/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Copyright IBM Corp. 2007 * * Authors: Hollis Blanchard <hollisb@us.ibm.com> */ #include <linux/types.h> #include <linux/string.h> #include <linux/kvm.h> #include <linux/kvm_host.h> #include <linux/highmem.h> #include <asm/tlbflush.h> #include <asm/mmu-44x.h> #include <asm/kvm_ppc.h> #include <asm/kvm_44x.h> #include "timing.h" #include "44x_tlb.h" #include "trace.h" #ifndef PPC44x_TLBE_SIZE #define PPC44x_TLBE_SIZE PPC44x_TLB_4K #endif #define PAGE_SIZE_4K (1<<12) #define PAGE_MASK_4K (~(PAGE_SIZE_4K - 1)) #define PPC44x_TLB_UATTR_MASK \ (PPC44x_TLB_U0|PPC44x_TLB_U1|PPC44x_TLB_U2|PPC44x_TLB_U3) #define PPC44x_TLB_USER_PERM_MASK (PPC44x_TLB_UX|PPC44x_TLB_UR|PPC44x_TLB_UW) #define PPC44x_TLB_SUPER_PERM_MASK (PPC44x_TLB_SX|PPC44x_TLB_SR|PPC44x_TLB_SW) #ifdef DEBUG void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu); struct kvmppc_44x_tlbe *tlbe; int i; printk("vcpu %d TLB dump:\n", vcpu->vcpu_id); printk("| %2s | %3s | %8s | %8s | %8s |\n", "nr", "tid", "word0", "word1", "word2"); for (i = 0; i < ARRAY_SIZE(vcpu_44x->guest_tlb); i++) { tlbe = &vcpu_44x->guest_tlb[i]; if (tlbe->word0 & PPC44x_TLB_VALID) printk(" G%2d | %02X | %08X | %08X | %08X |\n", i, tlbe->tid, tlbe->word0, tlbe->word1, tlbe->word2); } } #endif static inline void kvmppc_44x_tlbie(unsigned int index) { /* 0 <= index < 64, so the V bit is clear and we can use the index as * word0. */ asm volatile( "tlbwe %[index], %[index], 0\n" : : [index] "r"(index) ); } static inline void kvmppc_44x_tlbre(unsigned int index, struct kvmppc_44x_tlbe *tlbe) { asm volatile( "tlbre %[word0], %[index], 0\n" "mfspr %[tid], %[sprn_mmucr]\n" "andi. %[tid], %[tid], 0xff\n" "tlbre %[word1], %[index], 1\n" "tlbre %[word2], %[index], 2\n" : [word0] "=r"(tlbe->word0), [word1] "=r"(tlbe->word1), [word2] "=r"(tlbe->word2), [tid] "=r"(tlbe->tid) : [index] "r"(index), [sprn_mmucr] "i"(SPRN_MMUCR) : "cc" ); } static inline void kvmppc_44x_tlbwe(unsigned int index, struct kvmppc_44x_tlbe *stlbe) { unsigned long tmp; asm volatile( "mfspr %[tmp], %[sprn_mmucr]\n" "rlwimi %[tmp], %[tid], 0, 0xff\n" "mtspr %[sprn_mmucr], %[tmp]\n" "tlbwe %[word0], %[index], 0\n" "tlbwe %[word1], %[index], 1\n" "tlbwe %[word2], %[index], 2\n" : [tmp] "=&r"(tmp) : [word0] "r"(stlbe->word0), [word1] "r"(stlbe->word1), [word2] "r"(stlbe->word2), [tid] "r"(stlbe->tid), [index] "r"(index), [sprn_mmucr] "i"(SPRN_MMUCR) ); } static u32 kvmppc_44x_tlb_shadow_attrib(u32 attrib, int usermode) { /* We only care about the guest's permission and user bits. */ attrib &= PPC44x_TLB_PERM_MASK|PPC44x_TLB_UATTR_MASK; if (!usermode) { /* Guest is in supervisor mode, so we need to translate guest * supervisor permissions into user permissions. */ attrib &= ~PPC44x_TLB_USER_PERM_MASK; attrib |= (attrib & PPC44x_TLB_SUPER_PERM_MASK) << 3; } /* Make sure host can always access this memory. */ attrib |= PPC44x_TLB_SX|PPC44x_TLB_SR|PPC44x_TLB_SW; /* WIMGE = 0b00100 */ attrib |= PPC44x_TLB_M; return attrib; } /* Load shadow TLB back into hardware. */ void kvmppc_44x_tlb_load(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu); int i; for (i = 0; i <= tlb_44x_hwater; i++) { struct kvmppc_44x_tlbe *stlbe = &vcpu_44x->shadow_tlb[i]; if (get_tlb_v(stlbe) && get_tlb_ts(stlbe)) kvmppc_44x_tlbwe(i, stlbe); } } static void kvmppc_44x_tlbe_set_modified(struct kvmppc_vcpu_44x *vcpu_44x, unsigned int i) { vcpu_44x->shadow_tlb_mod[i] = 1; } /* Save hardware TLB to the vcpu, and invalidate all guest mappings. */ void kvmppc_44x_tlb_put(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu); int i; for (i = 0; i <= tlb_44x_hwater; i++) { struct kvmppc_44x_tlbe *stlbe = &vcpu_44x->shadow_tlb[i]; if (vcpu_44x->shadow_tlb_mod[i]) kvmppc_44x_tlbre(i, stlbe); if (get_tlb_v(stlbe) && get_tlb_ts(stlbe)) kvmppc_44x_tlbie(i); } } /* Search the guest TLB for a matching entry. */ int kvmppc_44x_tlb_index(struct kvm_vcpu *vcpu, gva_t eaddr, unsigned int pid, unsigned int as) { struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu); int i; /* XXX Replace loop with fancy data structures. */ for (i = 0; i < ARRAY_SIZE(vcpu_44x->guest_tlb); i++) { struct kvmppc_44x_tlbe *tlbe = &vcpu_44x->guest_tlb[i]; unsigned int tid; if (eaddr < get_tlb_eaddr(tlbe)) continue; if (eaddr > get_tlb_end(tlbe)) continue; tid = get_tlb_tid(tlbe); if (tid && (tid != pid)) continue; if (!get_tlb_v(tlbe)) continue; if (get_tlb_ts(tlbe) != as) continue; return i; } return -1; } gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int gtlb_index, gva_t eaddr) { struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu); struct kvmppc_44x_tlbe *gtlbe = &vcpu_44x->guest_tlb[gtlb_index]; unsigned int pgmask = get_tlb_bytes(gtlbe) - 1; return get_tlb_raddr(gtlbe) | (eaddr & pgmask); } int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) { unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS); return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as); } int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) { unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS); return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as); } void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu) { } void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu) { } static void kvmppc_44x_shadow_release(struct kvmppc_vcpu_44x *vcpu_44x, unsigned int stlb_index) { struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[stlb_index]; if (!ref->page) return; /* Discard from the TLB. */ /* Note: we could actually invalidate a host mapping, if the host overwrote * this TLB entry since we inserted a guest mapping. */ kvmppc_44x_tlbie(stlb_index); /* Now release the page. */ if (ref->writeable) kvm_release_page_dirty(ref->page); else kvm_release_page_clean(ref->page); ref->page = NULL; /* XXX set tlb_44x_index to stlb_index? */ trace_kvm_stlb_inval(stlb_index); } void kvmppc_mmu_destroy_44x(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu); int i; for (i = 0; i <= tlb_44x_hwater; i++) kvmppc_44x_shadow_release(vcpu_44x, i); } /** * kvmppc_mmu_map -- create a host mapping for guest memory * * If the guest wanted a larger page than the host supports, only the first * host page is mapped here and the rest are demand faulted. * * If the guest wanted a smaller page than the host page size, we map only the * guest-size page (i.e. not a full host page mapping). * * Caller must ensure that the specified guest TLB entry is safe to insert into * the shadow TLB. */ void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 gvaddr, gpa_t gpaddr, unsigned int gtlb_index) { struct kvmppc_44x_tlbe stlbe; struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu); struct kvmppc_44x_tlbe *gtlbe = &vcpu_44x->guest_tlb[gtlb_index]; struct kvmppc_44x_shadow_ref *ref; struct page *new_page; hpa_t hpaddr; gfn_t gfn; u32 asid = gtlbe->tid; u32 flags = gtlbe->word2; u32 max_bytes = get_tlb_bytes(gtlbe); unsigned int victim; /* Select TLB entry to clobber. Indirectly guard against races with the TLB * miss handler by disabling interrupts. */ local_irq_disable(); victim = ++tlb_44x_index; if (victim > tlb_44x_hwater) victim = 0; tlb_44x_index = victim; local_irq_enable(); /* Get reference to new page. */ gfn = gpaddr >> PAGE_SHIFT; new_page = gfn_to_page(vcpu->kvm, gfn); if (is_error_page(new_page)) { printk(KERN_ERR "Couldn't get guest page for gfn %llx!\n", (unsigned long long)gfn); return; } hpaddr = page_to_phys(new_page); /* Invalidate any previous shadow mappings. */ kvmppc_44x_shadow_release(vcpu_44x, victim); /* XXX Make sure (va, size) doesn't overlap any other * entries. 440x6 user manual says the result would be * "undefined." */ /* XXX what about AS? */ /* Force TS=1 for all guest mappings. */ stlbe.word0 = PPC44x_TLB_VALID | PPC44x_TLB_TS; if (max_bytes >= PAGE_SIZE) { /* Guest mapping is larger than or equal to host page size. We can use * a "native" host mapping. */ stlbe.word0 |= (gvaddr & PAGE_MASK) | PPC44x_TLBE_SIZE; } else { /* Guest mapping is smaller than host page size. We must restrict the * size of the mapping to be at most the smaller of the two, but for * simplicity we fall back to a 4K mapping (this is probably what the * guest is using anyways). */ stlbe.word0 |= (gvaddr & PAGE_MASK_4K) | PPC44x_TLB_4K; /* 'hpaddr' is a host page, which is larger than the mapping we're * inserting here. To compensate, we must add the in-page offset to the * sub-page. */ hpaddr |= gpaddr & (PAGE_MASK ^ PAGE_MASK_4K); } stlbe.word1 = (hpaddr & 0xfffffc00) | ((hpaddr >> 32) & 0xf); stlbe.word2 = kvmppc_44x_tlb_shadow_attrib(flags, vcpu->arch.shared->msr & MSR_PR); stlbe.tid = !(asid & 0xff); /* Keep track of the reference so we can properly release it later. */ ref = &vcpu_44x->shadow_refs[victim]; ref->page = new_page; ref->gtlb_index = gtlb_index; ref->writeable = !!(stlbe.word2 & PPC44x_TLB_UW); ref->tid = stlbe.tid; /* Insert shadow mapping into hardware TLB. */ kvmppc_44x_tlbe_set_modified(vcpu_44x, victim); kvmppc_44x_tlbwe(victim, &stlbe); trace_kvm_stlb_write(victim, stlbe.tid, stlbe.word0, stlbe.word1, stlbe.word2); } /* For a particular guest TLB entry, invalidate the corresponding host TLB * mappings and release the host pages. */ static void kvmppc_44x_invalidate(struct kvm_vcpu *vcpu, unsigned int gtlb_index) { struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu); int i; for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++) { struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[i]; if (ref->gtlb_index == gtlb_index) kvmppc_44x_shadow_release(vcpu_44x, i); } } void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr) { int usermode = vcpu->arch.shared->msr & MSR_PR; vcpu->arch.shadow_pid = !usermode; } void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 new_pid) { struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu); int i; if (unlikely(vcpu->arch.pid == new_pid)) return; vcpu->arch.pid = new_pid; /* Guest userspace runs with TID=0 mappings and PID=0, to make sure it * can't access guest kernel mappings (TID=1). When we switch to a new * guest PID, which will also use host PID=0, we must discard the old guest * userspace mappings. */ for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++) { struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[i]; if (ref->tid == 0) kvmppc_44x_shadow_release(vcpu_44x, i); } } static int tlbe_is_host_safe(const struct kvm_vcpu *vcpu, const struct kvmppc_44x_tlbe *tlbe) { gpa_t gpa; if (!get_tlb_v(tlbe)) return 0; /* Does it match current guest AS? */ /* XXX what about IS != DS? */ if (get_tlb_ts(tlbe) != !!(vcpu->arch.shared->msr & MSR_IS)) return 0; gpa = get_tlb_raddr(tlbe); if (!gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT)) /* Mapping is not for RAM. */ return 0; return 1; } int kvmppc_44x_emul_tlbwe(struct kvm_vcpu *vcpu, u8 ra, u8 rs, u8 ws) { struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu); struct kvmppc_44x_tlbe *tlbe; unsigned int gtlb_index; int idx; gtlb_index = kvmppc_get_gpr(vcpu, ra); if (gtlb_index >= KVM44x_GUEST_TLB_SIZE) { printk("%s: index %d\n", __func__, gtlb_index); kvmppc_dump_vcpu(vcpu); return EMULATE_FAIL; } tlbe = &vcpu_44x->guest_tlb[gtlb_index]; /* Invalidate shadow mappings for the about-to-be-clobbered TLB entry. */ if (tlbe->word0 & PPC44x_TLB_VALID) kvmppc_44x_invalidate(vcpu, gtlb_index); switch (ws) { case PPC44x_TLB_PAGEID: tlbe->tid = get_mmucr_stid(vcpu); tlbe->word0 = kvmppc_get_gpr(vcpu, rs); break; case PPC44x_TLB_XLAT: tlbe->word1 = kvmppc_get_gpr(vcpu, rs); break; case PPC44x_TLB_ATTRIB: tlbe->word2 = kvmppc_get_gpr(vcpu, rs); break; default: return EMULATE_FAIL; } idx = srcu_read_lock(&vcpu->kvm->srcu); if (tlbe_is_host_safe(vcpu, tlbe)) { gva_t eaddr; gpa_t gpaddr; u32 bytes; eaddr = get_tlb_eaddr(tlbe); gpaddr = get_tlb_raddr(tlbe); /* Use the advertised page size to mask effective and real addrs. */ bytes = get_tlb_bytes(tlbe); eaddr &= ~(bytes - 1); gpaddr &= ~(bytes - 1); kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index); } srcu_read_unlock(&vcpu->kvm->srcu, idx); trace_kvm_gtlb_write(gtlb_index, tlbe->tid, tlbe->word0, tlbe->word1, tlbe->word2); kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS); return EMULATE_DONE; } int kvmppc_44x_emul_tlbsx(struct kvm_vcpu *vcpu, u8 rt, u8 ra, u8 rb, u8 rc) { u32 ea; int gtlb_index; unsigned int as = get_mmucr_sts(vcpu); unsigned int pid = get_mmucr_stid(vcpu); ea = kvmppc_get_gpr(vcpu, rb); if (ra) ea += kvmppc_get_gpr(vcpu, ra); gtlb_index = kvmppc_44x_tlb_index(vcpu, ea, pid, as); if (rc) { u32 cr = kvmppc_get_cr(vcpu); if (gtlb_index < 0) kvmppc_set_cr(vcpu, cr & ~0x20000000); else kvmppc_set_cr(vcpu, cr | 0x20000000); } kvmppc_set_gpr(vcpu, rt, gtlb_index); kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS); return EMULATE_DONE; }