Function: dma_dwc_exit * arguments: None * returns status * This function exits the SATA DMA driver */ static void dma_dwc_exit(struct sata_dwc_device *hsdev) { dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__); if (host_pvt.sata_dma_regs) { iounmap(host_pvt.sata_dma_regs); host_pvt.sata_dma_regs = NULL; } if (hsdev->irq_dma) { free_irq(hsdev->irq_dma, hsdev); hsdev->irq_dma = 0; } } /* * Function: dma_dwc_init * arguments: hsdev * returns status * This function initializes the SATA DMA driver */ static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq) { int err; err = dma_request_interrupts(hsdev, irq); if (err) { dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns" " %d\n", __func__, err); goto error_out; } /* Enabe DMA */ out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN); dev_notice(host_pvt.dwc_dev, "DMA initialized\n"); dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\ sata_dma_regs); return 0; error_out: dma_dwc_exit(hsdev); return err; } static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val) { if (scr > SCR_NOTIFICATION) { dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", __func__, scr); return -EINVAL; } *val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4)); dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", __func__, link->ap->print_id, scr, *val); return 0; } static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val) { dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", __func__, link->ap->print_id, scr, val); if (scr > SCR_NOTIFICATION) { dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", __func__, scr); return -EINVAL; } out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val); return 0; } static u32 core_scr_read(unsigned int scr) { return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\ (scr * 4)); } static void core_scr_write(unsigned int scr, u32 val) { out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4), val); } static void clear_serror(void) { u32 val; val = core_scr_read(SCR_ERROR); core_scr_write(SCR_ERROR, val); } static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit) { out_le32(&hsdev->sata_dwc_regs->intpr, in_le32(&hsdev->sata_dwc_regs->intpr)); } static u32 qcmd_tag_to_mask(u8 tag) { return 0x00000001 << (tag & 0x1f); } /* See ahci.c */ static void sata_dwc_error_intr(struct ata_port *ap, struct sata_dwc_device *hsdev, uint intpr) { struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); struct ata_eh_info *ehi = &ap->link.eh_info; unsigned int err_mask = 0, action = 0; struct ata_queued_cmd *qc; u32 serror; u8 status, tag; u32 err_reg; ata_ehi_clear_desc(ehi); serror = core_scr_read(SCR_ERROR); status = ap->ops->sff_check_status(ap); err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\ low)); tag = ap->link.active_tag; dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x " "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n", __func__, serror, intpr, status, host_pvt.dma_interrupt_count, hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg); /* Clear error register and interrupt bit */ clear_serror(); clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR); /* This is the only error happening now. TODO check for exact error */ err_mask |= AC_ERR_HOST_BUS; action |= ATA_EH_RESET; /* Pass this on to EH */ ehi->serror |= serror; ehi->action |= action; qc = ata_qc_from_tag(ap, tag); if (qc) qc->err_mask |= err_mask; else ehi->err_mask |= err_mask; ata_port_abort(ap); } /* * Function : sata_dwc_isr * arguments : irq, void *dev_instance, struct pt_regs *regs * Return value : irqreturn_t - status of IRQ * This Interrupt handler called via port ops registered function. * .irq_handler = sata_dwc_isr */ static irqreturn_t sata_dwc_isr(int irq, void *dev_instance) { struct ata_host *host = (struct ata_host *)dev_instance; struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host); struct ata_port *ap; struct ata_queued_cmd *qc; unsigned long flags; u8 status, tag; int handled, num_processed, port = 0; uint intpr, sactive, sactive2, tag_mask; struct sata_dwc_device_port *hsdevp; host_pvt.sata_dwc_sactive_issued = 0; spin_lock_irqsave(&host->lock, flags); /* Read the interrupt register */ intpr = in_le32(&hsdev->sata_dwc_regs->intpr); ap = host->ports[port]; hsdevp = HSDEVP_FROM_AP(ap); dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr, ap->link.active_tag); /* Check for error interrupt */ if (intpr & SATA_DWC_INTPR_ERR) { sata_dwc_error_intr(ap, hsdev, intpr); handled = 1; goto DONE; } /* Check for DMA SETUP FIS (FP DMA) interrupt */ if (intpr & SATA_DWC_INTPR_NEWFP) { clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP); tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr)); dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag); if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND) dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag); host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag); qc = ata_qc_from_tag(ap, tag); /* * Start FP DMA for NCQ command. At this point the tag is the * active tag. It is the tag that matches the command about to * be completed. */ qc->ap->link.active_tag = tag; sata_dwc_bmdma_start_by_tag(qc, tag); handled = 1; goto DONE; } sactive = core_scr_read(SCR_ACTIVE); tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive; /* If no sactive issued and tag_mask is zero then this is not NCQ */ if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) { if (ap->link.active_tag == ATA_TAG_POISON) tag = 0; else tag = ap->link.active_tag; qc = ata_qc_from_tag(ap, tag); /* DEV interrupt w/ no active qc? */ if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) { dev_err(ap->dev, "%s interrupt with no active qc " "qc=%p\n", __func__, qc); ap->ops->sff_check_status(ap); handled = 1; goto DONE; } status = ap->ops->sff_check_status(ap); qc->ap->link.active_tag = tag; hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; if (status & ATA_ERR) { dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status); sata_dwc_qc_complete(ap, qc, 1); handled = 1; goto DONE; } dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n", __func__, get_prot_descript(qc->tf.protocol)); DRVSTILLBUSY: if (ata_is_dma(qc->tf.protocol)) { /* * Each DMA transaction produces 2 interrupts. The DMAC * transfer complete interrupt and the SATA controller * operation done interrupt. The command should be * completed only after both interrupts are seen. */ host_pvt.dma_interrupt_count++; if (hsdevp->dma_pending[tag] == \ SATA_DWC_DMA_PENDING_NONE) { dev_err(ap->dev, "%s: DMA not pending " "intpr=0x%08x status=0x%08x pending" "=%d\n", __func__, intpr, status, hsdevp->dma_pending[tag]); } if ((host_pvt.dma_interrupt_count % 2) == 0) sata_dwc_dma_xfer_complete(ap, 1); } else if (ata_is_pio(qc->tf.protocol)) { ata_sff_hsm_move(ap, qc, status, 0); handled = 1; goto DONE; } else { if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) goto DRVSTILLBUSY; } handled = 1; goto DONE; } /* * This is a NCQ command. At this point we need to figure out for which * tags we have gotten a completion interrupt. One interrupt may serve * as completion for more than one operation when commands are queued * (NCQ). We need to process each completed command. */ /* process completed commands */ sactive = core_scr_read(SCR_ACTIVE); tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive; if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \ tag_mask > 1) { dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x" "tag_mask=0x%08x\n", __func__, sactive, host_pvt.sata_dwc_sactive_issued, tag_mask); } if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \ (host_pvt.sata_dwc_sactive_issued)) { dev_warn(ap->dev, "Bad tag mask? sactive=0x%08x " "(host_pvt.sata_dwc_sactive_issued)=0x%08x tag_mask" "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued, tag_mask); } /* read just to clear ... not bad if currently still busy */ status = ap->ops->sff_check_status(ap); dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status); tag = 0; num_processed = 0; while (tag_mask) { num_processed++; while (!(tag_mask & 0x00000001)) { tag++; tag_mask <<= 1; } tag_mask &= (~0x00000001); qc = ata_qc_from_tag(ap, tag); /* To be picked up by completion functions */ qc->ap->link.active_tag = tag; hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; /* Let libata/scsi layers handle error */ if (status & ATA_ERR) { dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__, status); sata_dwc_qc_complete(ap, qc, 1); handled = 1; goto DONE; } /* Process completed command */ dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__, get_prot_descript(qc->tf.protocol)); if (ata_is_dma(qc->tf.protocol)) { host_pvt.dma_interrupt_count++; if (hsdevp->dma_pending[tag] == \ SATA_DWC_DMA_PENDING_NONE) dev_warn(ap->dev, "%s: DMA not pending?\n", __func__); if ((host_pvt.dma_interrupt_count % 2) == 0) sata_dwc_dma_xfer_complete(ap, 1); } else { if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) goto STILLBUSY; } continue; STILLBUSY: ap->stats.idle_irq++; dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n", ap->print_id); } /* while tag_mask */ /* * Check to see if any commands completed while we were processing our * initial set of completed commands (read status clears interrupts, * so we might miss a completed command interrupt if one came in while * we were processing --we read status as part of processing a completed * command). */ sactive2 = core_scr_read(SCR_ACTIVE); if (sactive2 != sactive) { dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2" "=0x%x\n", sactive, sactive2); } handled = 1; DONE: spin_unlock_irqrestore(&host->lock, flags); return IRQ_RETVAL(handled); } static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag) { struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp); if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) { out_le32(&(hsdev->sata_dwc_regs->dmacr), SATA_DWC_DMACR_RX_CLEAR( in_le32(&(hsdev->sata_dwc_regs->dmacr)))); } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) { out_le32(&(hsdev->sata_dwc_regs->dmacr), SATA_DWC_DMACR_TX_CLEAR( in_le32(&(hsdev->sata_dwc_regs->dmacr)))); } else { /* * This should not happen, it indicates the driver is out of * sync. If it does happen, clear dmacr anyway. */ dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and" "TX DMA not pending tag=0x%02x pending=%d" " dmacr: 0x%08x\n", __func__, tag, hsdevp->dma_pending[tag], in_le32(&(hsdev->sata_dwc_regs->dmacr))); out_le32(&(hsdev->sata_dwc_regs->dmacr), SATA_DWC_DMACR_TXRXCH_CLEAR); } } static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status) { struct ata_queued_cmd *qc; struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); u8 tag = 0; tag = ap->link.active_tag; qc = ata_qc_from_tag(ap, tag); if (!qc) { dev_err(ap->dev, "failed to get qc"); return; } #ifdef DEBUG_NCQ if (tag > 0) { dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s " "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command, get_dma_dir_descript(qc->dma_dir), get_prot_descript(qc->tf.protocol), in_le32(&(hsdev->sata_dwc_regs->dmacr))); } #endif if (ata_is_dma(qc->tf.protocol)) { if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) { dev_err(ap->dev, "%s DMA protocol RX and TX DMA not " "pending dmacr: 0x%08x\n", __func__, in_le32(&(hsdev->sata_dwc_regs->dmacr))); } hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE; sata_dwc_qc_complete(ap, qc, check_status); ap->link.active_tag = ATA_TAG_POISON; } else { sata_dwc_qc_complete(ap, qc, check_status); } } static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, u32 check_status) { u8 status = 0; u32 mask = 0x0; u8 tag = qc->tag; struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); host_pvt.sata_dwc_sactive_queued = 0; dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status); if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) dev_err(ap->dev, "TX DMA PENDING\n"); else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) dev_err(ap->dev, "RX DMA PENDING\n"); dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:" " protocol=%d\n", qc->tf.command, status, ap->print_id, qc->tf.protocol); /* clear active bit */ mask = (~(qcmd_tag_to_mask(tag))); host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \ & mask; host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \ & mask; ata_qc_complete(qc); return 0; } static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev) { /* Enable selective interrupts by setting the interrupt maskregister*/ out_le32(&hsdev->sata_dwc_regs->intmr, SATA_DWC_INTMR_ERRM | SATA_DWC_INTMR_NEWFPM | SATA_DWC_INTMR_PMABRTM | SATA_DWC_INTMR_DMATM); /* * Unmask the error bits that should trigger an error interrupt by * setting the error mask register. */ out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS); dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n", __func__, in_le32(&hsdev->sata_dwc_regs->intmr), in_le32(&hsdev->sata_dwc_regs->errmr)); } static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base) { port->cmd_addr = (void *)base + 0x00; port->data_addr = (void *)base + 0x00; port->error_addr = (void *)base + 0x04; port->feature_addr = (void *)base + 0x04; port->nsect_addr = (void *)base + 0x08; port->lbal_addr = (void *)base + 0x0c; port->lbam_addr = (void *)base + 0x10; port->lbah_addr = (void *)base + 0x14; port->device_addr = (void *)base + 0x18; port->command_addr = (void *)base + 0x1c; port->status_addr = (void *)base + 0x1c; port->altstatus_addr = (void *)base + 0x20; port->ctl_addr = (void *)base + 0x20; } /* * Function : sata_dwc_port_start * arguments : struct ata_ioports *port * Return value : returns 0 if success, error code otherwise * This function allocates the scatter gather LLI table for AHB DMA */ static int sata_dwc_port_start(struct ata_port *ap) { int err = 0; struct sata_dwc_device *hsdev; struct sata_dwc_device_port *hsdevp = NULL; struct device *pdev; int i; hsdev = HSDEV_FROM_AP(ap); dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no); hsdev->host = ap->host; pdev = ap->host->dev; if (!pdev) { dev_err(ap->dev, "%s: no ap->host->dev\n", __func__); err = -ENODEV; goto CLEANUP; } /* Allocate Port Struct */ hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL); if (!hsdevp) { dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__); err = -ENOMEM; goto CLEANUP; } hsdevp->hsdev = hsdev; for (i = 0; i < SATA_DWC_QCMD_MAX; i++) hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT; ap->bmdma_prd = 0; /* set these so libata doesn't use them */ ap->bmdma_prd_dma = 0; /* * DMA - Assign scatter gather LLI table. We can't use the libata * version since it's PRD is IDE PCI specific. */ for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { hsdevp->llit[i] = dma_alloc_coherent(pdev, SATA_DWC_DMAC_LLI_TBL_SZ, &(hsdevp->llit_dma[i]), GFP_ATOMIC); if (!hsdevp->llit[i]) { dev_err(ap->dev, "%s: dma_alloc_coherent failed\n", __func__); err = -ENOMEM; goto CLEANUP_ALLOC; } } if (ap->port_no == 0) { dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n", __func__); out_le32(&hsdev->sata_dwc_regs->dmacr, SATA_DWC_DMACR_TXRXCH_CLEAR); dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n", __func__); out_le32(&hsdev->sata_dwc_regs->dbtsr, (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT))); } /* Clear any error bits before libata starts issuing commands */ clear_serror(); ap->private_data = hsdevp; dev_dbg(ap->dev, "%s: done\n", __func__); return 0; CLEANUP_ALLOC: kfree(hsdevp); CLEANUP: dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id); return err; } static void sata_dwc_port_stop(struct ata_port *ap) { int i; struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id); if (hsdevp && hsdev) { /* deallocate LLI table */ for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { dma_free_coherent(ap->host->dev, SATA_DWC_DMAC_LLI_TBL_SZ, hsdevp->llit[i], hsdevp->llit_dma[i]); } kfree(hsdevp); } ap->private_data = NULL; } /* * Function : sata_dwc_exec_command_by_tag * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued * Return value : None * This function keeps track of individual command tag ids and calls * ata_exec_command in libata */ static void sata_dwc_exec_command_by_tag(struct ata_port *ap, struct ata_taskfile *tf, u8 tag, u32 cmd_issued) { unsigned long flags; struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command, ata_get_cmd_descript(tf->command), tag); spin_lock_irqsave(&ap->host->lock, flags); hsdevp->cmd_issued[tag] = cmd_issued; spin_unlock_irqrestore(&ap->host->lock, flags); /* * Clear SError before executing a new command. * sata_dwc_scr_write and read can not be used here. Clearing the PM * managed SError register for the disk needs to be done before the * task file is loaded. */ clear_serror(); ata_sff_exec_command(ap, tf); } static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag) { sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag, SATA_DWC_CMD_ISSUED_PEND); } static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc) { u8 tag = qc->tag; if (ata_is_ncq(qc->tf.protocol)) { dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", __func__, qc->ap->link.sactive, tag); } else { tag = 0; } sata_dwc_bmdma_setup_by_tag(qc, tag); } static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag) { int start_dma; u32 reg, dma_chan; struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc); struct ata_port *ap = qc->ap; struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); int dir = qc->dma_dir; dma_chan = hsdevp->dma_chan[tag]; if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) { start_dma = 1; if (dir == DMA_TO_DEVICE) hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX; else hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX; } else { dev_err(ap->dev, "%s: Command not pending cmd_issued=%d " "(tag=%d) DMA NOT started\n", __func__, hsdevp->cmd_issued[tag], tag); start_dma = 0; } dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s " "start_dma? %x\n", __func__, qc, tag, qc->tf.command, get_dma_dir_descript(qc->dma_dir), start_dma); sata_dwc_tf_dump(&(qc->tf)); if (start_dma) { reg = core_scr_read(SCR_ERROR); if (reg & SATA_DWC_SERROR_ERR_BITS) { dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n", __func__, reg); } if (dir == DMA_TO_DEVICE) out_le32(&hsdev->sata_dwc_regs->dmacr, SATA_DWC_DMACR_TXCHEN); else out_le32(&hsdev->sata_dwc_regs->dmacr, SATA_DWC_DMACR_RXCHEN); /* Enable AHB DMA transfer on the specified channel */ dma_dwc_xfer_start(dma_chan); } } static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc) { u8 tag = qc->tag; if (ata_is_ncq(qc->tf.protocol)) { dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", __func__, qc->ap->link.sactive, tag); } else { tag = 0; } dev_dbg(qc->ap->dev, "%s\n", __func__); sata_dwc_bmdma_start_by_tag(qc, tag); } /* * Function : sata_dwc_qc_prep_by_tag * arguments : ata_queued_cmd *qc, u8 tag * Return value : None * qc_prep for a particular queued command based on tag */ static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag) { struct scatterlist *sg = qc->sg; struct ata_port *ap = qc->ap; int dma_chan; struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n", __func__, ap->port_no, get_dma_dir_descript(qc->dma_dir), qc->n_elem); dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag], hsdevp->llit_dma[tag], (void *__iomem)(&hsdev->sata_dwc_regs->\ dmadr), qc->dma_dir); if (dma_chan < 0) { dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n", __func__, dma_chan); return; } hsdevp->dma_chan[tag] = dma_chan; } static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc) { u32 sactive; u8 tag = qc->tag; struct ata_port *ap = qc->ap; #ifdef DEBUG_NCQ if (qc->tag > 0 || ap->link.sactive > 1) dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d " "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n", __func__, ap->print_id, qc->tf.command, ata_get_cmd_descript(qc->tf.command), qc->tag, get_prot_descript(qc->tf.protocol), ap->link.active_tag, ap->link.sactive); #endif if (!ata_is_ncq(qc->tf.protocol)) tag = 0; sata_dwc_qc_prep_by_tag(qc, tag); if (ata_is_ncq(qc->tf.protocol)) { sactive = core_scr_read(SCR_ACTIVE); sactive |= (0x00000001 << tag); core_scr_write(SCR_ACTIVE, sactive); dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x " "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive, sactive); ap->ops->sff_tf_load(ap, &qc->tf); sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag, SATA_DWC_CMD_ISSUED_PEND); } else { ata_sff_qc_issue(qc); } return 0; } /* * Function : sata_dwc_qc_prep * arguments : ata_queued_cmd *qc * Return value : None * qc_prep for a particular queued command */ static void sata_dwc_qc_prep(struct ata_queued_cmd *qc) { if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO)) return; #ifdef DEBUG_NCQ if (qc->tag > 0) dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n", __func__, qc->tag, qc->ap->link.active_tag); return ; #endif } static void sata_dwc_error_handler(struct ata_port *ap) { ata_sff_error_handler(ap); } int sata_dwc_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline) { struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap); int ret; ret = sata_sff_hardreset(link, class, deadline); sata_dwc_enable_interrupts(hsdev); /* Reconfigure the DMA control register */ out_le32(&hsdev->sata_dwc_regs->dmacr, SATA_DWC_DMACR_TXRXCH_CLEAR); /* Reconfigure the DMA Burst Transaction Size register */ out_le32(&hsdev->sata_dwc_regs->dbtsr, SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)); return ret; } /* * scsi mid-layer and libata interface structures */ static struct scsi_host_template sata_dwc_sht = { ATA_NCQ_SHT(DRV_NAME), /* * test-only: Currently this driver doesn't handle NCQ * correctly. We enable NCQ but set the queue depth to a * max of 1. This will get fixed in in a future release. */ .sg_tablesize = LIBATA_MAX_PRD, .can_queue = ATA_DEF_QUEUE, /* ATA_MAX_QUEUE */ .dma_boundary = ATA_DMA_BOUNDARY, }; static struct ata_port_operations sata_dwc_ops = { .inherits = &ata_sff_port_ops, .error_handler = sata_dwc_error_handler, .hardreset = sata_dwc_hardreset, .qc_prep = sata_dwc_qc_prep, .qc_issue = sata_dwc_qc_issue, .scr_read = sata_dwc_scr_read, .scr_write = sata_dwc_scr_write, .port_start = sata_dwc_port_start, .port_stop = sata_dwc_port_stop, .bmdma_setup = sata_dwc_bmdma_setup, .bmdma_start = sata_dwc_bmdma_start, }; static const struct ata_port_info sata_dwc_port_info[] = { { .flags = ATA_FLAG_SATA | ATA_FLAG_NCQ, .pio_mask = ATA_PIO4, .udma_mask = ATA_UDMA6, .port_ops = &sata_dwc_ops, }, }; static int sata_dwc_probe(struct platform_device *ofdev) { struct sata_dwc_device *hsdev; u32 idr, versionr; char *ver = (char *)&versionr; u8 *base = NULL; int err = 0; int irq, rc; struct ata_host *host; struct ata_port_info pi = sata_dwc_port_info[0]; const struct ata_port_info *ppi[] = { &pi, NULL }; struct device_node *np = ofdev->dev.of_node; u32 dma_chan; /* Allocate DWC SATA device */ hsdev = kzalloc(sizeof(*hsdev), GFP_KERNEL); if (hsdev == NULL) { dev_err(&ofdev->dev, "kmalloc failed for hsdev\n"); err = -ENOMEM; goto error; } if (of_property_read_u32(np, "dma-channel", &dma_chan)) { dev_warn(&ofdev->dev, "no dma-channel property set." " Use channel 0\n"); dma_chan = 0; } host_pvt.dma_channel = dma_chan; /* Ioremap SATA registers */ base = of_iomap(ofdev->dev.of_node, 0); if (!base) { dev_err(&ofdev->dev, "ioremap failed for SATA register" " address\n"); err = -ENODEV; goto error_kmalloc; } hsdev->reg_base = base; dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n"); /* Synopsys DWC SATA specific Registers */ hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET); /* Allocate and fill host */ host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS); if (!host) { dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n"); err = -ENOMEM; goto error_iomap; } host->private_data = hsdev; /* Setup port */ host->ports[0]->ioaddr.cmd_addr = base; host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET; host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET; sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base); /* Read the ID and Version Registers */ idr = in_le32(&hsdev->sata_dwc_regs->idr); versionr = in_le32(&hsdev->sata_dwc_regs->versionr); dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n", idr, ver[0], ver[1], ver[2]); /* Get SATA DMA interrupt number */ irq = irq_of_parse_and_map(ofdev->dev.of_node, 1); if (irq == NO_IRQ) { dev_err(&ofdev->dev, "no SATA DMA irq\n"); err = -ENODEV; goto error_out; } /* Get physical SATA DMA register base address */ host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1); if (!(host_pvt.sata_dma_regs)) { dev_err(&ofdev->dev, "ioremap failed for AHBDMA register" " address\n"); err = -ENODEV; goto error_out; } /* Save dev for later use in dev_xxx() routines */ host_pvt.dwc_dev = &ofdev->dev; /* Initialize AHB DMAC */ dma_dwc_init(hsdev, irq); /* Enable SATA Interrupts */ sata_dwc_enable_interrupts(hsdev); /* Get SATA interrupt number */ irq = irq_of_parse_and_map(ofdev->dev.of_node, 0); if (irq == NO_IRQ) { dev_err(&ofdev->dev, "no SATA DMA irq\n"); err = -ENODEV; goto error_out; } /* * Now, register with libATA core, this will also initiate the * device discovery process, invoking our port_start() handler & * error_handler() to execute a dummy Softreset EH session */ rc = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht); if (rc != 0) dev_err(&ofdev->dev, "failed to activate host"); dev_set_drvdata(&ofdev->dev, host); return 0; error_out: /* Free SATA DMA resources */ dma_dwc_exit(hsdev); error_iomap: iounmap(base); error_kmalloc: kfree(hsdev); error: return err; } static int sata_dwc_remove(struct platform_device *ofdev) { struct device *dev = &ofdev->dev; struct ata_host *host = dev_get_drvdata(dev); struct sata_dwc_device *hsdev = host->private_data; ata_host_detach(host); dev_set_drvdata(dev, NULL); /* Free SATA DMA resources */ dma_dwc_exit(hsdev); iounmap(hsdev->reg_base); kfree(hsdev); kfree(host); dev_dbg(&ofdev->dev, "done\n"); return 0; } static const struct of_device_id sata_dwc_match[] = { { .compatible = "amcc,sata-460ex", }, {} }; MODULE_DEVICE_TABLE(of, sata_dwc_match); static struct platform_driver sata_dwc_driver = { .driver = { .name = DRV_NAME, .owner = THIS_MODULE, .of_match_table = sata_dwc_match, }, .probe = sata_dwc_probe, .remove = sata_dwc_remove, }; module_platform_driver(sata_dwc_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>"); MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver"); MODULE_VERSION(DRV_VERSION);