/* Disassemble SPU instructions Copyright 2006 Free Software Foundation, Inc. This file is part of GDB, GAS, and the GNU binutils. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include <linux/string.h> #include "nonstdio.h" #include "ansidecl.h" #include "spu.h" #include "dis-asm.h" /* This file provides a disassembler function which uses the disassembler interface defined in dis-asm.h. */ extern const struct spu_opcode spu_opcodes[]; extern const int spu_num_opcodes; #define SPU_DISASM_TBL_SIZE (1 << 11) static const struct spu_opcode *spu_disassemble_table[SPU_DISASM_TBL_SIZE]; static void init_spu_disassemble (void) { int i; /* If two instructions have the same opcode then we prefer the first * one. In most cases it is just an alternate mnemonic. */ for (i = 0; i < spu_num_opcodes; i++) { int o = spu_opcodes[i].opcode; if (o >= SPU_DISASM_TBL_SIZE) continue; /* abort (); */ if (spu_disassemble_table[o] == 0) spu_disassemble_table[o] = &spu_opcodes[i]; } } /* Determine the instruction from the 10 least significant bits. */ static const struct spu_opcode * get_index_for_opcode (unsigned int insn) { const struct spu_opcode *index; unsigned int opcode = insn >> (32-11); /* Init the table. This assumes that element 0/opcode 0 (currently * NOP) is always used */ if (spu_disassemble_table[0] == 0) init_spu_disassemble (); if ((index = spu_disassemble_table[opcode & 0x780]) != 0 && index->insn_type == RRR) return index; if ((index = spu_disassemble_table[opcode & 0x7f0]) != 0 && (index->insn_type == RI18 || index->insn_type == LBT)) return index; if ((index = spu_disassemble_table[opcode & 0x7f8]) != 0 && index->insn_type == RI10) return index; if ((index = spu_disassemble_table[opcode & 0x7fc]) != 0 && (index->insn_type == RI16)) return index; if ((index = spu_disassemble_table[opcode & 0x7fe]) != 0 && (index->insn_type == RI8)) return index; if ((index = spu_disassemble_table[opcode & 0x7ff]) != 0) return index; return NULL; } /* Print a Spu instruction. */ int print_insn_spu (unsigned long insn, unsigned long memaddr) { int value; int hex_value; const struct spu_opcode *index; enum spu_insns tag; index = get_index_for_opcode (insn); if (index == 0) { printf(".long 0x%x", insn); } else { int i; int paren = 0; tag = (enum spu_insns)(index - spu_opcodes); printf("%s", index->mnemonic); if (tag == M_BI || tag == M_BISL || tag == M_IRET || tag == M_BISLED || tag == M_BIHNZ || tag == M_BIHZ || tag == M_BINZ || tag == M_BIZ || tag == M_SYNC || tag == M_HBR) { int fb = (insn >> (32-18)) & 0x7f; if (fb & 0x40) printf(tag == M_SYNC ? "c" : "p"); if (fb & 0x20) printf("d"); if (fb & 0x10) printf("e"); } if (index->arg[0] != 0) printf("\t"); hex_value = 0; for (i = 1; i <= index->arg[0]; i++) { int arg = index->arg[i]; if (arg != A_P && !paren && i > 1) printf(","); switch (arg) { case A_T: printf("$%d", DECODE_INSN_RT (insn)); break; case A_A: printf("$%d", DECODE_INSN_RA (insn)); break; case A_B: printf("$%d", DECODE_INSN_RB (insn)); break; case A_C: printf("$%d", DECODE_INSN_RC (insn)); break; case A_S: printf("$sp%d", DECODE_INSN_RA (insn)); break; case A_H: printf("$ch%d", DECODE_INSN_RA (insn)); break; case A_P: paren++; printf("("); break; case A_U7A: printf("%d", 173 - DECODE_INSN_U8 (insn)); break; case A_U7B: printf("%d", 155 - DECODE_INSN_U8 (insn)); break; case A_S3: case A_S6: case A_S7: case A_S7N: case A_U3: case A_U5: case A_U6: case A_U7: hex_value = DECODE_INSN_I7 (insn); printf("%d", hex_value); break; case A_S11: print_address(memaddr + DECODE_INSN_I9a (insn) * 4); break; case A_S11I: print_address(memaddr + DECODE_INSN_I9b (insn) * 4); break; case A_S10: case A_S10B: hex_value = DECODE_INSN_I10 (insn); printf("%d", hex_value); break; case A_S14: hex_value = DECODE_INSN_I10 (insn) * 16; printf("%d", hex_value); break; case A_S16: hex_value = DECODE_INSN_I16 (insn); printf("%d", hex_value); break; case A_X16: hex_value = DECODE_INSN_U16 (insn); printf("%u", hex_value); break; case A_R18: value = DECODE_INSN_I16 (insn) * 4; if (value == 0) printf("%d", value); else { hex_value = memaddr + value; print_address(hex_value & 0x3ffff); } break; case A_S18: value = DECODE_INSN_U16 (insn) * 4; if (value == 0) printf("%d", value); else print_address(value); break; case A_U18: value = DECODE_INSN_U18 (insn); if (value == 0 || 1) { hex_value = value; printf("%u", value); } else print_address(value); break; case A_U14: hex_value = DECODE_INSN_U14 (insn); printf("%u", hex_value); break; } if (arg != A_P && paren) { printf(")"); paren--; } } if (hex_value > 16) printf("\t# %x", hex_value); } return 4; }