/* * Copyright 2012 Michael Ellerman, IBM Corporation. * Copyright 2012 Benjamin Herrenschmidt, IBM Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. */ #include <linux/kernel.h> #include <linux/kvm_host.h> #include <linux/err.h> #include <linux/gfp.h> #include <linux/anon_inodes.h> #include <asm/uaccess.h> #include <asm/kvm_book3s.h> #include <asm/kvm_ppc.h> #include <asm/hvcall.h> #include <asm/xics.h> #include <asm/debug.h> #include <asm/time.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include "book3s_xics.h" #if 1 #define XICS_DBG(fmt...) do { } while (0) #else #define XICS_DBG(fmt...) trace_printk(fmt) #endif #define ENABLE_REALMODE true #define DEBUG_REALMODE false /* * LOCKING * ======= * * Each ICS has a mutex protecting the information about the IRQ * sources and avoiding simultaneous deliveries if the same interrupt. * * ICP operations are done via a single compare & swap transaction * (most ICP state fits in the union kvmppc_icp_state) */ /* * TODO * ==== * * - To speed up resends, keep a bitmap of "resend" set bits in the * ICS * * - Speed up server# -> ICP lookup (array ? hash table ?) * * - Make ICS lockless as well, or at least a per-interrupt lock or hashed * locks array to improve scalability */ /* -- ICS routines -- */ static void icp_deliver_irq(struct kvmppc_xics *xics, struct kvmppc_icp *icp, u32 new_irq); static int ics_deliver_irq(struct kvmppc_xics *xics, u32 irq, u32 level, bool report_status) { struct ics_irq_state *state; struct kvmppc_ics *ics; u16 src; XICS_DBG("ics deliver %#x (level: %d)\n", irq, level); ics = kvmppc_xics_find_ics(xics, irq, &src); if (!ics) { XICS_DBG("ics_deliver_irq: IRQ 0x%06x not found !\n", irq); return -EINVAL; } state = &ics->irq_state[src]; if (!state->exists) return -EINVAL; if (report_status) return state->asserted; /* * We set state->asserted locklessly. This should be fine as * we are the only setter, thus concurrent access is undefined * to begin with. */ if (level == KVM_INTERRUPT_SET_LEVEL) state->asserted = 1; else if (level == KVM_INTERRUPT_UNSET) { state->asserted = 0; return 0; } /* Attempt delivery */ icp_deliver_irq(xics, NULL, irq); return state->asserted; } static void ics_check_resend(struct kvmppc_xics *xics, struct kvmppc_ics *ics, struct kvmppc_icp *icp) { int i; mutex_lock(&ics->lock); for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { struct ics_irq_state *state = &ics->irq_state[i]; if (!state->resend) continue; XICS_DBG("resend %#x prio %#x\n", state->number, state->priority); mutex_unlock(&ics->lock); icp_deliver_irq(xics, icp, state->number); mutex_lock(&ics->lock); } mutex_unlock(&ics->lock); } static bool write_xive(struct kvmppc_xics *xics, struct kvmppc_ics *ics, struct ics_irq_state *state, u32 server, u32 priority, u32 saved_priority) { bool deliver; mutex_lock(&ics->lock); state->server = server; state->priority = priority; state->saved_priority = saved_priority; deliver = false; if ((state->masked_pending || state->resend) && priority != MASKED) { state->masked_pending = 0; deliver = true; } mutex_unlock(&ics->lock); return deliver; } int kvmppc_xics_set_xive(struct kvm *kvm, u32 irq, u32 server, u32 priority) { struct kvmppc_xics *xics = kvm->arch.xics; struct kvmppc_icp *icp; struct kvmppc_ics *ics; struct ics_irq_state *state; u16 src; if (!xics) return -ENODEV; ics = kvmppc_xics_find_ics(xics, irq, &src); if (!ics) return -EINVAL; state = &ics->irq_state[src]; icp = kvmppc_xics_find_server(kvm, server); if (!icp) return -EINVAL; XICS_DBG("set_xive %#x server %#x prio %#x MP:%d RS:%d\n", irq, server, priority, state->masked_pending, state->resend); if (write_xive(xics, ics, state, server, priority, priority)) icp_deliver_irq(xics, icp, irq); return 0; } int kvmppc_xics_get_xive(struct kvm *kvm, u32 irq, u32 *server, u32 *priority) { struct kvmppc_xics *xics = kvm->arch.xics; struct kvmppc_ics *ics; struct ics_irq_state *state; u16 src; if (!xics) return -ENODEV; ics = kvmppc_xics_find_ics(xics, irq, &src); if (!ics) return -EINVAL; state = &ics->irq_state[src]; mutex_lock(&ics->lock); *server = state->server; *priority = state->priority; mutex_unlock(&ics->lock); return 0; } int kvmppc_xics_int_on(struct kvm *kvm, u32 irq) { struct kvmppc_xics *xics = kvm->arch.xics; struct kvmppc_icp *icp; struct kvmppc_ics *ics; struct ics_irq_state *state; u16 src; if (!xics) return -ENODEV; ics = kvmppc_xics_find_ics(xics, irq, &src); if (!ics) return -EINVAL; state = &ics->irq_state[src]; icp = kvmppc_xics_find_server(kvm, state->server); if (!icp) return -EINVAL; if (write_xive(xics, ics, state, state->server, state->saved_priority, state->saved_priority)) icp_deliver_irq(xics, icp, irq); return 0; } int kvmppc_xics_int_off(struct kvm *kvm, u32 irq) { struct kvmppc_xics *xics = kvm->arch.xics; struct kvmppc_ics *ics; struct ics_irq_state *state; u16 src; if (!xics) return -ENODEV; ics = kvmppc_xics_find_ics(xics, irq, &src); if (!ics) return -EINVAL; state = &ics->irq_state[src]; write_xive(xics, ics, state, state->server, MASKED, state->priority); return 0; } /* -- ICP routines, including hcalls -- */ static inline bool icp_try_update(struct kvmppc_icp *icp, union kvmppc_icp_state old, union kvmppc_icp_state new, bool change_self) { bool success; /* Calculate new output value */ new.out_ee = (new.xisr && (new.pending_pri < new.cppr)); /* Attempt atomic update */ success = cmpxchg64(&icp->state.raw, old.raw, new.raw) == old.raw; if (!success) goto bail; XICS_DBG("UPD [%04x] - C:%02x M:%02x PP: %02x PI:%06x R:%d O:%d\n", icp->server_num, old.cppr, old.mfrr, old.pending_pri, old.xisr, old.need_resend, old.out_ee); XICS_DBG("UPD - C:%02x M:%02x PP: %02x PI:%06x R:%d O:%d\n", new.cppr, new.mfrr, new.pending_pri, new.xisr, new.need_resend, new.out_ee); /* * Check for output state update * * Note that this is racy since another processor could be updating * the state already. This is why we never clear the interrupt output * here, we only ever set it. The clear only happens prior to doing * an update and only by the processor itself. Currently we do it * in Accept (H_XIRR) and Up_Cppr (H_XPPR). * * We also do not try to figure out whether the EE state has changed, * we unconditionally set it if the new state calls for it. The reason * for that is that we opportunistically remove the pending interrupt * flag when raising CPPR, so we need to set it back here if an * interrupt is still pending. */ if (new.out_ee) { kvmppc_book3s_queue_irqprio(icp->vcpu, BOOK3S_INTERRUPT_EXTERNAL_LEVEL); if (!change_self) kvmppc_fast_vcpu_kick(icp->vcpu); } bail: return success; } static void icp_check_resend(struct kvmppc_xics *xics, struct kvmppc_icp *icp) { u32 icsid; /* Order this load with the test for need_resend in the caller */ smp_rmb(); for_each_set_bit(icsid, icp->resend_map, xics->max_icsid + 1) { struct kvmppc_ics *ics = xics->ics[icsid]; if (!test_and_clear_bit(icsid, icp->resend_map)) continue; if (!ics) continue; ics_check_resend(xics, ics, icp); } } static bool icp_try_to_deliver(struct kvmppc_icp *icp, u32 irq, u8 priority, u32 *reject) { union kvmppc_icp_state old_state, new_state; bool success; XICS_DBG("try deliver %#x(P:%#x) to server %#x\n", irq, priority, icp->server_num); do { old_state = new_state = ACCESS_ONCE(icp->state); *reject = 0; /* See if we can deliver */ success = new_state.cppr > priority && new_state.mfrr > priority && new_state.pending_pri > priority; /* * If we can, check for a rejection and perform the * delivery */ if (success) { *reject = new_state.xisr; new_state.xisr = irq; new_state.pending_pri = priority; } else { /* * If we failed to deliver we set need_resend * so a subsequent CPPR state change causes us * to try a new delivery. */ new_state.need_resend = true; } } while (!icp_try_update(icp, old_state, new_state, false)); return success; } static void icp_deliver_irq(struct kvmppc_xics *xics, struct kvmppc_icp *icp, u32 new_irq) { struct ics_irq_state *state; struct kvmppc_ics *ics; u32 reject; u16 src; /* * This is used both for initial delivery of an interrupt and * for subsequent rejection. * * Rejection can be racy vs. resends. We have evaluated the * rejection in an atomic ICP transaction which is now complete, * so potentially the ICP can already accept the interrupt again. * * So we need to retry the delivery. Essentially the reject path * boils down to a failed delivery. Always. * * Now the interrupt could also have moved to a different target, * thus we may need to re-do the ICP lookup as well */ again: /* Get the ICS state and lock it */ ics = kvmppc_xics_find_ics(xics, new_irq, &src); if (!ics) { XICS_DBG("icp_deliver_irq: IRQ 0x%06x not found !\n", new_irq); return; } state = &ics->irq_state[src]; /* Get a lock on the ICS */ mutex_lock(&ics->lock); /* Get our server */ if (!icp || state->server != icp->server_num) { icp = kvmppc_xics_find_server(xics->kvm, state->server); if (!icp) { pr_warn("icp_deliver_irq: IRQ 0x%06x server 0x%x not found !\n", new_irq, state->server); goto out; } } /* Clear the resend bit of that interrupt */ state->resend = 0; /* * If masked, bail out * * Note: PAPR doesn't mention anything about masked pending * when doing a resend, only when doing a delivery. * * However that would have the effect of losing a masked * interrupt that was rejected and isn't consistent with * the whole masked_pending business which is about not * losing interrupts that occur while masked. * * I don't differenciate normal deliveries and resends, this * implementation will differ from PAPR and not lose such * interrupts. */ if (state->priority == MASKED) { XICS_DBG("irq %#x masked pending\n", new_irq); state->masked_pending = 1; goto out; } /* * Try the delivery, this will set the need_resend flag * in the ICP as part of the atomic transaction if the * delivery is not possible. * * Note that if successful, the new delivery might have itself * rejected an interrupt that was "delivered" before we took the * icp mutex. * * In this case we do the whole sequence all over again for the * new guy. We cannot assume that the rejected interrupt is less * favored than the new one, and thus doesn't need to be delivered, * because by the time we exit icp_try_to_deliver() the target * processor may well have alrady consumed & completed it, and thus * the rejected interrupt might actually be already acceptable. */ if (icp_try_to_deliver(icp, new_irq, state->priority, &reject)) { /* * Delivery was successful, did we reject somebody else ? */ if (reject && reject != XICS_IPI) { mutex_unlock(&ics->lock); new_irq = reject; goto again; } } else { /* * We failed to deliver the interrupt we need to set the * resend map bit and mark the ICS state as needing a resend */ set_bit(ics->icsid, icp->resend_map); state->resend = 1; /* * If the need_resend flag got cleared in the ICP some time * between icp_try_to_deliver() atomic update and now, then * we know it might have missed the resend_map bit. So we * retry */ smp_mb(); if (!icp->state.need_resend) { mutex_unlock(&ics->lock); goto again; } } out: mutex_unlock(&ics->lock); } static void icp_down_cppr(struct kvmppc_xics *xics, struct kvmppc_icp *icp, u8 new_cppr) { union kvmppc_icp_state old_state, new_state; bool resend; /* * This handles several related states in one operation: * * ICP State: Down_CPPR * * Load CPPR with new value and if the XISR is 0 * then check for resends: * * ICP State: Resend * * If MFRR is more favored than CPPR, check for IPIs * and notify ICS of a potential resend. This is done * asynchronously (when used in real mode, we will have * to exit here). * * We do not handle the complete Check_IPI as documented * here. In the PAPR, this state will be used for both * Set_MFRR and Down_CPPR. However, we know that we aren't * changing the MFRR state here so we don't need to handle * the case of an MFRR causing a reject of a pending irq, * this will have been handled when the MFRR was set in the * first place. * * Thus we don't have to handle rejects, only resends. * * When implementing real mode for HV KVM, resend will lead to * a H_TOO_HARD return and the whole transaction will be handled * in virtual mode. */ do { old_state = new_state = ACCESS_ONCE(icp->state); /* Down_CPPR */ new_state.cppr = new_cppr; /* * Cut down Resend / Check_IPI / IPI * * The logic is that we cannot have a pending interrupt * trumped by an IPI at this point (see above), so we * know that either the pending interrupt is already an * IPI (in which case we don't care to override it) or * it's either more favored than us or non existent */ if (new_state.mfrr < new_cppr && new_state.mfrr <= new_state.pending_pri) { WARN_ON(new_state.xisr != XICS_IPI && new_state.xisr != 0); new_state.pending_pri = new_state.mfrr; new_state.xisr = XICS_IPI; } /* Latch/clear resend bit */ resend = new_state.need_resend; new_state.need_resend = 0; } while (!icp_try_update(icp, old_state, new_state, true)); /* * Now handle resend checks. Those are asynchronous to the ICP * state update in HW (ie bus transactions) so we can handle them * separately here too */ if (resend) icp_check_resend(xics, icp); } static noinline unsigned long kvmppc_h_xirr(struct kvm_vcpu *vcpu) { union kvmppc_icp_state old_state, new_state; struct kvmppc_icp *icp = vcpu->arch.icp; u32 xirr; /* First, remove EE from the processor */ kvmppc_book3s_dequeue_irqprio(icp->vcpu, BOOK3S_INTERRUPT_EXTERNAL_LEVEL); /* * ICP State: Accept_Interrupt * * Return the pending interrupt (if any) along with the * current CPPR, then clear the XISR & set CPPR to the * pending priority */ do { old_state = new_state = ACCESS_ONCE(icp->state); xirr = old_state.xisr | (((u32)old_state.cppr) << 24); if (!old_state.xisr) break; new_state.cppr = new_state.pending_pri; new_state.pending_pri = 0xff; new_state.xisr = 0; } while (!icp_try_update(icp, old_state, new_state, true)); XICS_DBG("h_xirr vcpu %d xirr %#x\n", vcpu->vcpu_id, xirr); return xirr; } static noinline int kvmppc_h_ipi(struct kvm_vcpu *vcpu, unsigned long server, unsigned long mfrr) { union kvmppc_icp_state old_state, new_state; struct kvmppc_xics *xics = vcpu->kvm->arch.xics; struct kvmppc_icp *icp; u32 reject; bool resend; bool local; XICS_DBG("h_ipi vcpu %d to server %lu mfrr %#lx\n", vcpu->vcpu_id, server, mfrr); icp = vcpu->arch.icp; local = icp->server_num == server; if (!local) { icp = kvmppc_xics_find_server(vcpu->kvm, server); if (!icp) return H_PARAMETER; } /* * ICP state: Set_MFRR * * If the CPPR is more favored than the new MFRR, then * nothing needs to be rejected as there can be no XISR to * reject. If the MFRR is being made less favored then * there might be a previously-rejected interrupt needing * to be resent. * * If the CPPR is less favored, then we might be replacing * an interrupt, and thus need to possibly reject it as in * * ICP state: Check_IPI */ do { old_state = new_state = ACCESS_ONCE(icp->state); /* Set_MFRR */ new_state.mfrr = mfrr; /* Check_IPI */ reject = 0; resend = false; if (mfrr < new_state.cppr) { /* Reject a pending interrupt if not an IPI */ if (mfrr <= new_state.pending_pri) reject = new_state.xisr; new_state.pending_pri = mfrr; new_state.xisr = XICS_IPI; } if (mfrr > old_state.mfrr && mfrr > new_state.cppr) { resend = new_state.need_resend; new_state.need_resend = 0; } } while (!icp_try_update(icp, old_state, new_state, local)); /* Handle reject */ if (reject && reject != XICS_IPI) icp_deliver_irq(xics, icp, reject); /* Handle resend */ if (resend) icp_check_resend(xics, icp); return H_SUCCESS; } static int kvmppc_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server) { union kvmppc_icp_state state; struct kvmppc_icp *icp; icp = vcpu->arch.icp; if (icp->server_num != server) { icp = kvmppc_xics_find_server(vcpu->kvm, server); if (!icp) return H_PARAMETER; } state = ACCESS_ONCE(icp->state); kvmppc_set_gpr(vcpu, 4, ((u32)state.cppr << 24) | state.xisr); kvmppc_set_gpr(vcpu, 5, state.mfrr); return H_SUCCESS; } static noinline void kvmppc_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr) { union kvmppc_icp_state old_state, new_state; struct kvmppc_xics *xics = vcpu->kvm->arch.xics; struct kvmppc_icp *icp = vcpu->arch.icp; u32 reject; XICS_DBG("h_cppr vcpu %d cppr %#lx\n", vcpu->vcpu_id, cppr); /* * ICP State: Set_CPPR * * We can safely compare the new value with the current * value outside of the transaction as the CPPR is only * ever changed by the processor on itself */ if (cppr > icp->state.cppr) icp_down_cppr(xics, icp, cppr); else if (cppr == icp->state.cppr) return; /* * ICP State: Up_CPPR * * The processor is raising its priority, this can result * in a rejection of a pending interrupt: * * ICP State: Reject_Current * * We can remove EE from the current processor, the update * transaction will set it again if needed */ kvmppc_book3s_dequeue_irqprio(icp->vcpu, BOOK3S_INTERRUPT_EXTERNAL_LEVEL); do { old_state = new_state = ACCESS_ONCE(icp->state); reject = 0; new_state.cppr = cppr; if (cppr <= new_state.pending_pri) { reject = new_state.xisr; new_state.xisr = 0; new_state.pending_pri = 0xff; } } while (!icp_try_update(icp, old_state, new_state, true)); /* * Check for rejects. They are handled by doing a new delivery * attempt (see comments in icp_deliver_irq). */ if (reject && reject != XICS_IPI) icp_deliver_irq(xics, icp, reject); } static noinline int kvmppc_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr) { struct kvmppc_xics *xics = vcpu->kvm->arch.xics; struct kvmppc_icp *icp = vcpu->arch.icp; struct kvmppc_ics *ics; struct ics_irq_state *state; u32 irq = xirr & 0x00ffffff; u16 src; XICS_DBG("h_eoi vcpu %d eoi %#lx\n", vcpu->vcpu_id, xirr); /* * ICP State: EOI * * Note: If EOI is incorrectly used by SW to lower the CPPR * value (ie more favored), we do not check for rejection of * a pending interrupt, this is a SW error and PAPR sepcifies * that we don't have to deal with it. * * The sending of an EOI to the ICS is handled after the * CPPR update * * ICP State: Down_CPPR which we handle * in a separate function as it's shared with H_CPPR. */ icp_down_cppr(xics, icp, xirr >> 24); /* IPIs have no EOI */ if (irq == XICS_IPI) return H_SUCCESS; /* * EOI handling: If the interrupt is still asserted, we need to * resend it. We can take a lockless "peek" at the ICS state here. * * "Message" interrupts will never have "asserted" set */ ics = kvmppc_xics_find_ics(xics, irq, &src); if (!ics) { XICS_DBG("h_eoi: IRQ 0x%06x not found !\n", irq); return H_PARAMETER; } state = &ics->irq_state[src]; /* Still asserted, resend it */ if (state->asserted) icp_deliver_irq(xics, icp, irq); return H_SUCCESS; } static noinline int kvmppc_xics_rm_complete(struct kvm_vcpu *vcpu, u32 hcall) { struct kvmppc_xics *xics = vcpu->kvm->arch.xics; struct kvmppc_icp *icp = vcpu->arch.icp; XICS_DBG("XICS_RM: H_%x completing, act: %x state: %lx tgt: %p\n", hcall, icp->rm_action, icp->rm_dbgstate.raw, icp->rm_dbgtgt); if (icp->rm_action & XICS_RM_KICK_VCPU) kvmppc_fast_vcpu_kick(icp->rm_kick_target); if (icp->rm_action & XICS_RM_CHECK_RESEND) icp_check_resend(xics, icp); if (icp->rm_action & XICS_RM_REJECT) icp_deliver_irq(xics, icp, icp->rm_reject); icp->rm_action = 0; return H_SUCCESS; } int kvmppc_xics_hcall(struct kvm_vcpu *vcpu, u32 req) { struct kvmppc_xics *xics = vcpu->kvm->arch.xics; unsigned long res; int rc = H_SUCCESS; /* Check if we have an ICP */ if (!xics || !vcpu->arch.icp) return H_HARDWARE; /* These requests don't have real-mode implementations at present */ switch (req) { case H_XIRR_X: res = kvmppc_h_xirr(vcpu); kvmppc_set_gpr(vcpu, 4, res); kvmppc_set_gpr(vcpu, 5, get_tb()); return rc; case H_IPOLL: rc = kvmppc_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4)); return rc; } /* Check for real mode returning too hard */ if (xics->real_mode && is_kvmppc_hv_enabled(vcpu->kvm)) return kvmppc_xics_rm_complete(vcpu, req); switch (req) { case H_XIRR: res = kvmppc_h_xirr(vcpu); kvmppc_set_gpr(vcpu, 4, res); break; case H_CPPR: kvmppc_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4)); break; case H_EOI: rc = kvmppc_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4)); break; case H_IPI: rc = kvmppc_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5)); break; } return rc; } EXPORT_SYMBOL_GPL(kvmppc_xics_hcall); /* -- Initialisation code etc. -- */ static int xics_debug_show(struct seq_file *m, void *private) { struct kvmppc_xics *xics = m->private; struct kvm *kvm = xics->kvm; struct kvm_vcpu *vcpu; int icsid, i; if (!kvm) return 0; seq_printf(m, "=========\nICP state\n=========\n"); kvm_for_each_vcpu(i, vcpu, kvm) { struct kvmppc_icp *icp = vcpu->arch.icp; union kvmppc_icp_state state; if (!icp) continue; state.raw = ACCESS_ONCE(icp->state.raw); seq_printf(m, "cpu server %#lx XIRR:%#x PPRI:%#x CPPR:%#x MFRR:%#x OUT:%d NR:%d\n", icp->server_num, state.xisr, state.pending_pri, state.cppr, state.mfrr, state.out_ee, state.need_resend); } for (icsid = 0; icsid <= KVMPPC_XICS_MAX_ICS_ID; icsid++) { struct kvmppc_ics *ics = xics->ics[icsid]; if (!ics) continue; seq_printf(m, "=========\nICS state for ICS 0x%x\n=========\n", icsid); mutex_lock(&ics->lock); for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { struct ics_irq_state *irq = &ics->irq_state[i]; seq_printf(m, "irq 0x%06x: server %#x prio %#x save prio %#x asserted %d resend %d masked pending %d\n", irq->number, irq->server, irq->priority, irq->saved_priority, irq->asserted, irq->resend, irq->masked_pending); } mutex_unlock(&ics->lock); } return 0; } static int xics_debug_open(struct inode *inode, struct file *file) { return single_open(file, xics_debug_show, inode->i_private); } static const struct file_operations xics_debug_fops = { .open = xics_debug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void xics_debugfs_init(struct kvmppc_xics *xics) { char *name; name = kasprintf(GFP_KERNEL, "kvm-xics-%p", xics); if (!name) { pr_err("%s: no memory for name\n", __func__); return; } xics->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root, xics, &xics_debug_fops); pr_debug("%s: created %s\n", __func__, name); kfree(name); } static struct kvmppc_ics *kvmppc_xics_create_ics(struct kvm *kvm, struct kvmppc_xics *xics, int irq) { struct kvmppc_ics *ics; int i, icsid; icsid = irq >> KVMPPC_XICS_ICS_SHIFT; mutex_lock(&kvm->lock); /* ICS already exists - somebody else got here first */ if (xics->ics[icsid]) goto out; /* Create the ICS */ ics = kzalloc(sizeof(struct kvmppc_ics), GFP_KERNEL); if (!ics) goto out; mutex_init(&ics->lock); ics->icsid = icsid; for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { ics->irq_state[i].number = (icsid << KVMPPC_XICS_ICS_SHIFT) | i; ics->irq_state[i].priority = MASKED; ics->irq_state[i].saved_priority = MASKED; } smp_wmb(); xics->ics[icsid] = ics; if (icsid > xics->max_icsid) xics->max_icsid = icsid; out: mutex_unlock(&kvm->lock); return xics->ics[icsid]; } int kvmppc_xics_create_icp(struct kvm_vcpu *vcpu, unsigned long server_num) { struct kvmppc_icp *icp; if (!vcpu->kvm->arch.xics) return -ENODEV; if (kvmppc_xics_find_server(vcpu->kvm, server_num)) return -EEXIST; icp = kzalloc(sizeof(struct kvmppc_icp), GFP_KERNEL); if (!icp) return -ENOMEM; icp->vcpu = vcpu; icp->server_num = server_num; icp->state.mfrr = MASKED; icp->state.pending_pri = MASKED; vcpu->arch.icp = icp; XICS_DBG("created server for vcpu %d\n", vcpu->vcpu_id); return 0; } u64 kvmppc_xics_get_icp(struct kvm_vcpu *vcpu) { struct kvmppc_icp *icp = vcpu->arch.icp; union kvmppc_icp_state state; if (!icp) return 0; state = icp->state; return ((u64)state.cppr << KVM_REG_PPC_ICP_CPPR_SHIFT) | ((u64)state.xisr << KVM_REG_PPC_ICP_XISR_SHIFT) | ((u64)state.mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT) | ((u64)state.pending_pri << KVM_REG_PPC_ICP_PPRI_SHIFT); } int kvmppc_xics_set_icp(struct kvm_vcpu *vcpu, u64 icpval) { struct kvmppc_icp *icp = vcpu->arch.icp; struct kvmppc_xics *xics = vcpu->kvm->arch.xics; union kvmppc_icp_state old_state, new_state; struct kvmppc_ics *ics; u8 cppr, mfrr, pending_pri; u32 xisr; u16 src; bool resend; if (!icp || !xics) return -ENOENT; cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT; xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) & KVM_REG_PPC_ICP_XISR_MASK; mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT; pending_pri = icpval >> KVM_REG_PPC_ICP_PPRI_SHIFT; /* Require the new state to be internally consistent */ if (xisr == 0) { if (pending_pri != 0xff) return -EINVAL; } else if (xisr == XICS_IPI) { if (pending_pri != mfrr || pending_pri >= cppr) return -EINVAL; } else { if (pending_pri >= mfrr || pending_pri >= cppr) return -EINVAL; ics = kvmppc_xics_find_ics(xics, xisr, &src); if (!ics) return -EINVAL; } new_state.raw = 0; new_state.cppr = cppr; new_state.xisr = xisr; new_state.mfrr = mfrr; new_state.pending_pri = pending_pri; /* * Deassert the CPU interrupt request. * icp_try_update will reassert it if necessary. */ kvmppc_book3s_dequeue_irqprio(icp->vcpu, BOOK3S_INTERRUPT_EXTERNAL_LEVEL); /* * Note that if we displace an interrupt from old_state.xisr, * we don't mark it as rejected. We expect userspace to set * the state of the interrupt sources to be consistent with * the ICP states (either before or afterwards, which doesn't * matter). We do handle resends due to CPPR becoming less * favoured because that is necessary to end up with a * consistent state in the situation where userspace restores * the ICS states before the ICP states. */ do { old_state = ACCESS_ONCE(icp->state); if (new_state.mfrr <= old_state.mfrr) { resend = false; new_state.need_resend = old_state.need_resend; } else { resend = old_state.need_resend; new_state.need_resend = 0; } } while (!icp_try_update(icp, old_state, new_state, false)); if (resend) icp_check_resend(xics, icp); return 0; } static int xics_get_source(struct kvmppc_xics *xics, long irq, u64 addr) { int ret; struct kvmppc_ics *ics; struct ics_irq_state *irqp; u64 __user *ubufp = (u64 __user *) addr; u16 idx; u64 val, prio; ics = kvmppc_xics_find_ics(xics, irq, &idx); if (!ics) return -ENOENT; irqp = &ics->irq_state[idx]; mutex_lock(&ics->lock); ret = -ENOENT; if (irqp->exists) { val = irqp->server; prio = irqp->priority; if (prio == MASKED) { val |= KVM_XICS_MASKED; prio = irqp->saved_priority; } val |= prio << KVM_XICS_PRIORITY_SHIFT; if (irqp->asserted) val |= KVM_XICS_LEVEL_SENSITIVE | KVM_XICS_PENDING; else if (irqp->masked_pending || irqp->resend) val |= KVM_XICS_PENDING; ret = 0; } mutex_unlock(&ics->lock); if (!ret && put_user(val, ubufp)) ret = -EFAULT; return ret; } static int xics_set_source(struct kvmppc_xics *xics, long irq, u64 addr) { struct kvmppc_ics *ics; struct ics_irq_state *irqp; u64 __user *ubufp = (u64 __user *) addr; u16 idx; u64 val; u8 prio; u32 server; if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS) return -ENOENT; ics = kvmppc_xics_find_ics(xics, irq, &idx); if (!ics) { ics = kvmppc_xics_create_ics(xics->kvm, xics, irq); if (!ics) return -ENOMEM; } irqp = &ics->irq_state[idx]; if (get_user(val, ubufp)) return -EFAULT; server = val & KVM_XICS_DESTINATION_MASK; prio = val >> KVM_XICS_PRIORITY_SHIFT; if (prio != MASKED && kvmppc_xics_find_server(xics->kvm, server) == NULL) return -EINVAL; mutex_lock(&ics->lock); irqp->server = server; irqp->saved_priority = prio; if (val & KVM_XICS_MASKED) prio = MASKED; irqp->priority = prio; irqp->resend = 0; irqp->masked_pending = 0; irqp->asserted = 0; if ((val & KVM_XICS_PENDING) && (val & KVM_XICS_LEVEL_SENSITIVE)) irqp->asserted = 1; irqp->exists = 1; mutex_unlock(&ics->lock); if (val & KVM_XICS_PENDING) icp_deliver_irq(xics, NULL, irqp->number); return 0; } int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, bool line_status) { struct kvmppc_xics *xics = kvm->arch.xics; return ics_deliver_irq(xics, irq, level, line_status); } static int xics_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { struct kvmppc_xics *xics = dev->private; switch (attr->group) { case KVM_DEV_XICS_GRP_SOURCES: return xics_set_source(xics, attr->attr, attr->addr); } return -ENXIO; } static int xics_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { struct kvmppc_xics *xics = dev->private; switch (attr->group) { case KVM_DEV_XICS_GRP_SOURCES: return xics_get_source(xics, attr->attr, attr->addr); } return -ENXIO; } static int xics_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { switch (attr->group) { case KVM_DEV_XICS_GRP_SOURCES: if (attr->attr >= KVMPPC_XICS_FIRST_IRQ && attr->attr < KVMPPC_XICS_NR_IRQS) return 0; break; } return -ENXIO; } static void kvmppc_xics_free(struct kvm_device *dev) { struct kvmppc_xics *xics = dev->private; int i; struct kvm *kvm = xics->kvm; debugfs_remove(xics->dentry); if (kvm) kvm->arch.xics = NULL; for (i = 0; i <= xics->max_icsid; i++) kfree(xics->ics[i]); kfree(xics); kfree(dev); } static int kvmppc_xics_create(struct kvm_device *dev, u32 type) { struct kvmppc_xics *xics; struct kvm *kvm = dev->kvm; int ret = 0; xics = kzalloc(sizeof(*xics), GFP_KERNEL); if (!xics) return -ENOMEM; dev->private = xics; xics->dev = dev; xics->kvm = kvm; /* Already there ? */ mutex_lock(&kvm->lock); if (kvm->arch.xics) ret = -EEXIST; else kvm->arch.xics = xics; mutex_unlock(&kvm->lock); if (ret) { kfree(xics); return ret; } xics_debugfs_init(xics); #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE if (cpu_has_feature(CPU_FTR_ARCH_206)) { /* Enable real mode support */ xics->real_mode = ENABLE_REALMODE; xics->real_mode_dbg = DEBUG_REALMODE; } #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ return 0; } struct kvm_device_ops kvm_xics_ops = { .name = "kvm-xics", .create = kvmppc_xics_create, .destroy = kvmppc_xics_free, .set_attr = xics_set_attr, .get_attr = xics_get_attr, .has_attr = xics_has_attr, }; int kvmppc_xics_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu, u32 xcpu) { struct kvmppc_xics *xics = dev->private; int r = -EBUSY; if (dev->ops != &kvm_xics_ops) return -EPERM; if (xics->kvm != vcpu->kvm) return -EPERM; if (vcpu->arch.irq_type) return -EBUSY; r = kvmppc_xics_create_icp(vcpu, xcpu); if (!r) vcpu->arch.irq_type = KVMPPC_IRQ_XICS; return r; } void kvmppc_xics_free_icp(struct kvm_vcpu *vcpu) { if (!vcpu->arch.icp) return; kfree(vcpu->arch.icp); vcpu->arch.icp = NULL; vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT; }