/* * Performance counter support for POWER8 processors. * * Copyright 2009 Paul Mackerras, IBM Corporation. * Copyright 2013 Michael Ellerman, IBM Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/kernel.h> #include <linux/perf_event.h> #include <asm/firmware.h> /* * Some power8 event codes. */ #define PM_CYC 0x0001e #define PM_GCT_NOSLOT_CYC 0x100f8 #define PM_CMPLU_STALL 0x4000a #define PM_INST_CMPL 0x00002 #define PM_BRU_FIN 0x10068 #define PM_BR_MPRED_CMPL 0x400f6 /* All L1 D cache load references counted at finish, gated by reject */ #define PM_LD_REF_L1 0x100ee /* Load Missed L1 */ #define PM_LD_MISS_L1 0x3e054 /* Store Missed L1 */ #define PM_ST_MISS_L1 0x300f0 /* L1 cache data prefetches */ #define PM_L1_PREF 0x0d8b8 /* Instruction fetches from L1 */ #define PM_INST_FROM_L1 0x04080 /* Demand iCache Miss */ #define PM_L1_ICACHE_MISS 0x200fd /* Instruction Demand sectors wriittent into IL1 */ #define PM_L1_DEMAND_WRITE 0x0408c /* Instruction prefetch written into IL1 */ #define PM_IC_PREF_WRITE 0x0408e /* The data cache was reloaded from local core's L3 due to a demand load */ #define PM_DATA_FROM_L3 0x4c042 /* Demand LD - L3 Miss (not L2 hit and not L3 hit) */ #define PM_DATA_FROM_L3MISS 0x300fe /* All successful D-side store dispatches for this thread */ #define PM_L2_ST 0x17080 /* All successful D-side store dispatches for this thread that were L2 Miss */ #define PM_L2_ST_MISS 0x17082 /* Total HW L3 prefetches(Load+store) */ #define PM_L3_PREF_ALL 0x4e052 /* Data PTEG reload */ #define PM_DTLB_MISS 0x300fc /* ITLB Reloaded */ #define PM_ITLB_MISS 0x400fc /* * Raw event encoding for POWER8: * * 60 56 52 48 44 40 36 32 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | * | [ thresh_cmp ] [ thresh_ctl ] * | | * *- EBB (Linux) thresh start/stop OR FAB match -* * * 28 24 20 16 12 8 4 0 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | * [ ] [ sample ] [cache] [ pmc ] [unit ] c m [ pmcxsel ] * | | | | | * | | | | *- mark * | | *- L1/L2/L3 cache_sel | * | | | * | *- sampling mode for marked events *- combine * | * *- thresh_sel * * Below uses IBM bit numbering. * * MMCR1[x:y] = unit (PMCxUNIT) * MMCR1[x] = combine (PMCxCOMB) * * if pmc == 3 and unit == 0 and pmcxsel[0:6] == 0b0101011 * # PM_MRK_FAB_RSP_MATCH * MMCR1[20:27] = thresh_ctl (FAB_CRESP_MATCH / FAB_TYPE_MATCH) * else if pmc == 4 and unit == 0xf and pmcxsel[0:6] == 0b0101001 * # PM_MRK_FAB_RSP_MATCH_CYC * MMCR1[20:27] = thresh_ctl (FAB_CRESP_MATCH / FAB_TYPE_MATCH) * else * MMCRA[48:55] = thresh_ctl (THRESH START/END) * * if thresh_sel: * MMCRA[45:47] = thresh_sel * * if thresh_cmp: * MMCRA[22:24] = thresh_cmp[0:2] * MMCRA[25:31] = thresh_cmp[3:9] * * if unit == 6 or unit == 7 * MMCRC[53:55] = cache_sel[1:3] (L2EVENT_SEL) * else if unit == 8 or unit == 9: * if cache_sel[0] == 0: # L3 bank * MMCRC[47:49] = cache_sel[1:3] (L3EVENT_SEL0) * else if cache_sel[0] == 1: * MMCRC[50:51] = cache_sel[2:3] (L3EVENT_SEL1) * else if cache_sel[1]: # L1 event * MMCR1[16] = cache_sel[2] * MMCR1[17] = cache_sel[3] * * if mark: * MMCRA[63] = 1 (SAMPLE_ENABLE) * MMCRA[57:59] = sample[0:2] (RAND_SAMP_ELIG) * MMCRA[61:62] = sample[3:4] (RAND_SAMP_MODE) * */ #define EVENT_EBB_MASK 1ull #define EVENT_THR_CMP_SHIFT 40 /* Threshold CMP value */ #define EVENT_THR_CMP_MASK 0x3ff #define EVENT_THR_CTL_SHIFT 32 /* Threshold control value (start/stop) */ #define EVENT_THR_CTL_MASK 0xffull #define EVENT_THR_SEL_SHIFT 29 /* Threshold select value */ #define EVENT_THR_SEL_MASK 0x7 #define EVENT_THRESH_SHIFT 29 /* All threshold bits */ #define EVENT_THRESH_MASK 0x1fffffull #define EVENT_SAMPLE_SHIFT 24 /* Sampling mode & eligibility */ #define EVENT_SAMPLE_MASK 0x1f #define EVENT_CACHE_SEL_SHIFT 20 /* L2/L3 cache select */ #define EVENT_CACHE_SEL_MASK 0xf #define EVENT_IS_L1 (4 << EVENT_CACHE_SEL_SHIFT) #define EVENT_PMC_SHIFT 16 /* PMC number (1-based) */ #define EVENT_PMC_MASK 0xf #define EVENT_UNIT_SHIFT 12 /* Unit */ #define EVENT_UNIT_MASK 0xf #define EVENT_COMBINE_SHIFT 11 /* Combine bit */ #define EVENT_COMBINE_MASK 0x1 #define EVENT_MARKED_SHIFT 8 /* Marked bit */ #define EVENT_MARKED_MASK 0x1 #define EVENT_IS_MARKED (EVENT_MARKED_MASK << EVENT_MARKED_SHIFT) #define EVENT_PSEL_MASK 0xff /* PMCxSEL value */ #define EVENT_VALID_MASK \ ((EVENT_THRESH_MASK << EVENT_THRESH_SHIFT) | \ (EVENT_SAMPLE_MASK << EVENT_SAMPLE_SHIFT) | \ (EVENT_CACHE_SEL_MASK << EVENT_CACHE_SEL_SHIFT) | \ (EVENT_PMC_MASK << EVENT_PMC_SHIFT) | \ (EVENT_UNIT_MASK << EVENT_UNIT_SHIFT) | \ (EVENT_COMBINE_MASK << EVENT_COMBINE_SHIFT) | \ (EVENT_MARKED_MASK << EVENT_MARKED_SHIFT) | \ (EVENT_EBB_MASK << PERF_EVENT_CONFIG_EBB_SHIFT) | \ EVENT_PSEL_MASK) /* MMCRA IFM bits - POWER8 */ #define POWER8_MMCRA_IFM1 0x0000000040000000UL #define POWER8_MMCRA_IFM2 0x0000000080000000UL #define POWER8_MMCRA_IFM3 0x00000000C0000000UL #define ONLY_PLM \ (PERF_SAMPLE_BRANCH_USER |\ PERF_SAMPLE_BRANCH_KERNEL |\ PERF_SAMPLE_BRANCH_HV) /* * Layout of constraint bits: * * 60 56 52 48 44 40 36 32 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | * [ fab_match ] [ thresh_cmp ] [ thresh_ctl ] [ ] * | * thresh_sel -* * * 28 24 20 16 12 8 4 0 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | * | [ ] [ sample ] [ ] [6] [5] [4] [3] [2] [1] * EBB -* | | * | | Count of events for each PMC. * L1 I/D qualifier -* | p1, p2, p3, p4, p5, p6. * nc - number of counters -* * * The PMC fields P1..P6, and NC, are adder fields. As we accumulate constraints * we want the low bit of each field to be added to any existing value. * * Everything else is a value field. */ #define CNST_FAB_MATCH_VAL(v) (((v) & EVENT_THR_CTL_MASK) << 56) #define CNST_FAB_MATCH_MASK CNST_FAB_MATCH_VAL(EVENT_THR_CTL_MASK) /* We just throw all the threshold bits into the constraint */ #define CNST_THRESH_VAL(v) (((v) & EVENT_THRESH_MASK) << 32) #define CNST_THRESH_MASK CNST_THRESH_VAL(EVENT_THRESH_MASK) #define CNST_EBB_VAL(v) (((v) & EVENT_EBB_MASK) << 24) #define CNST_EBB_MASK CNST_EBB_VAL(EVENT_EBB_MASK) #define CNST_L1_QUAL_VAL(v) (((v) & 3) << 22) #define CNST_L1_QUAL_MASK CNST_L1_QUAL_VAL(3) #define CNST_SAMPLE_VAL(v) (((v) & EVENT_SAMPLE_MASK) << 16) #define CNST_SAMPLE_MASK CNST_SAMPLE_VAL(EVENT_SAMPLE_MASK) /* * For NC we are counting up to 4 events. This requires three bits, and we need * the fifth event to overflow and set the 4th bit. To achieve that we bias the * fields by 3 in test_adder. */ #define CNST_NC_SHIFT 12 #define CNST_NC_VAL (1 << CNST_NC_SHIFT) #define CNST_NC_MASK (8 << CNST_NC_SHIFT) #define POWER8_TEST_ADDER (3 << CNST_NC_SHIFT) /* * For the per-PMC fields we have two bits. The low bit is added, so if two * events ask for the same PMC the sum will overflow, setting the high bit, * indicating an error. So our mask sets the high bit. */ #define CNST_PMC_SHIFT(pmc) ((pmc - 1) * 2) #define CNST_PMC_VAL(pmc) (1 << CNST_PMC_SHIFT(pmc)) #define CNST_PMC_MASK(pmc) (2 << CNST_PMC_SHIFT(pmc)) /* Our add_fields is defined as: */ #define POWER8_ADD_FIELDS \ CNST_PMC_VAL(1) | CNST_PMC_VAL(2) | CNST_PMC_VAL(3) | \ CNST_PMC_VAL(4) | CNST_PMC_VAL(5) | CNST_PMC_VAL(6) | CNST_NC_VAL /* Bits in MMCR1 for POWER8 */ #define MMCR1_UNIT_SHIFT(pmc) (60 - (4 * ((pmc) - 1))) #define MMCR1_COMBINE_SHIFT(pmc) (35 - ((pmc) - 1)) #define MMCR1_PMCSEL_SHIFT(pmc) (24 - (((pmc) - 1)) * 8) #define MMCR1_FAB_SHIFT 36 #define MMCR1_DC_QUAL_SHIFT 47 #define MMCR1_IC_QUAL_SHIFT 46 /* Bits in MMCRA for POWER8 */ #define MMCRA_SAMP_MODE_SHIFT 1 #define MMCRA_SAMP_ELIG_SHIFT 4 #define MMCRA_THR_CTL_SHIFT 8 #define MMCRA_THR_SEL_SHIFT 16 #define MMCRA_THR_CMP_SHIFT 32 #define MMCRA_SDAR_MODE_TLB (1ull << 42) static inline bool event_is_fab_match(u64 event) { /* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */ event &= 0xff0fe; /* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */ return (event == 0x30056 || event == 0x4f052); } static int power8_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp) { unsigned int unit, pmc, cache, ebb; unsigned long mask, value; mask = value = 0; if (event & ~EVENT_VALID_MASK) return -1; pmc = (event >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK; unit = (event >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK; cache = (event >> EVENT_CACHE_SEL_SHIFT) & EVENT_CACHE_SEL_MASK; ebb = (event >> PERF_EVENT_CONFIG_EBB_SHIFT) & EVENT_EBB_MASK; /* Clear the EBB bit in the event, so event checks work below */ event &= ~(EVENT_EBB_MASK << PERF_EVENT_CONFIG_EBB_SHIFT); if (pmc) { if (pmc > 6) return -1; mask |= CNST_PMC_MASK(pmc); value |= CNST_PMC_VAL(pmc); if (pmc >= 5 && event != 0x500fa && event != 0x600f4) return -1; } if (pmc <= 4) { /* * Add to number of counters in use. Note this includes events with * a PMC of 0 - they still need a PMC, it's just assigned later. * Don't count events on PMC 5 & 6, there is only one valid event * on each of those counters, and they are handled above. */ mask |= CNST_NC_MASK; value |= CNST_NC_VAL; } if (unit >= 6 && unit <= 9) { /* * L2/L3 events contain a cache selector field, which is * supposed to be programmed into MMCRC. However MMCRC is only * HV writable, and there is no API for guest kernels to modify * it. The solution is for the hypervisor to initialise the * field to zeroes, and for us to only ever allow events that * have a cache selector of zero. */ if (cache) return -1; } else if (event & EVENT_IS_L1) { mask |= CNST_L1_QUAL_MASK; value |= CNST_L1_QUAL_VAL(cache); } if (event & EVENT_IS_MARKED) { mask |= CNST_SAMPLE_MASK; value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT); } /* * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC, * the threshold control bits are used for the match value. */ if (event_is_fab_match(event)) { mask |= CNST_FAB_MATCH_MASK; value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT); } else { /* * Check the mantissa upper two bits are not zero, unless the * exponent is also zero. See the THRESH_CMP_MANTISSA doc. */ unsigned int cmp, exp; cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK; exp = cmp >> 7; if (exp && (cmp & 0x60) == 0) return -1; mask |= CNST_THRESH_MASK; value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT); } if (!pmc && ebb) /* EBB events must specify the PMC */ return -1; /* * All events must agree on EBB, either all request it or none. * EBB events are pinned & exclusive, so this should never actually * hit, but we leave it as a fallback in case. */ mask |= CNST_EBB_VAL(ebb); value |= CNST_EBB_MASK; *maskp = mask; *valp = value; return 0; } static int power8_compute_mmcr(u64 event[], int n_ev, unsigned int hwc[], unsigned long mmcr[]) { unsigned long mmcra, mmcr1, unit, combine, psel, cache, val; unsigned int pmc, pmc_inuse; int i; pmc_inuse = 0; /* First pass to count resource use */ for (i = 0; i < n_ev; ++i) { pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK; if (pmc) pmc_inuse |= 1 << pmc; } /* In continous sampling mode, update SDAR on TLB miss */ mmcra = MMCRA_SDAR_MODE_TLB; mmcr1 = 0; /* Second pass: assign PMCs, set all MMCR1 fields */ for (i = 0; i < n_ev; ++i) { pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK; unit = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK; combine = (event[i] >> EVENT_COMBINE_SHIFT) & EVENT_COMBINE_MASK; psel = event[i] & EVENT_PSEL_MASK; if (!pmc) { for (pmc = 1; pmc <= 4; ++pmc) { if (!(pmc_inuse & (1 << pmc))) break; } pmc_inuse |= 1 << pmc; } if (pmc <= 4) { mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc); mmcr1 |= combine << MMCR1_COMBINE_SHIFT(pmc); mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc); } if (event[i] & EVENT_IS_L1) { cache = event[i] >> EVENT_CACHE_SEL_SHIFT; mmcr1 |= (cache & 1) << MMCR1_IC_QUAL_SHIFT; cache >>= 1; mmcr1 |= (cache & 1) << MMCR1_DC_QUAL_SHIFT; } if (event[i] & EVENT_IS_MARKED) { mmcra |= MMCRA_SAMPLE_ENABLE; val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK; if (val) { mmcra |= (val & 3) << MMCRA_SAMP_MODE_SHIFT; mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT; } } /* * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC, * the threshold bits are used for the match value. */ if (event_is_fab_match(event[i])) { mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT; } else { val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK; mmcra |= val << MMCRA_THR_CTL_SHIFT; val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK; mmcra |= val << MMCRA_THR_SEL_SHIFT; val = (event[i] >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK; mmcra |= val << MMCRA_THR_CMP_SHIFT; } hwc[i] = pmc - 1; } /* Return MMCRx values */ mmcr[0] = 0; /* pmc_inuse is 1-based */ if (pmc_inuse & 2) mmcr[0] = MMCR0_PMC1CE; if (pmc_inuse & 0x7c) mmcr[0] |= MMCR0_PMCjCE; /* If we're not using PMC 5 or 6, freeze them */ if (!(pmc_inuse & 0x60)) mmcr[0] |= MMCR0_FC56; mmcr[1] = mmcr1; mmcr[2] = mmcra; return 0; } #define MAX_ALT 2 /* Table of alternatives, sorted by column 0 */ static const unsigned int event_alternatives[][MAX_ALT] = { { 0x10134, 0x301e2 }, /* PM_MRK_ST_CMPL */ { 0x10138, 0x40138 }, /* PM_BR_MRK_2PATH */ { 0x18082, 0x3e05e }, /* PM_L3_CO_MEPF */ { 0x1d14e, 0x401e8 }, /* PM_MRK_DATA_FROM_L2MISS */ { 0x1e054, 0x4000a }, /* PM_CMPLU_STALL */ { 0x20036, 0x40036 }, /* PM_BR_2PATH */ { 0x200f2, 0x300f2 }, /* PM_INST_DISP */ { 0x200f4, 0x600f4 }, /* PM_RUN_CYC */ { 0x2013c, 0x3012e }, /* PM_MRK_FILT_MATCH */ { 0x3e054, 0x400f0 }, /* PM_LD_MISS_L1 */ { 0x400fa, 0x500fa }, /* PM_RUN_INST_CMPL */ }; /* * Scan the alternatives table for a match and return the * index into the alternatives table if found, else -1. */ static int find_alternative(u64 event) { int i, j; for (i = 0; i < ARRAY_SIZE(event_alternatives); ++i) { if (event < event_alternatives[i][0]) break; for (j = 0; j < MAX_ALT && event_alternatives[i][j]; ++j) if (event == event_alternatives[i][j]) return i; } return -1; } static int power8_get_alternatives(u64 event, unsigned int flags, u64 alt[]) { int i, j, num_alt = 0; u64 alt_event; alt[num_alt++] = event; i = find_alternative(event); if (i >= 0) { /* Filter out the original event, it's already in alt[0] */ for (j = 0; j < MAX_ALT; ++j) { alt_event = event_alternatives[i][j]; if (alt_event && alt_event != event) alt[num_alt++] = alt_event; } } if (flags & PPMU_ONLY_COUNT_RUN) { /* * We're only counting in RUN state, so PM_CYC is equivalent to * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL. */ j = num_alt; for (i = 0; i < num_alt; ++i) { switch (alt[i]) { case 0x1e: /* PM_CYC */ alt[j++] = 0x600f4; /* PM_RUN_CYC */ break; case 0x600f4: /* PM_RUN_CYC */ alt[j++] = 0x1e; break; case 0x2: /* PM_PPC_CMPL */ alt[j++] = 0x500fa; /* PM_RUN_INST_CMPL */ break; case 0x500fa: /* PM_RUN_INST_CMPL */ alt[j++] = 0x2; /* PM_PPC_CMPL */ break; } } num_alt = j; } return num_alt; } static void power8_disable_pmc(unsigned int pmc, unsigned long mmcr[]) { if (pmc <= 3) mmcr[1] &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1)); } PMU_FORMAT_ATTR(event, "config:0-49"); PMU_FORMAT_ATTR(pmcxsel, "config:0-7"); PMU_FORMAT_ATTR(mark, "config:8"); PMU_FORMAT_ATTR(combine, "config:11"); PMU_FORMAT_ATTR(unit, "config:12-15"); PMU_FORMAT_ATTR(pmc, "config:16-19"); PMU_FORMAT_ATTR(cache_sel, "config:20-23"); PMU_FORMAT_ATTR(sample_mode, "config:24-28"); PMU_FORMAT_ATTR(thresh_sel, "config:29-31"); PMU_FORMAT_ATTR(thresh_stop, "config:32-35"); PMU_FORMAT_ATTR(thresh_start, "config:36-39"); PMU_FORMAT_ATTR(thresh_cmp, "config:40-49"); static struct attribute *power8_pmu_format_attr[] = { &format_attr_event.attr, &format_attr_pmcxsel.attr, &format_attr_mark.attr, &format_attr_combine.attr, &format_attr_unit.attr, &format_attr_pmc.attr, &format_attr_cache_sel.attr, &format_attr_sample_mode.attr, &format_attr_thresh_sel.attr, &format_attr_thresh_stop.attr, &format_attr_thresh_start.attr, &format_attr_thresh_cmp.attr, NULL, }; struct attribute_group power8_pmu_format_group = { .name = "format", .attrs = power8_pmu_format_attr, }; static const struct attribute_group *power8_pmu_attr_groups[] = { &power8_pmu_format_group, NULL, }; static int power8_generic_events[] = { [PERF_COUNT_HW_CPU_CYCLES] = PM_CYC, [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = PM_GCT_NOSLOT_CYC, [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = PM_CMPLU_STALL, [PERF_COUNT_HW_INSTRUCTIONS] = PM_INST_CMPL, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = PM_BRU_FIN, [PERF_COUNT_HW_BRANCH_MISSES] = PM_BR_MPRED_CMPL, [PERF_COUNT_HW_CACHE_REFERENCES] = PM_LD_REF_L1, [PERF_COUNT_HW_CACHE_MISSES] = PM_LD_MISS_L1, }; static u64 power8_bhrb_filter_map(u64 branch_sample_type) { u64 pmu_bhrb_filter = 0; /* BHRB and regular PMU events share the same privilege state * filter configuration. BHRB is always recorded along with a * regular PMU event. As the privilege state filter is handled * in the basic PMC configuration of the accompanying regular * PMU event, we ignore any separate BHRB specific request. */ /* No branch filter requested */ if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY) return pmu_bhrb_filter; /* Invalid branch filter options - HW does not support */ if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY_RETURN) return -1; if (branch_sample_type & PERF_SAMPLE_BRANCH_IND_CALL) return -1; if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY_CALL) { pmu_bhrb_filter |= POWER8_MMCRA_IFM1; return pmu_bhrb_filter; } /* Every thing else is unsupported */ return -1; } static void power8_config_bhrb(u64 pmu_bhrb_filter) { /* Enable BHRB filter in PMU */ mtspr(SPRN_MMCRA, (mfspr(SPRN_MMCRA) | pmu_bhrb_filter)); } #define C(x) PERF_COUNT_HW_CACHE_##x /* * Table of generalized cache-related events. * 0 means not supported, -1 means nonsensical, other values * are event codes. */ static int power8_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = PM_LD_REF_L1, [ C(RESULT_MISS) ] = PM_LD_MISS_L1, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = PM_ST_MISS_L1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = PM_L1_PREF, [ C(RESULT_MISS) ] = 0, }, }, [ C(L1I) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = PM_INST_FROM_L1, [ C(RESULT_MISS) ] = PM_L1_ICACHE_MISS, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = PM_L1_DEMAND_WRITE, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = PM_IC_PREF_WRITE, [ C(RESULT_MISS) ] = 0, }, }, [ C(LL) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = PM_DATA_FROM_L3, [ C(RESULT_MISS) ] = PM_DATA_FROM_L3MISS, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = PM_L2_ST, [ C(RESULT_MISS) ] = PM_L2_ST_MISS, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = PM_L3_PREF_ALL, [ C(RESULT_MISS) ] = 0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = PM_DTLB_MISS, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = PM_ITLB_MISS, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = PM_BRU_FIN, [ C(RESULT_MISS) ] = PM_BR_MPRED_CMPL, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; #undef C static struct power_pmu power8_pmu = { .name = "POWER8", .n_counter = 6, .max_alternatives = MAX_ALT + 1, .add_fields = POWER8_ADD_FIELDS, .test_adder = POWER8_TEST_ADDER, .compute_mmcr = power8_compute_mmcr, .config_bhrb = power8_config_bhrb, .bhrb_filter_map = power8_bhrb_filter_map, .get_constraint = power8_get_constraint, .get_alternatives = power8_get_alternatives, .disable_pmc = power8_disable_pmc, .flags = PPMU_HAS_SSLOT | PPMU_HAS_SIER | PPMU_BHRB | PPMU_EBB, .n_generic = ARRAY_SIZE(power8_generic_events), .generic_events = power8_generic_events, .cache_events = &power8_cache_events, .attr_groups = power8_pmu_attr_groups, .bhrb_nr = 32, }; static int __init init_power8_pmu(void) { int rc; if (!cur_cpu_spec->oprofile_cpu_type || strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc64/power8")) return -ENODEV; rc = register_power_pmu(&power8_pmu); if (rc) return rc; /* Tell userspace that EBB is supported */ cur_cpu_spec->cpu_user_features2 |= PPC_FEATURE2_EBB; return 0; } early_initcall(init_power8_pmu);