/* * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corporation * * Provide default implementations of the DMA mapping callbacks for * directly mapped busses. */ #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/dma-debug.h> #include <linux/gfp.h> #include <linux/memblock.h> #include <linux/export.h> #include <linux/pci.h> #include <asm/vio.h> #include <asm/bug.h> #include <asm/machdep.h> /* * Generic direct DMA implementation * * This implementation supports a per-device offset that can be applied if * the address at which memory is visible to devices is not 0. Platform code * can set archdata.dma_data to an unsigned long holding the offset. By * default the offset is PCI_DRAM_OFFSET. */ void *dma_direct_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, struct dma_attrs *attrs) { void *ret; #ifdef CONFIG_NOT_COHERENT_CACHE ret = __dma_alloc_coherent(dev, size, dma_handle, flag); if (ret == NULL) return NULL; *dma_handle += get_dma_offset(dev); return ret; #else struct page *page; int node = dev_to_node(dev); /* ignore region specifiers */ flag &= ~(__GFP_HIGHMEM); page = alloc_pages_node(node, flag, get_order(size)); if (page == NULL) return NULL; ret = page_address(page); memset(ret, 0, size); *dma_handle = __pa(ret) + get_dma_offset(dev); return ret; #endif } void dma_direct_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, struct dma_attrs *attrs) { #ifdef CONFIG_NOT_COHERENT_CACHE __dma_free_coherent(size, vaddr); #else free_pages((unsigned long)vaddr, get_order(size)); #endif } int dma_direct_mmap_coherent(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t handle, size_t size, struct dma_attrs *attrs) { unsigned long pfn; #ifdef CONFIG_NOT_COHERENT_CACHE vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); pfn = __dma_get_coherent_pfn((unsigned long)cpu_addr); #else pfn = page_to_pfn(virt_to_page(cpu_addr)); #endif return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, vma->vm_end - vma->vm_start, vma->vm_page_prot); } static int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction direction, struct dma_attrs *attrs) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) { sg->dma_address = sg_phys(sg) + get_dma_offset(dev); sg->dma_length = sg->length; __dma_sync_page(sg_page(sg), sg->offset, sg->length, direction); } return nents; } static void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction, struct dma_attrs *attrs) { } static int dma_direct_dma_supported(struct device *dev, u64 mask) { #ifdef CONFIG_PPC64 /* Could be improved so platforms can set the limit in case * they have limited DMA windows */ return mask >= get_dma_offset(dev) + (memblock_end_of_DRAM() - 1); #else return 1; #endif } static u64 dma_direct_get_required_mask(struct device *dev) { u64 end, mask; end = memblock_end_of_DRAM() + get_dma_offset(dev); mask = 1ULL << (fls64(end) - 1); mask += mask - 1; return mask; } static inline dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { BUG_ON(dir == DMA_NONE); __dma_sync_page(page, offset, size, dir); return page_to_phys(page) + offset + get_dma_offset(dev); } static inline void dma_direct_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size, enum dma_data_direction direction, struct dma_attrs *attrs) { } #ifdef CONFIG_NOT_COHERENT_CACHE static inline void dma_direct_sync_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction direction) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) __dma_sync_page(sg_page(sg), sg->offset, sg->length, direction); } static inline void dma_direct_sync_single(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { __dma_sync(bus_to_virt(dma_handle), size, direction); } #endif struct dma_map_ops dma_direct_ops = { .alloc = dma_direct_alloc_coherent, .free = dma_direct_free_coherent, .mmap = dma_direct_mmap_coherent, .map_sg = dma_direct_map_sg, .unmap_sg = dma_direct_unmap_sg, .dma_supported = dma_direct_dma_supported, .map_page = dma_direct_map_page, .unmap_page = dma_direct_unmap_page, .get_required_mask = dma_direct_get_required_mask, #ifdef CONFIG_NOT_COHERENT_CACHE .sync_single_for_cpu = dma_direct_sync_single, .sync_single_for_device = dma_direct_sync_single, .sync_sg_for_cpu = dma_direct_sync_sg, .sync_sg_for_device = dma_direct_sync_sg, #endif }; EXPORT_SYMBOL(dma_direct_ops); #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) int __dma_set_mask(struct device *dev, u64 dma_mask) { struct dma_map_ops *dma_ops = get_dma_ops(dev); if ((dma_ops != NULL) && (dma_ops->set_dma_mask != NULL)) return dma_ops->set_dma_mask(dev, dma_mask); if (!dev->dma_mask || !dma_supported(dev, dma_mask)) return -EIO; *dev->dma_mask = dma_mask; return 0; } int dma_set_mask(struct device *dev, u64 dma_mask) { if (ppc_md.dma_set_mask) return ppc_md.dma_set_mask(dev, dma_mask); return __dma_set_mask(dev, dma_mask); } EXPORT_SYMBOL(dma_set_mask); u64 dma_get_required_mask(struct device *dev) { struct dma_map_ops *dma_ops = get_dma_ops(dev); if (ppc_md.dma_get_required_mask) return ppc_md.dma_get_required_mask(dev); if (unlikely(dma_ops == NULL)) return 0; if (dma_ops->get_required_mask) return dma_ops->get_required_mask(dev); return DMA_BIT_MASK(8 * sizeof(dma_addr_t)); } EXPORT_SYMBOL_GPL(dma_get_required_mask); static int __init dma_init(void) { dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); #ifdef CONFIG_PCI dma_debug_add_bus(&pci_bus_type); #endif #ifdef CONFIG_IBMVIO dma_debug_add_bus(&vio_bus_type); #endif return 0; } fs_initcall(dma_init);