#ifndef _ASM_POWERPC_PGTABLE_PPC64_H_ #define _ASM_POWERPC_PGTABLE_PPC64_H_ /* * This file contains the functions and defines necessary to modify and use * the ppc64 hashed page table. */ #ifdef CONFIG_PPC_64K_PAGES #include <asm/pgtable-ppc64-64k.h> #else #include <asm/pgtable-ppc64-4k.h> #endif #include <asm/barrier.h> #define FIRST_USER_ADDRESS 0 /* * Size of EA range mapped by our pagetables. */ #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE) #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define PMD_CACHE_INDEX (PMD_INDEX_SIZE + 1) #else #define PMD_CACHE_INDEX PMD_INDEX_SIZE #endif /* * Define the address range of the kernel non-linear virtual area */ #ifdef CONFIG_PPC_BOOK3E #define KERN_VIRT_START ASM_CONST(0x8000000000000000) #else #define KERN_VIRT_START ASM_CONST(0xD000000000000000) #endif #define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000) /* * The vmalloc space starts at the beginning of that region, and * occupies half of it on hash CPUs and a quarter of it on Book3E * (we keep a quarter for the virtual memmap) */ #define VMALLOC_START KERN_VIRT_START #ifdef CONFIG_PPC_BOOK3E #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2) #else #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) #endif #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) /* * The second half of the kernel virtual space is used for IO mappings, * it's itself carved into the PIO region (ISA and PHB IO space) and * the ioremap space * * ISA_IO_BASE = KERN_IO_START, 64K reserved area * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE */ #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1)) #define FULL_IO_SIZE 0x80000000ul #define ISA_IO_BASE (KERN_IO_START) #define ISA_IO_END (KERN_IO_START + 0x10000ul) #define PHB_IO_BASE (ISA_IO_END) #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) #define IOREMAP_BASE (PHB_IO_END) #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE) /* * Region IDs */ #define REGION_SHIFT 60UL #define REGION_MASK (0xfUL << REGION_SHIFT) #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT) #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START)) #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET)) #define VMEMMAP_REGION_ID (0xfUL) /* Server only */ #define USER_REGION_ID (0UL) /* * Defines the address of the vmemap area, in its own region on * hash table CPUs and after the vmalloc space on Book3E */ #ifdef CONFIG_PPC_BOOK3E #define VMEMMAP_BASE VMALLOC_END #define VMEMMAP_END KERN_IO_START #else #define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT) #endif #define vmemmap ((struct page *)VMEMMAP_BASE) /* * Include the PTE bits definitions */ #ifdef CONFIG_PPC_BOOK3S #include <asm/pte-hash64.h> #else #include <asm/pte-book3e.h> #endif #include <asm/pte-common.h> #ifdef CONFIG_PPC_MM_SLICES #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN #endif /* CONFIG_PPC_MM_SLICES */ #ifndef __ASSEMBLY__ /* * This is the default implementation of various PTE accessors, it's * used in all cases except Book3S with 64K pages where we have a * concept of sub-pages */ #ifndef __real_pte #ifdef STRICT_MM_TYPECHECKS #define __real_pte(e,p) ((real_pte_t){(e)}) #define __rpte_to_pte(r) ((r).pte) #else #define __real_pte(e,p) (e) #define __rpte_to_pte(r) (__pte(r)) #endif #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> 12) #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ do { \ index = 0; \ shift = mmu_psize_defs[psize].shift; \ #define pte_iterate_hashed_end() } while(0) #ifdef CONFIG_PPC_HAS_HASH_64K #define pte_pagesize_index(mm, addr, pte) get_slice_psize(mm, addr) #else #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K #endif #endif /* __real_pte */ /* pte_clear moved to later in this file */ #define PMD_BAD_BITS (PTE_TABLE_SIZE-1) #define PUD_BAD_BITS (PMD_TABLE_SIZE-1) #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval)) #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \ || (pmd_val(pmd) & PMD_BAD_BITS)) #define pmd_present(pmd) (pmd_val(pmd) != 0) #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0) #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS) extern struct page *pmd_page(pmd_t pmd); #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval)) #define pud_none(pud) (!pud_val(pud)) #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \ || (pud_val(pud) & PUD_BAD_BITS)) #define pud_present(pud) (pud_val(pud) != 0) #define pud_clear(pudp) (pud_val(*(pudp)) = 0) #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS) #define pud_page(pud) virt_to_page(pud_page_vaddr(pud)) #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);}) /* * Find an entry in a page-table-directory. We combine the address region * (the high order N bits) and the pgd portion of the address. */ #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1)) #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) #define pmd_offset(pudp,addr) \ (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) #define pte_offset_kernel(dir,addr) \ (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) #define pte_unmap(pte) do { } while(0) /* to find an entry in a kernel page-table-directory */ /* This now only contains the vmalloc pages */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long pte, int huge); /* Atomic PTE updates */ static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long clr, unsigned long set, int huge) { #ifdef PTE_ATOMIC_UPDATES unsigned long old, tmp; __asm__ __volatile__( "1: ldarx %0,0,%3 # pte_update\n\ andi. %1,%0,%6\n\ bne- 1b \n\ andc %1,%0,%4 \n\ or %1,%1,%7\n\ stdcx. %1,0,%3 \n\ bne- 1b" : "=&r" (old), "=&r" (tmp), "=m" (*ptep) : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set) : "cc" ); #else unsigned long old = pte_val(*ptep); *ptep = __pte((old & ~clr) | set); #endif /* huge pages use the old page table lock */ if (!huge) assert_pte_locked(mm, addr); #ifdef CONFIG_PPC_STD_MMU_64 if (old & _PAGE_HASHPTE) hpte_need_flush(mm, addr, ptep, old, huge); #endif return old; } static inline int __ptep_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old; if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) return 0; old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); return (old & _PAGE_ACCESSED) != 0; } #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ ({ \ int __r; \ __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ __r; \ }) #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { if ((pte_val(*ptep) & _PAGE_RW) == 0) return; pte_update(mm, addr, ptep, _PAGE_RW, 0, 0); } static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { if ((pte_val(*ptep) & _PAGE_RW) == 0) return; pte_update(mm, addr, ptep, _PAGE_RW, 0, 1); } /* * We currently remove entries from the hashtable regardless of whether * the entry was young or dirty. The generic routines only flush if the * entry was young or dirty which is not good enough. * * We should be more intelligent about this but for the moment we override * these functions and force a tlb flush unconditionally */ #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH #define ptep_clear_flush_young(__vma, __address, __ptep) \ ({ \ int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ __ptep); \ __young; \ }) #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); return __pte(old); } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t * ptep) { pte_update(mm, addr, ptep, ~0UL, 0, 0); } /* Set the dirty and/or accessed bits atomically in a linux PTE, this * function doesn't need to flush the hash entry */ static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry) { unsigned long bits = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); #ifdef PTE_ATOMIC_UPDATES unsigned long old, tmp; __asm__ __volatile__( "1: ldarx %0,0,%4\n\ andi. %1,%0,%6\n\ bne- 1b \n\ or %0,%3,%0\n\ stdcx. %0,0,%4\n\ bne- 1b" :"=&r" (old), "=&r" (tmp), "=m" (*ptep) :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY) :"cc"); #else unsigned long old = pte_val(*ptep); *ptep = __pte(old | bits); #endif } #define __HAVE_ARCH_PTE_SAME #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0) #define pte_ERROR(e) \ printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) /* Encode and de-code a swap entry */ #define __swp_type(entry) (((entry).val >> 1) & 0x3f) #define __swp_offset(entry) ((entry).val >> 8) #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)}) #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT}) #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT }) #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT) #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE}) #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT) void pgtable_cache_add(unsigned shift, void (*ctor)(void *)); void pgtable_cache_init(void); #endif /* __ASSEMBLY__ */ /* * THP pages can't be special. So use the _PAGE_SPECIAL */ #define _PAGE_SPLITTING _PAGE_SPECIAL /* * We need to differentiate between explicit huge page and THP huge * page, since THP huge page also need to track real subpage details */ #define _PAGE_THP_HUGE _PAGE_4K_PFN /* * set of bits not changed in pmd_modify. */ #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \ _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \ _PAGE_THP_HUGE) #ifndef __ASSEMBLY__ /* * The linux hugepage PMD now include the pmd entries followed by the address * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits. * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t. * * The last three bits are intentionally left to zero. This memory location * are also used as normal page PTE pointers. So if we have any pointers * left around while we collapse a hugepage, we need to make sure * _PAGE_PRESENT and _PAGE_FILE bits of that are zero when we look at them */ static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index) { return (hpte_slot_array[index] >> 3) & 0x1; } static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array, int index) { return hpte_slot_array[index] >> 4; } static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array, unsigned int index, unsigned int hidx) { hpte_slot_array[index] = hidx << 4 | 0x1 << 3; } struct page *realmode_pfn_to_page(unsigned long pfn); static inline char *get_hpte_slot_array(pmd_t *pmdp) { /* * The hpte hindex is stored in the pgtable whose address is in the * second half of the PMD * * Order this load with the test for pmd_trans_huge in the caller */ smp_rmb(); return *(char **)(pmdp + PTRS_PER_PMD); } extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp); #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot); extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot); extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot); extern void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd); extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd); static inline int pmd_trans_huge(pmd_t pmd) { /* * leaf pte for huge page, bottom two bits != 00 */ return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE); } static inline int pmd_large(pmd_t pmd) { /* * leaf pte for huge page, bottom two bits != 00 */ if (pmd_trans_huge(pmd)) return pmd_val(pmd) & _PAGE_PRESENT; return 0; } static inline int pmd_trans_splitting(pmd_t pmd) { if (pmd_trans_huge(pmd)) return pmd_val(pmd) & _PAGE_SPLITTING; return 0; } extern int has_transparent_hugepage(void); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline pte_t pmd_pte(pmd_t pmd) { return __pte(pmd_val(pmd)); } static inline pmd_t pte_pmd(pte_t pte) { return __pmd(pte_val(pte)); } static inline pte_t *pmdp_ptep(pmd_t *pmd) { return (pte_t *)pmd; } #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd)) #define pmd_young(pmd) pte_young(pmd_pte(pmd)) #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) #define __HAVE_ARCH_PMD_WRITE #define pmd_write(pmd) pte_write(pmd_pte(pmd)) static inline pmd_t pmd_mkhuge(pmd_t pmd) { /* Do nothing, mk_pmd() does this part. */ return pmd; } static inline pmd_t pmd_mknotpresent(pmd_t pmd) { pmd_val(pmd) &= ~_PAGE_PRESENT; return pmd; } static inline pmd_t pmd_mksplitting(pmd_t pmd) { pmd_val(pmd) |= _PAGE_SPLITTING; return pmd; } #define __HAVE_ARCH_PMD_SAME static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) { return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0); } #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); extern unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, unsigned long clr, unsigned long set); static inline int __pmdp_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { unsigned long old; if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) return 0; old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0); return ((old & _PAGE_ACCESSED) != 0); } #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define __HAVE_ARCH_PMDP_GET_AND_CLEAR extern pmd_t pmdp_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp); #define __HAVE_ARCH_PMDP_CLEAR_FLUSH extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { if ((pmd_val(*pmdp) & _PAGE_RW) == 0) return; pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0); } #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH extern void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define __HAVE_ARCH_PGTABLE_DEPOSIT extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable); #define __HAVE_ARCH_PGTABLE_WITHDRAW extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); #define __HAVE_ARCH_PMDP_INVALIDATE extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define pmd_move_must_withdraw pmd_move_must_withdraw struct spinlock; static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, struct spinlock *old_pmd_ptl) { /* * Archs like ppc64 use pgtable to store per pmd * specific information. So when we switch the pmd, * we should also withdraw and deposit the pgtable */ return true; } #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */