/* * arch/tile/kernel/kprobes.c * Kprobes on TILE-Gx * * Some portions copied from the MIPS version. * * Copyright (C) IBM Corporation, 2002, 2004 * Copyright 2006 Sony Corp. * Copyright 2010 Cavium Networks * * Copyright 2012 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #include <linux/kprobes.h> #include <linux/kdebug.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <asm/cacheflush.h> #include <arch/opcode.h> DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); tile_bundle_bits breakpoint_insn = TILEGX_BPT_BUNDLE; tile_bundle_bits breakpoint2_insn = TILEGX_BPT_BUNDLE | DIE_SSTEPBP; /* * Check whether instruction is branch or jump, or if executing it * has different results depending on where it is executed (e.g. lnk). */ static int __kprobes insn_has_control(kprobe_opcode_t insn) { if (get_Mode(insn) != 0) { /* Y-format bundle */ if (get_Opcode_Y1(insn) != RRR_1_OPCODE_Y1 || get_RRROpcodeExtension_Y1(insn) != UNARY_RRR_1_OPCODE_Y1) return 0; switch (get_UnaryOpcodeExtension_Y1(insn)) { case JALRP_UNARY_OPCODE_Y1: case JALR_UNARY_OPCODE_Y1: case JRP_UNARY_OPCODE_Y1: case JR_UNARY_OPCODE_Y1: case LNK_UNARY_OPCODE_Y1: return 1; default: return 0; } } switch (get_Opcode_X1(insn)) { case BRANCH_OPCODE_X1: /* branch instructions */ case JUMP_OPCODE_X1: /* jump instructions: j and jal */ return 1; case RRR_0_OPCODE_X1: /* other jump instructions */ if (get_RRROpcodeExtension_X1(insn) != UNARY_RRR_0_OPCODE_X1) return 0; switch (get_UnaryOpcodeExtension_X1(insn)) { case JALRP_UNARY_OPCODE_X1: case JALR_UNARY_OPCODE_X1: case JRP_UNARY_OPCODE_X1: case JR_UNARY_OPCODE_X1: case LNK_UNARY_OPCODE_X1: return 1; default: return 0; } default: return 0; } } int __kprobes arch_prepare_kprobe(struct kprobe *p) { unsigned long addr = (unsigned long)p->addr; if (addr & (sizeof(kprobe_opcode_t) - 1)) return -EINVAL; if (insn_has_control(*p->addr)) { pr_notice("Kprobes for control instructions are not " "supported\n"); return -EINVAL; } /* insn: must be on special executable page on tile. */ p->ainsn.insn = get_insn_slot(); if (!p->ainsn.insn) return -ENOMEM; /* * In the kprobe->ainsn.insn[] array we store the original * instruction at index zero and a break trap instruction at * index one. */ memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t)); p->ainsn.insn[1] = breakpoint2_insn; p->opcode = *p->addr; return 0; } void __kprobes arch_arm_kprobe(struct kprobe *p) { unsigned long addr_wr; /* Operate on writable kernel text mapping. */ addr_wr = (unsigned long)p->addr - MEM_SV_START + PAGE_OFFSET; if (probe_kernel_write((void *)addr_wr, &breakpoint_insn, sizeof(breakpoint_insn))) pr_err("%s: failed to enable kprobe\n", __func__); smp_wmb(); flush_insn_slot(p); } void __kprobes arch_disarm_kprobe(struct kprobe *kp) { unsigned long addr_wr; /* Operate on writable kernel text mapping. */ addr_wr = (unsigned long)kp->addr - MEM_SV_START + PAGE_OFFSET; if (probe_kernel_write((void *)addr_wr, &kp->opcode, sizeof(kp->opcode))) pr_err("%s: failed to enable kprobe\n", __func__); smp_wmb(); flush_insn_slot(kp); } void __kprobes arch_remove_kprobe(struct kprobe *p) { if (p->ainsn.insn) { free_insn_slot(p->ainsn.insn, 0); p->ainsn.insn = NULL; } } static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; kcb->prev_kprobe.saved_pc = kcb->kprobe_saved_pc; } static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); kcb->kprobe_status = kcb->prev_kprobe.status; kcb->kprobe_saved_pc = kcb->prev_kprobe.saved_pc; } static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, p); kcb->kprobe_saved_pc = regs->pc; } static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) { /* Single step inline if the instruction is a break. */ if (p->opcode == breakpoint_insn || p->opcode == breakpoint2_insn) regs->pc = (unsigned long)p->addr; else regs->pc = (unsigned long)&p->ainsn.insn[0]; } static int __kprobes kprobe_handler(struct pt_regs *regs) { struct kprobe *p; int ret = 0; kprobe_opcode_t *addr; struct kprobe_ctlblk *kcb; addr = (kprobe_opcode_t *)regs->pc; /* * We don't want to be preempted for the entire * duration of kprobe processing. */ preempt_disable(); kcb = get_kprobe_ctlblk(); /* Check we're not actually recursing. */ if (kprobe_running()) { p = get_kprobe(addr); if (p) { if (kcb->kprobe_status == KPROBE_HIT_SS && p->ainsn.insn[0] == breakpoint_insn) { goto no_kprobe; } /* * We have reentered the kprobe_handler(), since * another probe was hit while within the handler. * We here save the original kprobes variables and * just single step on the instruction of the new probe * without calling any user handlers. */ save_previous_kprobe(kcb); set_current_kprobe(p, regs, kcb); kprobes_inc_nmissed_count(p); prepare_singlestep(p, regs); kcb->kprobe_status = KPROBE_REENTER; return 1; } else { if (*addr != breakpoint_insn) { /* * The breakpoint instruction was removed by * another cpu right after we hit, no further * handling of this interrupt is appropriate. */ ret = 1; goto no_kprobe; } p = __this_cpu_read(current_kprobe); if (p->break_handler && p->break_handler(p, regs)) goto ss_probe; } goto no_kprobe; } p = get_kprobe(addr); if (!p) { if (*addr != breakpoint_insn) { /* * The breakpoint instruction was removed right * after we hit it. Another cpu has removed * either a probepoint or a debugger breakpoint * at this address. In either case, no further * handling of this interrupt is appropriate. */ ret = 1; } /* Not one of ours: let kernel handle it. */ goto no_kprobe; } set_current_kprobe(p, regs, kcb); kcb->kprobe_status = KPROBE_HIT_ACTIVE; if (p->pre_handler && p->pre_handler(p, regs)) { /* Handler has already set things up, so skip ss setup. */ return 1; } ss_probe: prepare_singlestep(p, regs); kcb->kprobe_status = KPROBE_HIT_SS; return 1; no_kprobe: preempt_enable_no_resched(); return ret; } /* * Called after single-stepping. p->addr is the address of the * instruction that has been replaced by the breakpoint. To avoid the * SMP problems that can occur when we temporarily put back the * original opcode to single-step, we single-stepped a copy of the * instruction. The address of this copy is p->ainsn.insn. * * This function prepares to return from the post-single-step * breakpoint trap. */ static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { unsigned long orig_pc = kcb->kprobe_saved_pc; regs->pc = orig_pc + 8; } static inline int post_kprobe_handler(struct pt_regs *regs) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (!cur) return 0; if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; cur->post_handler(cur, regs, 0); } resume_execution(cur, regs, kcb); /* Restore back the original saved kprobes variables and continue. */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); goto out; } reset_current_kprobe(); out: preempt_enable_no_resched(); return 1; } static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) return 1; if (kcb->kprobe_status & KPROBE_HIT_SS) { /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe and the ip points back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ resume_execution(cur, regs, kcb); reset_current_kprobe(); preempt_enable_no_resched(); } return 0; } /* * Wrapper routine for handling exceptions. */ int __kprobes kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = (struct die_args *)data; int ret = NOTIFY_DONE; switch (val) { case DIE_BREAK: if (kprobe_handler(args->regs)) ret = NOTIFY_STOP; break; case DIE_SSTEPBP: if (post_kprobe_handler(args->regs)) ret = NOTIFY_STOP; break; case DIE_PAGE_FAULT: /* kprobe_running() needs smp_processor_id(). */ preempt_disable(); if (kprobe_running() && kprobe_fault_handler(args->regs, args->trapnr)) ret = NOTIFY_STOP; preempt_enable(); break; default: break; } return ret; } int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct jprobe *jp = container_of(p, struct jprobe, kp); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); kcb->jprobe_saved_regs = *regs; kcb->jprobe_saved_sp = regs->sp; memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp, MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp)); regs->pc = (unsigned long)(jp->entry); return 1; } /* Defined in the inline asm below. */ void jprobe_return_end(void); void __kprobes jprobe_return(void) { asm volatile( "bpt\n\t" ".globl jprobe_return_end\n" "jprobe_return_end:\n"); } int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (regs->pc >= (unsigned long)jprobe_return && regs->pc <= (unsigned long)jprobe_return_end) { *regs = kcb->jprobe_saved_regs; memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack, MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp)); preempt_enable_no_resched(); return 1; } return 0; } /* * Function return probe trampoline: * - init_kprobes() establishes a probepoint here * - When the probed function returns, this probe causes the * handlers to fire */ static void __used kretprobe_trampoline_holder(void) { asm volatile( "nop\n\t" ".global kretprobe_trampoline\n" "kretprobe_trampoline:\n\t" "nop\n\t" : : : "memory"); } void kretprobe_trampoline(void); void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) { ri->ret_addr = (kprobe_opcode_t *) regs->lr; /* Replace the return addr with trampoline addr */ regs->lr = (unsigned long)kretprobe_trampoline; } /* * Called when the probe at kretprobe trampoline is hit. */ static int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) { struct kretprobe_instance *ri = NULL; struct hlist_head *head, empty_rp; struct hlist_node *tmp; unsigned long flags, orig_ret_address = 0; unsigned long trampoline_address = (unsigned long)kretprobe_trampoline; INIT_HLIST_HEAD(&empty_rp); kretprobe_hash_lock(current, &head, &flags); /* * It is possible to have multiple instances associated with a given * task either because multiple functions in the call path have * a return probe installed on them, and/or more than one return * return probe was registered for a target function. * * We can handle this because: * - instances are always inserted at the head of the list * - when multiple return probes are registered for the same * function, the first instance's ret_addr will point to the * real return address, and all the rest will point to * kretprobe_trampoline */ hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; if (ri->rp && ri->rp->handler) ri->rp->handler(ri, regs); orig_ret_address = (unsigned long)ri->ret_addr; recycle_rp_inst(ri, &empty_rp); if (orig_ret_address != trampoline_address) { /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } } kretprobe_assert(ri, orig_ret_address, trampoline_address); instruction_pointer(regs) = orig_ret_address; reset_current_kprobe(); kretprobe_hash_unlock(current, &flags); preempt_enable_no_resched(); hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { hlist_del(&ri->hlist); kfree(ri); } /* * By returning a non-zero value, we are telling * kprobe_handler() that we don't want the post_handler * to run (and have re-enabled preemption) */ return 1; } int __kprobes arch_trampoline_kprobe(struct kprobe *p) { if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline) return 1; return 0; } static struct kprobe trampoline_p = { .addr = (kprobe_opcode_t *)kretprobe_trampoline, .pre_handler = trampoline_probe_handler }; int __init arch_init_kprobes(void) { register_kprobe(&trampoline_p); return 0; }