/* * Xen hypercall batching. * * Xen allows multiple hypercalls to be issued at once, using the * multicall interface. This allows the cost of trapping into the * hypervisor to be amortized over several calls. * * This file implements a simple interface for multicalls. There's a * per-cpu buffer of outstanding multicalls. When you want to queue a * multicall for issuing, you can allocate a multicall slot for the * call and its arguments, along with storage for space which is * pointed to by the arguments (for passing pointers to structures, * etc). When the multicall is actually issued, all the space for the * commands and allocated memory is freed for reuse. * * Multicalls are flushed whenever any of the buffers get full, or * when explicitly requested. There's no way to get per-multicall * return results back. It will BUG if any of the multicalls fail. * * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 */ #include <linux/percpu.h> #include <linux/hardirq.h> #include <linux/debugfs.h> #include <asm/xen/hypercall.h> #include "multicalls.h" #include "debugfs.h" #define MC_BATCH 32 #define MC_DEBUG 0 #define MC_ARGS (MC_BATCH * 16) struct mc_buffer { unsigned mcidx, argidx, cbidx; struct multicall_entry entries[MC_BATCH]; #if MC_DEBUG struct multicall_entry debug[MC_BATCH]; void *caller[MC_BATCH]; #endif unsigned char args[MC_ARGS]; struct callback { void (*fn)(void *); void *data; } callbacks[MC_BATCH]; }; static DEFINE_PER_CPU(struct mc_buffer, mc_buffer); DEFINE_PER_CPU(unsigned long, xen_mc_irq_flags); void xen_mc_flush(void) { struct mc_buffer *b = &__get_cpu_var(mc_buffer); struct multicall_entry *mc; int ret = 0; unsigned long flags; int i; BUG_ON(preemptible()); /* Disable interrupts in case someone comes in and queues something in the middle */ local_irq_save(flags); trace_xen_mc_flush(b->mcidx, b->argidx, b->cbidx); switch (b->mcidx) { case 0: /* no-op */ BUG_ON(b->argidx != 0); break; case 1: /* Singleton multicall - bypass multicall machinery and just do the call directly. */ mc = &b->entries[0]; mc->result = privcmd_call(mc->op, mc->args[0], mc->args[1], mc->args[2], mc->args[3], mc->args[4]); ret = mc->result < 0; break; default: #if MC_DEBUG memcpy(b->debug, b->entries, b->mcidx * sizeof(struct multicall_entry)); #endif if (HYPERVISOR_multicall(b->entries, b->mcidx) != 0) BUG(); for (i = 0; i < b->mcidx; i++) if (b->entries[i].result < 0) ret++; #if MC_DEBUG if (ret) { printk(KERN_ERR "%d multicall(s) failed: cpu %d\n", ret, smp_processor_id()); dump_stack(); for (i = 0; i < b->mcidx; i++) { printk(KERN_DEBUG " call %2d/%d: op=%lu arg=[%lx] result=%ld\t%pF\n", i+1, b->mcidx, b->debug[i].op, b->debug[i].args[0], b->entries[i].result, b->caller[i]); } } #endif } b->mcidx = 0; b->argidx = 0; for (i = 0; i < b->cbidx; i++) { struct callback *cb = &b->callbacks[i]; (*cb->fn)(cb->data); } b->cbidx = 0; local_irq_restore(flags); WARN_ON(ret); } struct multicall_space __xen_mc_entry(size_t args) { struct mc_buffer *b = &__get_cpu_var(mc_buffer); struct multicall_space ret; unsigned argidx = roundup(b->argidx, sizeof(u64)); trace_xen_mc_entry_alloc(args); BUG_ON(preemptible()); BUG_ON(b->argidx >= MC_ARGS); if (unlikely(b->mcidx == MC_BATCH || (argidx + args) >= MC_ARGS)) { trace_xen_mc_flush_reason((b->mcidx == MC_BATCH) ? XEN_MC_FL_BATCH : XEN_MC_FL_ARGS); xen_mc_flush(); argidx = roundup(b->argidx, sizeof(u64)); } ret.mc = &b->entries[b->mcidx]; #if MC_DEBUG b->caller[b->mcidx] = __builtin_return_address(0); #endif b->mcidx++; ret.args = &b->args[argidx]; b->argidx = argidx + args; BUG_ON(b->argidx >= MC_ARGS); return ret; } struct multicall_space xen_mc_extend_args(unsigned long op, size_t size) { struct mc_buffer *b = &__get_cpu_var(mc_buffer); struct multicall_space ret = { NULL, NULL }; BUG_ON(preemptible()); BUG_ON(b->argidx >= MC_ARGS); if (unlikely(b->mcidx == 0 || b->entries[b->mcidx - 1].op != op)) { trace_xen_mc_extend_args(op, size, XEN_MC_XE_BAD_OP); goto out; } if (unlikely((b->argidx + size) >= MC_ARGS)) { trace_xen_mc_extend_args(op, size, XEN_MC_XE_NO_SPACE); goto out; } ret.mc = &b->entries[b->mcidx - 1]; ret.args = &b->args[b->argidx]; b->argidx += size; BUG_ON(b->argidx >= MC_ARGS); trace_xen_mc_extend_args(op, size, XEN_MC_XE_OK); out: return ret; } void xen_mc_callback(void (*fn)(void *), void *data) { struct mc_buffer *b = &__get_cpu_var(mc_buffer); struct callback *cb; if (b->cbidx == MC_BATCH) { trace_xen_mc_flush_reason(XEN_MC_FL_CALLBACK); xen_mc_flush(); } trace_xen_mc_callback(fn, data); cb = &b->callbacks[b->cbidx++]; cb->fn = fn; cb->data = data; }