/* ASB2305 PCI support * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * Derived from arch/i386/kernel/pci-pc.c * (c) 1999--2000 Martin Mares <mj@suse.cz> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public Licence * as published by the Free Software Foundation; either version * 2 of the Licence, or (at your option) any later version. */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/delay.h> #include <linux/irq.h> #include <asm/io.h> #include <asm/irq.h> #include "pci-asb2305.h" unsigned int pci_probe = 1; struct pci_ops *pci_root_ops; /* * The accessible PCI window does not cover the entire CPU address space, but * there are devices we want to access outside of that window, so we need to * insert specific PCI bus resources instead of using the platform-level bus * resources directly for the PCI root bus. * * These are configured and inserted by pcibios_init(). */ static struct resource pci_ioport_resource = { .name = "PCI IO", .start = 0xbe000000, .end = 0xbe03ffff, .flags = IORESOURCE_IO, }; static struct resource pci_iomem_resource = { .name = "PCI mem", .start = 0xb8000000, .end = 0xbbffffff, .flags = IORESOURCE_MEM, }; /* * Functions for accessing PCI configuration space */ #define CONFIG_CMD(bus, devfn, where) \ (0x80000000 | (bus->number << 16) | (devfn << 8) | (where & ~3)) #define MEM_PAGING_REG (*(volatile __u32 *) 0xBFFFFFF4) #define CONFIG_ADDRESS (*(volatile __u32 *) 0xBFFFFFF8) #define CONFIG_DATAL(X) (*(volatile __u32 *) 0xBFFFFFFC) #define CONFIG_DATAW(X) (*(volatile __u16 *) (0xBFFFFFFC + ((X) & 2))) #define CONFIG_DATAB(X) (*(volatile __u8 *) (0xBFFFFFFC + ((X) & 3))) #define BRIDGEREGB(X) (*(volatile __u8 *) (0xBE040000 + (X))) #define BRIDGEREGW(X) (*(volatile __u16 *) (0xBE040000 + (X))) #define BRIDGEREGL(X) (*(volatile __u32 *) (0xBE040000 + (X))) static inline int __query(const struct pci_bus *bus, unsigned int devfn) { #if 0 return bus->number == 0 && (devfn == PCI_DEVFN(0, 0)); return bus->number == 1; return bus->number == 0 && (devfn == PCI_DEVFN(2, 0) || devfn == PCI_DEVFN(3, 0)); #endif return 1; } /* * */ static int pci_ampci_read_config_byte(struct pci_bus *bus, unsigned int devfn, int where, u32 *_value) { u32 rawval, value; if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) { value = BRIDGEREGB(where); __pcbdebug("=> %02hx", &BRIDGEREGL(where), value); } else { CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where); rawval = CONFIG_ADDRESS; value = CONFIG_DATAB(where); if (__query(bus, devfn)) __pcidebug("=> %02hx", bus, devfn, where, value); } *_value = value; return PCIBIOS_SUCCESSFUL; } static int pci_ampci_read_config_word(struct pci_bus *bus, unsigned int devfn, int where, u32 *_value) { u32 rawval, value; if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) { value = BRIDGEREGW(where); __pcbdebug("=> %04hx", &BRIDGEREGL(where), value); } else { CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where); rawval = CONFIG_ADDRESS; value = CONFIG_DATAW(where); if (__query(bus, devfn)) __pcidebug("=> %04hx", bus, devfn, where, value); } *_value = value; return PCIBIOS_SUCCESSFUL; } static int pci_ampci_read_config_dword(struct pci_bus *bus, unsigned int devfn, int where, u32 *_value) { u32 rawval, value; if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) { value = BRIDGEREGL(where); __pcbdebug("=> %08x", &BRIDGEREGL(where), value); } else { CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where); rawval = CONFIG_ADDRESS; value = CONFIG_DATAL(where); if (__query(bus, devfn)) __pcidebug("=> %08x", bus, devfn, where, value); } *_value = value; return PCIBIOS_SUCCESSFUL; } static int pci_ampci_write_config_byte(struct pci_bus *bus, unsigned int devfn, int where, u8 value) { u32 rawval; if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) { __pcbdebug("<= %02x", &BRIDGEREGB(where), value); BRIDGEREGB(where) = value; } else { if (bus->number == 0 && (devfn == PCI_DEVFN(2, 0) || devfn == PCI_DEVFN(3, 0)) ) __pcidebug("<= %02x", bus, devfn, where, value); CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where); rawval = CONFIG_ADDRESS; CONFIG_DATAB(where) = value; } return PCIBIOS_SUCCESSFUL; } static int pci_ampci_write_config_word(struct pci_bus *bus, unsigned int devfn, int where, u16 value) { u32 rawval; if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) { __pcbdebug("<= %04hx", &BRIDGEREGW(where), value); BRIDGEREGW(where) = value; } else { if (__query(bus, devfn)) __pcidebug("<= %04hx", bus, devfn, where, value); CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where); rawval = CONFIG_ADDRESS; CONFIG_DATAW(where) = value; } return PCIBIOS_SUCCESSFUL; } static int pci_ampci_write_config_dword(struct pci_bus *bus, unsigned int devfn, int where, u32 value) { u32 rawval; if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) { __pcbdebug("<= %08x", &BRIDGEREGL(where), value); BRIDGEREGL(where) = value; } else { if (__query(bus, devfn)) __pcidebug("<= %08x", bus, devfn, where, value); CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where); rawval = CONFIG_ADDRESS; CONFIG_DATAL(where) = value; } return PCIBIOS_SUCCESSFUL; } static int pci_ampci_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { switch (size) { case 1: return pci_ampci_read_config_byte(bus, devfn, where, val); case 2: return pci_ampci_read_config_word(bus, devfn, where, val); case 4: return pci_ampci_read_config_dword(bus, devfn, where, val); default: BUG(); return -EOPNOTSUPP; } } static int pci_ampci_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { switch (size) { case 1: return pci_ampci_write_config_byte(bus, devfn, where, val); case 2: return pci_ampci_write_config_word(bus, devfn, where, val); case 4: return pci_ampci_write_config_dword(bus, devfn, where, val); default: BUG(); return -EOPNOTSUPP; } } static struct pci_ops pci_direct_ampci = { pci_ampci_read_config, pci_ampci_write_config, }; /* * Before we decide to use direct hardware access mechanisms, we try to do some * trivial checks to ensure it at least _seems_ to be working -- we just test * whether bus 00 contains a host bridge (this is similar to checking * techniques used in XFree86, but ours should be more reliable since we * attempt to make use of direct access hints provided by the PCI BIOS). * * This should be close to trivial, but it isn't, because there are buggy * chipsets (yes, you guessed it, by Intel and Compaq) that have no class ID. */ static int __init pci_sanity_check(struct pci_ops *o) { struct pci_bus bus; /* Fake bus and device */ u32 x; bus.number = 0; if ((!o->read(&bus, 0, PCI_CLASS_DEVICE, 2, &x) && (x == PCI_CLASS_BRIDGE_HOST || x == PCI_CLASS_DISPLAY_VGA)) || (!o->read(&bus, 0, PCI_VENDOR_ID, 2, &x) && (x == PCI_VENDOR_ID_INTEL || x == PCI_VENDOR_ID_COMPAQ))) return 1; printk(KERN_ERR "PCI: Sanity check failed\n"); return 0; } static int __init pci_check_direct(void) { unsigned long flags; local_irq_save(flags); /* * Check if access works. */ if (pci_sanity_check(&pci_direct_ampci)) { local_irq_restore(flags); printk(KERN_INFO "PCI: Using configuration ampci\n"); request_mem_region(0xBE040000, 256, "AMPCI bridge"); request_mem_region(0xBFFFFFF4, 12, "PCI ampci"); request_mem_region(0xBC000000, 32 * 1024 * 1024, "PCI SRAM"); return 0; } local_irq_restore(flags); return -ENODEV; } static int is_valid_resource(struct pci_dev *dev, int idx) { unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM; struct resource *devr = &dev->resource[idx], *busr; if (dev->bus) { pci_bus_for_each_resource(dev->bus, busr, i) { if (!busr || (busr->flags ^ devr->flags) & type_mask) continue; if (devr->start && devr->start >= busr->start && devr->end <= busr->end) return 1; } } return 0; } static void pcibios_fixup_device_resources(struct pci_dev *dev) { int limit, i; if (dev->bus->number != 0) return; limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ? PCI_BRIDGE_RESOURCES : PCI_NUM_RESOURCES; for (i = 0; i < limit; i++) { if (!dev->resource[i].flags) continue; if (is_valid_resource(dev, i)) pci_claim_resource(dev, i); } } /* * Called after each bus is probed, but before its children * are examined. */ void pcibios_fixup_bus(struct pci_bus *bus) { struct pci_dev *dev; if (bus->self) { pci_read_bridge_bases(bus); pcibios_fixup_device_resources(bus->self); } list_for_each_entry(dev, &bus->devices, bus_list) pcibios_fixup_device_resources(dev); } /* * Initialization. Try all known PCI access methods. Note that we support * using both PCI BIOS and direct access: in such cases, we use I/O ports * to access config space, but we still keep BIOS order of cards to be * compatible with 2.0.X. This should go away some day. */ static int __init pcibios_init(void) { resource_size_t io_offset, mem_offset; LIST_HEAD(resources); ioport_resource.start = 0xA0000000; ioport_resource.end = 0xDFFFFFFF; iomem_resource.start = 0xA0000000; iomem_resource.end = 0xDFFFFFFF; if (insert_resource(&iomem_resource, &pci_iomem_resource) < 0) panic("Unable to insert PCI IOMEM resource\n"); if (insert_resource(&ioport_resource, &pci_ioport_resource) < 0) panic("Unable to insert PCI IOPORT resource\n"); if (!pci_probe) return 0; if (pci_check_direct() < 0) { printk(KERN_WARNING "PCI: No PCI bus detected\n"); return 0; } printk(KERN_INFO "PCI: Probing PCI hardware [mempage %08x]\n", MEM_PAGING_REG); io_offset = pci_ioport_resource.start - (pci_ioport_resource.start & 0x00ffffff); mem_offset = pci_iomem_resource.start - ((pci_iomem_resource.start & 0x03ffffff) | MEM_PAGING_REG); pci_add_resource_offset(&resources, &pci_ioport_resource, io_offset); pci_add_resource_offset(&resources, &pci_iomem_resource, mem_offset); pci_scan_root_bus(NULL, 0, &pci_direct_ampci, NULL, &resources); pcibios_irq_init(); pcibios_fixup_irqs(); pcibios_resource_survey(); return 0; } arch_initcall(pcibios_init); char *__init pcibios_setup(char *str) { if (!strcmp(str, "off")) { pci_probe = 0; return NULL; } return str; } int pcibios_enable_device(struct pci_dev *dev, int mask) { int err; err = pci_enable_resources(dev, mask); if (err == 0) pcibios_enable_irq(dev); return err; } /* * disable the ethernet chipset */ static void __init unit_disable_pcnet(struct pci_bus *bus, struct pci_ops *o) { u32 x; bus->number = 0; o->read (bus, PCI_DEVFN(2, 0), PCI_VENDOR_ID, 4, &x); o->read (bus, PCI_DEVFN(2, 0), PCI_COMMAND, 2, &x); x |= PCI_COMMAND_MASTER | PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_SERR | PCI_COMMAND_PARITY; o->write(bus, PCI_DEVFN(2, 0), PCI_COMMAND, 2, x); o->read (bus, PCI_DEVFN(2, 0), PCI_COMMAND, 2, &x); o->write(bus, PCI_DEVFN(2, 0), PCI_BASE_ADDRESS_0, 4, 0x00030001); o->read (bus, PCI_DEVFN(2, 0), PCI_BASE_ADDRESS_0, 4, &x); #define RDP (*(volatile u32 *) 0xBE030010) #define RAP (*(volatile u32 *) 0xBE030014) #define __set_RAP(X) do { RAP = (X); x = RAP; } while (0) #define __set_RDP(X) do { RDP = (X); x = RDP; } while (0) #define __get_RDP() ({ RDP & 0xffff; }) __set_RAP(0); __set_RDP(0x0004); /* CSR0 = STOP */ __set_RAP(88); /* check CSR88 indicates an Am79C973 */ BUG_ON(__get_RDP() != 0x5003); for (x = 0; x < 100; x++) asm volatile("nop"); __set_RDP(0x0004); /* CSR0 = STOP */ } /* * initialise the unit hardware */ asmlinkage void __init unit_pci_init(void) { struct pci_bus bus; /* Fake bus and device */ struct pci_ops *o = &pci_direct_ampci; u32 x; set_intr_level(XIRQ1, NUM2GxICR_LEVEL(CONFIG_PCI_IRQ_LEVEL)); memset(&bus, 0, sizeof(bus)); MEM_PAGING_REG = 0xE8000000; /* we need to set up the bridge _now_ or we won't be able to access the * PCI config registers */ BRIDGEREGW(PCI_COMMAND) |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY | PCI_COMMAND_MEMORY | PCI_COMMAND_IO | PCI_COMMAND_MASTER; BRIDGEREGW(PCI_STATUS) = 0xF800; BRIDGEREGB(PCI_LATENCY_TIMER) = 0x10; BRIDGEREGL(PCI_BASE_ADDRESS_0) = 0x80000000; BRIDGEREGB(PCI_INTERRUPT_LINE) = 1; BRIDGEREGL(0x48) = 0x98000000; /* AMPCI base addr */ BRIDGEREGB(0x41) = 0x00; /* secondary bus * number */ BRIDGEREGB(0x42) = 0x01; /* subordinate bus * number */ BRIDGEREGB(0x44) = 0x01; BRIDGEREGL(0x50) = 0x00000001; BRIDGEREGL(0x58) = 0x00001002; BRIDGEREGL(0x5C) = 0x00000011; /* we also need to set up the PCI-PCI bridge */ bus.number = 0; /* IO: 0x00000000-0x00020000 */ o->read (&bus, PCI_DEVFN(3, 0), PCI_COMMAND, 2, &x); x |= PCI_COMMAND_MASTER | PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_SERR | PCI_COMMAND_PARITY; o->write(&bus, PCI_DEVFN(3, 0), PCI_COMMAND, 2, x); o->read (&bus, PCI_DEVFN(3, 0), PCI_IO_BASE, 1, &x); o->read (&bus, PCI_DEVFN(3, 0), PCI_IO_BASE_UPPER16, 4, &x); o->read (&bus, PCI_DEVFN(3, 0), PCI_MEMORY_BASE, 4, &x); o->read (&bus, PCI_DEVFN(3, 0), PCI_PREF_MEMORY_BASE, 4, &x); o->write(&bus, PCI_DEVFN(3, 0), PCI_IO_BASE, 1, 0x01); o->read (&bus, PCI_DEVFN(3, 0), PCI_IO_BASE, 1, &x); o->write(&bus, PCI_DEVFN(3, 0), PCI_IO_BASE_UPPER16, 4, 0x00020000); o->read (&bus, PCI_DEVFN(3, 0), PCI_IO_BASE_UPPER16, 4, &x); o->write(&bus, PCI_DEVFN(3, 0), PCI_MEMORY_BASE, 4, 0xEBB0EA00); o->read (&bus, PCI_DEVFN(3, 0), PCI_MEMORY_BASE, 4, &x); o->write(&bus, PCI_DEVFN(3, 0), PCI_PREF_MEMORY_BASE, 4, 0xE9F0E800); o->read (&bus, PCI_DEVFN(3, 0), PCI_PREF_MEMORY_BASE, 4, &x); unit_disable_pcnet(&bus, o); }