/* KVM paravirtual clock driver. A clocksource implementation Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include <linux/clocksource.h> #include <linux/kvm_para.h> #include <asm/pvclock.h> #include <asm/msr.h> #include <asm/apic.h> #include <linux/percpu.h> #include <linux/hardirq.h> #include <linux/memblock.h> #include <asm/x86_init.h> #include <asm/reboot.h> static int kvmclock = 1; static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME; static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK; static int parse_no_kvmclock(char *arg) { kvmclock = 0; return 0; } early_param("no-kvmclock", parse_no_kvmclock); /* The hypervisor will put information about time periodically here */ static struct pvclock_vsyscall_time_info *hv_clock; static struct pvclock_wall_clock wall_clock; /* * The wallclock is the time of day when we booted. Since then, some time may * have elapsed since the hypervisor wrote the data. So we try to account for * that with system time */ static void kvm_get_wallclock(struct timespec *now) { struct pvclock_vcpu_time_info *vcpu_time; int low, high; int cpu; low = (int)__pa_symbol(&wall_clock); high = ((u64)__pa_symbol(&wall_clock) >> 32); native_write_msr(msr_kvm_wall_clock, low, high); preempt_disable(); cpu = smp_processor_id(); vcpu_time = &hv_clock[cpu].pvti; pvclock_read_wallclock(&wall_clock, vcpu_time, now); preempt_enable(); } static int kvm_set_wallclock(const struct timespec *now) { return -1; } static cycle_t kvm_clock_read(void) { struct pvclock_vcpu_time_info *src; cycle_t ret; int cpu; preempt_disable_notrace(); cpu = smp_processor_id(); src = &hv_clock[cpu].pvti; ret = pvclock_clocksource_read(src); preempt_enable_notrace(); return ret; } static cycle_t kvm_clock_get_cycles(struct clocksource *cs) { return kvm_clock_read(); } /* * If we don't do that, there is the possibility that the guest * will calibrate under heavy load - thus, getting a lower lpj - * and execute the delays themselves without load. This is wrong, * because no delay loop can finish beforehand. * Any heuristics is subject to fail, because ultimately, a large * poll of guests can be running and trouble each other. So we preset * lpj here */ static unsigned long kvm_get_tsc_khz(void) { struct pvclock_vcpu_time_info *src; int cpu; unsigned long tsc_khz; preempt_disable(); cpu = smp_processor_id(); src = &hv_clock[cpu].pvti; tsc_khz = pvclock_tsc_khz(src); preempt_enable(); return tsc_khz; } static void kvm_get_preset_lpj(void) { unsigned long khz; u64 lpj; khz = kvm_get_tsc_khz(); lpj = ((u64)khz * 1000); do_div(lpj, HZ); preset_lpj = lpj; } bool kvm_check_and_clear_guest_paused(void) { bool ret = false; struct pvclock_vcpu_time_info *src; int cpu = smp_processor_id(); if (!hv_clock) return ret; src = &hv_clock[cpu].pvti; if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) { src->flags &= ~PVCLOCK_GUEST_STOPPED; pvclock_touch_watchdogs(); ret = true; } return ret; } static struct clocksource kvm_clock = { .name = "kvm-clock", .read = kvm_clock_get_cycles, .rating = 400, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; int kvm_register_clock(char *txt) { int cpu = smp_processor_id(); int low, high, ret; struct pvclock_vcpu_time_info *src; if (!hv_clock) return 0; src = &hv_clock[cpu].pvti; low = (int)slow_virt_to_phys(src) | 1; high = ((u64)slow_virt_to_phys(src) >> 32); ret = native_write_msr_safe(msr_kvm_system_time, low, high); printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n", cpu, high, low, txt); return ret; } static void kvm_save_sched_clock_state(void) { } static void kvm_restore_sched_clock_state(void) { kvm_register_clock("primary cpu clock, resume"); } #ifdef CONFIG_X86_LOCAL_APIC static void kvm_setup_secondary_clock(void) { /* * Now that the first cpu already had this clocksource initialized, * we shouldn't fail. */ WARN_ON(kvm_register_clock("secondary cpu clock")); } #endif /* * After the clock is registered, the host will keep writing to the * registered memory location. If the guest happens to shutdown, this memory * won't be valid. In cases like kexec, in which you install a new kernel, this * means a random memory location will be kept being written. So before any * kind of shutdown from our side, we unregister the clock by writting anything * that does not have the 'enable' bit set in the msr */ #ifdef CONFIG_KEXEC static void kvm_crash_shutdown(struct pt_regs *regs) { native_write_msr(msr_kvm_system_time, 0, 0); kvm_disable_steal_time(); native_machine_crash_shutdown(regs); } #endif static void kvm_shutdown(void) { native_write_msr(msr_kvm_system_time, 0, 0); kvm_disable_steal_time(); native_machine_shutdown(); } void __init kvmclock_init(void) { unsigned long mem; int size; size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS); if (!kvm_para_available()) return; if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) { msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW; msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW; } else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE))) return; printk(KERN_INFO "kvm-clock: Using msrs %x and %x", msr_kvm_system_time, msr_kvm_wall_clock); mem = memblock_alloc(size, PAGE_SIZE); if (!mem) return; hv_clock = __va(mem); memset(hv_clock, 0, size); if (kvm_register_clock("boot clock")) { hv_clock = NULL; memblock_free(mem, size); return; } pv_time_ops.sched_clock = kvm_clock_read; x86_platform.calibrate_tsc = kvm_get_tsc_khz; x86_platform.get_wallclock = kvm_get_wallclock; x86_platform.set_wallclock = kvm_set_wallclock; #ifdef CONFIG_X86_LOCAL_APIC x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock; #endif x86_platform.save_sched_clock_state = kvm_save_sched_clock_state; x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state; machine_ops.shutdown = kvm_shutdown; #ifdef CONFIG_KEXEC machine_ops.crash_shutdown = kvm_crash_shutdown; #endif kvm_get_preset_lpj(); clocksource_register_hz(&kvm_clock, NSEC_PER_SEC); pv_info.paravirt_enabled = 1; pv_info.name = "KVM"; if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT)) pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT); } int __init kvm_setup_vsyscall_timeinfo(void) { #ifdef CONFIG_X86_64 int cpu; int ret; u8 flags; struct pvclock_vcpu_time_info *vcpu_time; unsigned int size; if (!hv_clock) return 0; size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS); preempt_disable(); cpu = smp_processor_id(); vcpu_time = &hv_clock[cpu].pvti; flags = pvclock_read_flags(vcpu_time); if (!(flags & PVCLOCK_TSC_STABLE_BIT)) { preempt_enable(); return 1; } if ((ret = pvclock_init_vsyscall(hv_clock, size))) { preempt_enable(); return ret; } preempt_enable(); kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK; #endif return 0; }