/* * Machine specific setup for xen * * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 */ #include <linux/module.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/pm.h> #include <linux/memblock.h> #include <linux/cpuidle.h> #include <linux/cpufreq.h> #include <asm/elf.h> #include <asm/vdso.h> #include <asm/e820.h> #include <asm/setup.h> #include <asm/acpi.h> #include <asm/numa.h> #include <asm/xen/hypervisor.h> #include <asm/xen/hypercall.h> #include <xen/xen.h> #include <xen/page.h> #include <xen/interface/callback.h> #include <xen/interface/memory.h> #include <xen/interface/physdev.h> #include <xen/features.h> #include "mmu.h" #include "xen-ops.h" #include "vdso.h" /* These are code, but not functions. Defined in entry.S */ extern const char xen_hypervisor_callback[]; extern const char xen_failsafe_callback[]; #ifdef CONFIG_X86_64 extern asmlinkage void nmi(void); #endif extern void xen_sysenter_target(void); extern void xen_syscall_target(void); extern void xen_syscall32_target(void); /* Amount of extra memory space we add to the e820 ranges */ struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata; /* Number of pages released from the initial allocation. */ unsigned long xen_released_pages; /* * The maximum amount of extra memory compared to the base size. The * main scaling factor is the size of struct page. At extreme ratios * of base:extra, all the base memory can be filled with page * structures for the extra memory, leaving no space for anything * else. * * 10x seems like a reasonable balance between scaling flexibility and * leaving a practically usable system. */ #define EXTRA_MEM_RATIO (10) static void __init xen_add_extra_mem(u64 start, u64 size) { unsigned long pfn; int i; for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { /* Add new region. */ if (xen_extra_mem[i].size == 0) { xen_extra_mem[i].start = start; xen_extra_mem[i].size = size; break; } /* Append to existing region. */ if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) { xen_extra_mem[i].size += size; break; } } if (i == XEN_EXTRA_MEM_MAX_REGIONS) printk(KERN_WARNING "Warning: not enough extra memory regions\n"); memblock_reserve(start, size); if (xen_feature(XENFEAT_auto_translated_physmap)) return; xen_max_p2m_pfn = PFN_DOWN(start + size); for (pfn = PFN_DOWN(start); pfn < xen_max_p2m_pfn; pfn++) { unsigned long mfn = pfn_to_mfn(pfn); if (WARN(mfn == pfn, "Trying to over-write 1-1 mapping (pfn: %lx)\n", pfn)) continue; WARN(mfn != INVALID_P2M_ENTRY, "Trying to remove %lx which has %lx mfn!\n", pfn, mfn); __set_phys_to_machine(pfn, INVALID_P2M_ENTRY); } } static unsigned long __init xen_do_chunk(unsigned long start, unsigned long end, bool release) { struct xen_memory_reservation reservation = { .address_bits = 0, .extent_order = 0, .domid = DOMID_SELF }; unsigned long len = 0; int xlated_phys = xen_feature(XENFEAT_auto_translated_physmap); unsigned long pfn; int ret; for (pfn = start; pfn < end; pfn++) { unsigned long frame; unsigned long mfn = pfn_to_mfn(pfn); if (release) { /* Make sure pfn exists to start with */ if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn) continue; frame = mfn; } else { if (!xlated_phys && mfn != INVALID_P2M_ENTRY) continue; frame = pfn; } set_xen_guest_handle(reservation.extent_start, &frame); reservation.nr_extents = 1; ret = HYPERVISOR_memory_op(release ? XENMEM_decrease_reservation : XENMEM_populate_physmap, &reservation); WARN(ret != 1, "Failed to %s pfn %lx err=%d\n", release ? "release" : "populate", pfn, ret); if (ret == 1) { if (!early_set_phys_to_machine(pfn, release ? INVALID_P2M_ENTRY : frame)) { if (release) break; set_xen_guest_handle(reservation.extent_start, &frame); reservation.nr_extents = 1; ret = HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation); break; } len++; } else break; } if (len) printk(KERN_INFO "%s %lx-%lx pfn range: %lu pages %s\n", release ? "Freeing" : "Populating", start, end, len, release ? "freed" : "added"); return len; } static unsigned long __init xen_release_chunk(unsigned long start, unsigned long end) { /* * Xen already ballooned out the E820 non RAM regions for us * and set them up properly in EPT. */ if (xen_feature(XENFEAT_auto_translated_physmap)) return end - start; return xen_do_chunk(start, end, true); } static unsigned long __init xen_populate_chunk( const struct e820entry *list, size_t map_size, unsigned long max_pfn, unsigned long *last_pfn, unsigned long credits_left) { const struct e820entry *entry; unsigned int i; unsigned long done = 0; unsigned long dest_pfn; for (i = 0, entry = list; i < map_size; i++, entry++) { unsigned long s_pfn; unsigned long e_pfn; unsigned long pfns; long capacity; if (credits_left <= 0) break; if (entry->type != E820_RAM) continue; e_pfn = PFN_DOWN(entry->addr + entry->size); /* We only care about E820 after the xen_start_info->nr_pages */ if (e_pfn <= max_pfn) continue; s_pfn = PFN_UP(entry->addr); /* If the E820 falls within the nr_pages, we want to start * at the nr_pages PFN. * If that would mean going past the E820 entry, skip it */ if (s_pfn <= max_pfn) { capacity = e_pfn - max_pfn; dest_pfn = max_pfn; } else { capacity = e_pfn - s_pfn; dest_pfn = s_pfn; } if (credits_left < capacity) capacity = credits_left; pfns = xen_do_chunk(dest_pfn, dest_pfn + capacity, false); done += pfns; *last_pfn = (dest_pfn + pfns); if (pfns < capacity) break; credits_left -= pfns; } return done; } static void __init xen_set_identity_and_release_chunk( unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, unsigned long *released, unsigned long *identity) { unsigned long pfn; /* * If the PFNs are currently mapped, clear the mappings * (except for the ISA region which must be 1:1 mapped) to * release the refcounts (in Xen) on the original frames. */ /* * PVH E820 matches the hypervisor's P2M which means we need to * account for the proper values of *release and *identity. */ for (pfn = start_pfn; !xen_feature(XENFEAT_auto_translated_physmap) && pfn <= max_pfn_mapped && pfn < end_pfn; pfn++) { pte_t pte = __pte_ma(0); if (pfn < PFN_UP(ISA_END_ADDRESS)) pte = mfn_pte(pfn, PAGE_KERNEL_IO); (void)HYPERVISOR_update_va_mapping( (unsigned long)__va(pfn << PAGE_SHIFT), pte, 0); } if (start_pfn < nr_pages) *released += xen_release_chunk( start_pfn, min(end_pfn, nr_pages)); *identity += set_phys_range_identity(start_pfn, end_pfn); } static unsigned long __init xen_set_identity_and_release( const struct e820entry *list, size_t map_size, unsigned long nr_pages) { phys_addr_t start = 0; unsigned long released = 0; unsigned long identity = 0; const struct e820entry *entry; int i; /* * Combine non-RAM regions and gaps until a RAM region (or the * end of the map) is reached, then set the 1:1 map and * release the pages (if available) in those non-RAM regions. * * The combined non-RAM regions are rounded to a whole number * of pages so any partial pages are accessible via the 1:1 * mapping. This is needed for some BIOSes that put (for * example) the DMI tables in a reserved region that begins on * a non-page boundary. */ for (i = 0, entry = list; i < map_size; i++, entry++) { phys_addr_t end = entry->addr + entry->size; if (entry->type == E820_RAM || i == map_size - 1) { unsigned long start_pfn = PFN_DOWN(start); unsigned long end_pfn = PFN_UP(end); if (entry->type == E820_RAM) end_pfn = PFN_UP(entry->addr); if (start_pfn < end_pfn) xen_set_identity_and_release_chunk( start_pfn, end_pfn, nr_pages, &released, &identity); start = end; } } if (released) printk(KERN_INFO "Released %lu pages of unused memory\n", released); if (identity) printk(KERN_INFO "Set %ld page(s) to 1-1 mapping\n", identity); return released; } static unsigned long __init xen_get_max_pages(void) { unsigned long max_pages = MAX_DOMAIN_PAGES; domid_t domid = DOMID_SELF; int ret; /* * For the initial domain we use the maximum reservation as * the maximum page. * * For guest domains the current maximum reservation reflects * the current maximum rather than the static maximum. In this * case the e820 map provided to us will cover the static * maximum region. */ if (xen_initial_domain()) { ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid); if (ret > 0) max_pages = ret; } return min(max_pages, MAX_DOMAIN_PAGES); } static void xen_align_and_add_e820_region(u64 start, u64 size, int type) { u64 end = start + size; /* Align RAM regions to page boundaries. */ if (type == E820_RAM) { start = PAGE_ALIGN(start); end &= ~((u64)PAGE_SIZE - 1); } e820_add_region(start, end - start, type); } void xen_ignore_unusable(struct e820entry *list, size_t map_size) { struct e820entry *entry; unsigned int i; for (i = 0, entry = list; i < map_size; i++, entry++) { if (entry->type == E820_UNUSABLE) entry->type = E820_RAM; } } /** * machine_specific_memory_setup - Hook for machine specific memory setup. **/ char * __init xen_memory_setup(void) { static struct e820entry map[E820MAX] __initdata; unsigned long max_pfn = xen_start_info->nr_pages; unsigned long long mem_end; int rc; struct xen_memory_map memmap; unsigned long max_pages; unsigned long last_pfn = 0; unsigned long extra_pages = 0; unsigned long populated; int i; int op; max_pfn = min(MAX_DOMAIN_PAGES, max_pfn); mem_end = PFN_PHYS(max_pfn); memmap.nr_entries = E820MAX; set_xen_guest_handle(memmap.buffer, map); op = xen_initial_domain() ? XENMEM_machine_memory_map : XENMEM_memory_map; rc = HYPERVISOR_memory_op(op, &memmap); if (rc == -ENOSYS) { BUG_ON(xen_initial_domain()); memmap.nr_entries = 1; map[0].addr = 0ULL; map[0].size = mem_end; /* 8MB slack (to balance backend allocations). */ map[0].size += 8ULL << 20; map[0].type = E820_RAM; rc = 0; } BUG_ON(rc); /* * Xen won't allow a 1:1 mapping to be created to UNUSABLE * regions, so if we're using the machine memory map leave the * region as RAM as it is in the pseudo-physical map. * * UNUSABLE regions in domUs are not handled and will need * a patch in the future. */ if (xen_initial_domain()) xen_ignore_unusable(map, memmap.nr_entries); /* Make sure the Xen-supplied memory map is well-ordered. */ sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries); max_pages = xen_get_max_pages(); if (max_pages > max_pfn) extra_pages += max_pages - max_pfn; /* * Set P2M for all non-RAM pages and E820 gaps to be identity * type PFNs. Any RAM pages that would be made inaccesible by * this are first released. */ xen_released_pages = xen_set_identity_and_release( map, memmap.nr_entries, max_pfn); /* * Populate back the non-RAM pages and E820 gaps that had been * released. */ populated = xen_populate_chunk(map, memmap.nr_entries, max_pfn, &last_pfn, xen_released_pages); xen_released_pages -= populated; extra_pages += xen_released_pages; if (last_pfn > max_pfn) { max_pfn = min(MAX_DOMAIN_PAGES, last_pfn); mem_end = PFN_PHYS(max_pfn); } /* * Clamp the amount of extra memory to a EXTRA_MEM_RATIO * factor the base size. On non-highmem systems, the base * size is the full initial memory allocation; on highmem it * is limited to the max size of lowmem, so that it doesn't * get completely filled. * * In principle there could be a problem in lowmem systems if * the initial memory is also very large with respect to * lowmem, but we won't try to deal with that here. */ extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)), extra_pages); i = 0; while (i < memmap.nr_entries) { u64 addr = map[i].addr; u64 size = map[i].size; u32 type = map[i].type; if (type == E820_RAM) { if (addr < mem_end) { size = min(size, mem_end - addr); } else if (extra_pages) { size = min(size, (u64)extra_pages * PAGE_SIZE); extra_pages -= size / PAGE_SIZE; xen_add_extra_mem(addr, size); } else type = E820_UNUSABLE; } xen_align_and_add_e820_region(addr, size, type); map[i].addr += size; map[i].size -= size; if (map[i].size == 0) i++; } /* * In domU, the ISA region is normal, usable memory, but we * reserve ISA memory anyway because too many things poke * about in there. */ e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, E820_RESERVED); /* * Reserve Xen bits: * - mfn_list * - xen_start_info * See comment above "struct start_info" in <xen/interface/xen.h> * We tried to make the the memblock_reserve more selective so * that it would be clear what region is reserved. Sadly we ran * in the problem wherein on a 64-bit hypervisor with a 32-bit * initial domain, the pt_base has the cr3 value which is not * neccessarily where the pagetable starts! As Jan put it: " * Actually, the adjustment turns out to be correct: The page * tables for a 32-on-64 dom0 get allocated in the order "first L1", * "first L2", "first L3", so the offset to the page table base is * indeed 2. When reading xen/include/public/xen.h's comment * very strictly, this is not a violation (since there nothing is said * that the first thing in the page table space is pointed to by * pt_base; I admit that this seems to be implied though, namely * do I think that it is implied that the page table space is the * range [pt_base, pt_base + nt_pt_frames), whereas that * range here indeed is [pt_base - 2, pt_base - 2 + nt_pt_frames), * which - without a priori knowledge - the kernel would have * difficulty to figure out)." - so lets just fall back to the * easy way and reserve the whole region. */ memblock_reserve(__pa(xen_start_info->mfn_list), xen_start_info->pt_base - xen_start_info->mfn_list); sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); return "Xen"; } /* * Set the bit indicating "nosegneg" library variants should be used. * We only need to bother in pure 32-bit mode; compat 32-bit processes * can have un-truncated segments, so wrapping around is allowed. */ static void __init fiddle_vdso(void) { #ifdef CONFIG_X86_32 u32 *mask; mask = VDSO32_SYMBOL(&vdso32_int80_start, NOTE_MASK); *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT; mask = VDSO32_SYMBOL(&vdso32_sysenter_start, NOTE_MASK); *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT; #endif } static int register_callback(unsigned type, const void *func) { struct callback_register callback = { .type = type, .address = XEN_CALLBACK(__KERNEL_CS, func), .flags = CALLBACKF_mask_events, }; return HYPERVISOR_callback_op(CALLBACKOP_register, &callback); } void xen_enable_sysenter(void) { int ret; unsigned sysenter_feature; #ifdef CONFIG_X86_32 sysenter_feature = X86_FEATURE_SEP; #else sysenter_feature = X86_FEATURE_SYSENTER32; #endif if (!boot_cpu_has(sysenter_feature)) return; ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target); if(ret != 0) setup_clear_cpu_cap(sysenter_feature); } void xen_enable_syscall(void) { #ifdef CONFIG_X86_64 int ret; ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target); if (ret != 0) { printk(KERN_ERR "Failed to set syscall callback: %d\n", ret); /* Pretty fatal; 64-bit userspace has no other mechanism for syscalls. */ } if (boot_cpu_has(X86_FEATURE_SYSCALL32)) { ret = register_callback(CALLBACKTYPE_syscall32, xen_syscall32_target); if (ret != 0) setup_clear_cpu_cap(X86_FEATURE_SYSCALL32); } #endif /* CONFIG_X86_64 */ } void xen_enable_nmi(void) { #ifdef CONFIG_X86_64 if (register_callback(CALLBACKTYPE_nmi, (char *)nmi)) BUG(); #endif } void __init xen_pvmmu_arch_setup(void) { HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments); HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables); HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_pae_extended_cr3); if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) || register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback)) BUG(); xen_enable_sysenter(); xen_enable_syscall(); xen_enable_nmi(); } /* This function is not called for HVM domains */ void __init xen_arch_setup(void) { xen_panic_handler_init(); if (!xen_feature(XENFEAT_auto_translated_physmap)) xen_pvmmu_arch_setup(); #ifdef CONFIG_ACPI if (!(xen_start_info->flags & SIF_INITDOMAIN)) { printk(KERN_INFO "ACPI in unprivileged domain disabled\n"); disable_acpi(); } #endif memcpy(boot_command_line, xen_start_info->cmd_line, MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ? COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE); /* Set up idle, making sure it calls safe_halt() pvop */ disable_cpuidle(); disable_cpufreq(); WARN_ON(xen_set_default_idle()); fiddle_vdso(); #ifdef CONFIG_NUMA numa_off = 1; #endif }