/* MN10300 Kernel probes implementation * * Copyright (C) 2005 Red Hat, Inc. All Rights Reserved. * Written by Mark Salter (msalter@redhat.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public Licence as published by * the Free Software Foundation; either version 2 of the Licence, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public Licence for more details. * * You should have received a copy of the GNU General Public Licence * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include <linux/kprobes.h> #include <linux/ptrace.h> #include <linux/spinlock.h> #include <linux/preempt.h> #include <linux/kdebug.h> #include <asm/cacheflush.h> struct kretprobe_blackpoint kretprobe_blacklist[] = { { NULL, NULL } }; const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); /* kprobe_status settings */ #define KPROBE_HIT_ACTIVE 0x00000001 #define KPROBE_HIT_SS 0x00000002 static struct kprobe *cur_kprobe; static unsigned long cur_kprobe_orig_pc; static unsigned long cur_kprobe_next_pc; static int cur_kprobe_ss_flags; static unsigned long kprobe_status; static kprobe_opcode_t cur_kprobe_ss_buf[MAX_INSN_SIZE + 2]; static unsigned long cur_kprobe_bp_addr; DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; /* singlestep flag bits */ #define SINGLESTEP_BRANCH 1 #define SINGLESTEP_PCREL 2 #define READ_BYTE(p, valp) \ do { *(u8 *)(valp) = *(u8 *)(p); } while (0) #define READ_WORD16(p, valp) \ do { \ READ_BYTE((p), (valp)); \ READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1); \ } while (0) #define READ_WORD32(p, valp) \ do { \ READ_BYTE((p), (valp)); \ READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1); \ READ_BYTE((u8 *)(p) + 2, (u8 *)(valp) + 2); \ READ_BYTE((u8 *)(p) + 3, (u8 *)(valp) + 3); \ } while (0) static const u8 mn10300_insn_sizes[256] = { /* 1 2 3 4 5 6 7 8 9 a b c d e f */ 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, /* 0 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 1 */ 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, /* 2 */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, /* 3 */ 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, /* 4 */ 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, /* 5 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7 */ 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 8 */ 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 9 */ 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* a */ 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* b */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, /* c */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* d */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* e */ 0, 2, 2, 2, 2, 2, 2, 4, 0, 3, 0, 4, 0, 6, 7, 1 /* f */ }; #define LT (1 << 0) #define GT (1 << 1) #define GE (1 << 2) #define LE (1 << 3) #define CS (1 << 4) #define HI (1 << 5) #define CC (1 << 6) #define LS (1 << 7) #define EQ (1 << 8) #define NE (1 << 9) #define RA (1 << 10) #define VC (1 << 11) #define VS (1 << 12) #define NC (1 << 13) #define NS (1 << 14) static const u16 cond_table[] = { /* V C N Z */ /* 0 0 0 0 */ (NE | NC | CC | VC | GE | GT | HI), /* 0 0 0 1 */ (EQ | NC | CC | VC | GE | LE | LS), /* 0 0 1 0 */ (NE | NS | CC | VC | LT | LE | HI), /* 0 0 1 1 */ (EQ | NS | CC | VC | LT | LE | LS), /* 0 1 0 0 */ (NE | NC | CS | VC | GE | GT | LS), /* 0 1 0 1 */ (EQ | NC | CS | VC | GE | LE | LS), /* 0 1 1 0 */ (NE | NS | CS | VC | LT | LE | LS), /* 0 1 1 1 */ (EQ | NS | CS | VC | LT | LE | LS), /* 1 0 0 0 */ (NE | NC | CC | VS | LT | LE | HI), /* 1 0 0 1 */ (EQ | NC | CC | VS | LT | LE | LS), /* 1 0 1 0 */ (NE | NS | CC | VS | GE | GT | HI), /* 1 0 1 1 */ (EQ | NS | CC | VS | GE | LE | LS), /* 1 1 0 0 */ (NE | NC | CS | VS | LT | LE | LS), /* 1 1 0 1 */ (EQ | NC | CS | VS | LT | LE | LS), /* 1 1 1 0 */ (NE | NS | CS | VS | GE | GT | LS), /* 1 1 1 1 */ (EQ | NS | CS | VS | GE | LE | LS), }; /* * Calculate what the PC will be after executing next instruction */ static unsigned find_nextpc(struct pt_regs *regs, int *flags) { unsigned size; s8 x8; s16 x16; s32 x32; u8 opc, *pc, *sp, *next; next = 0; *flags = SINGLESTEP_PCREL; pc = (u8 *) regs->pc; sp = (u8 *) (regs + 1); opc = *pc; size = mn10300_insn_sizes[opc]; if (size > 0) { next = pc + size; } else { switch (opc) { /* Bxx (d8,PC) */ case 0xc0 ... 0xca: x8 = 2; if (cond_table[regs->epsw & 0xf] & (1 << (opc & 0xf))) x8 = (s8)pc[1]; next = pc + x8; *flags |= SINGLESTEP_BRANCH; break; /* JMP (d16,PC) or CALL (d16,PC) */ case 0xcc: case 0xcd: READ_WORD16(pc + 1, &x16); next = pc + x16; *flags |= SINGLESTEP_BRANCH; break; /* JMP (d32,PC) or CALL (d32,PC) */ case 0xdc: case 0xdd: READ_WORD32(pc + 1, &x32); next = pc + x32; *flags |= SINGLESTEP_BRANCH; break; /* RETF */ case 0xde: next = (u8 *)regs->mdr; *flags &= ~SINGLESTEP_PCREL; *flags |= SINGLESTEP_BRANCH; break; /* RET */ case 0xdf: sp += pc[2]; READ_WORD32(sp, &x32); next = (u8 *)x32; *flags &= ~SINGLESTEP_PCREL; *flags |= SINGLESTEP_BRANCH; break; case 0xf0: next = pc + 2; opc = pc[1]; if (opc >= 0xf0 && opc <= 0xf7) { /* JMP (An) / CALLS (An) */ switch (opc & 3) { case 0: next = (u8 *)regs->a0; break; case 1: next = (u8 *)regs->a1; break; case 2: next = (u8 *)regs->a2; break; case 3: next = (u8 *)regs->a3; break; } *flags &= ~SINGLESTEP_PCREL; *flags |= SINGLESTEP_BRANCH; } else if (opc == 0xfc) { /* RETS */ READ_WORD32(sp, &x32); next = (u8 *)x32; *flags &= ~SINGLESTEP_PCREL; *flags |= SINGLESTEP_BRANCH; } else if (opc == 0xfd) { /* RTI */ READ_WORD32(sp + 4, &x32); next = (u8 *)x32; *flags &= ~SINGLESTEP_PCREL; *flags |= SINGLESTEP_BRANCH; } break; /* potential 3-byte conditional branches */ case 0xf8: next = pc + 3; opc = pc[1]; if (opc >= 0xe8 && opc <= 0xeb && (cond_table[regs->epsw & 0xf] & (1 << ((opc & 0xf) + 3))) ) { READ_BYTE(pc+2, &x8); next = pc + x8; *flags |= SINGLESTEP_BRANCH; } break; case 0xfa: if (pc[1] == 0xff) { /* CALLS (d16,PC) */ READ_WORD16(pc + 2, &x16); next = pc + x16; } else next = pc + 4; *flags |= SINGLESTEP_BRANCH; break; case 0xfc: x32 = 6; if (pc[1] == 0xff) { /* CALLS (d32,PC) */ READ_WORD32(pc + 2, &x32); } next = pc + x32; *flags |= SINGLESTEP_BRANCH; break; /* LXX (d8,PC) */ /* SETLB - loads the next four bytes into the LIR reg */ case 0xd0 ... 0xda: case 0xdb: panic("Can't singlestep Lxx/SETLB\n"); break; } } return (unsigned)next; } /* * set up out of place singlestep of some branching instructions */ static unsigned __kprobes singlestep_branch_setup(struct pt_regs *regs) { u8 opc, *pc, *sp, *next; next = NULL; pc = (u8 *) regs->pc; sp = (u8 *) (regs + 1); switch (pc[0]) { case 0xc0 ... 0xca: /* Bxx (d8,PC) */ case 0xcc: /* JMP (d16,PC) */ case 0xdc: /* JMP (d32,PC) */ case 0xf8: /* Bxx (d8,PC) 3-byte version */ /* don't really need to do anything except cause trap */ next = pc; break; case 0xcd: /* CALL (d16,PC) */ pc[1] = 5; pc[2] = 0; next = pc + 5; break; case 0xdd: /* CALL (d32,PC) */ pc[1] = 7; pc[2] = 0; pc[3] = 0; pc[4] = 0; next = pc + 7; break; case 0xde: /* RETF */ next = pc + 3; regs->mdr = (unsigned) next; break; case 0xdf: /* RET */ sp += pc[2]; next = pc + 3; *(unsigned *)sp = (unsigned) next; break; case 0xf0: next = pc + 2; opc = pc[1]; if (opc >= 0xf0 && opc <= 0xf3) { /* CALLS (An) */ /* use CALLS (d16,PC) to avoid mucking with An */ pc[0] = 0xfa; pc[1] = 0xff; pc[2] = 4; pc[3] = 0; next = pc + 4; } else if (opc >= 0xf4 && opc <= 0xf7) { /* JMP (An) */ next = pc; } else if (opc == 0xfc) { /* RETS */ next = pc + 2; *(unsigned *) sp = (unsigned) next; } else if (opc == 0xfd) { /* RTI */ next = pc + 2; *(unsigned *)(sp + 4) = (unsigned) next; } break; case 0xfa: /* CALLS (d16,PC) */ pc[2] = 4; pc[3] = 0; next = pc + 4; break; case 0xfc: /* CALLS (d32,PC) */ pc[2] = 6; pc[3] = 0; pc[4] = 0; pc[5] = 0; next = pc + 6; break; case 0xd0 ... 0xda: /* LXX (d8,PC) */ case 0xdb: /* SETLB */ panic("Can't singlestep Lxx/SETLB\n"); } return (unsigned) next; } int __kprobes arch_prepare_kprobe(struct kprobe *p) { return 0; } void __kprobes arch_copy_kprobe(struct kprobe *p) { memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE); } void __kprobes arch_arm_kprobe(struct kprobe *p) { *p->addr = BREAKPOINT_INSTRUCTION; flush_icache_range((unsigned long) p->addr, (unsigned long) p->addr + sizeof(kprobe_opcode_t)); } void __kprobes arch_disarm_kprobe(struct kprobe *p) { #ifndef CONFIG_MN10300_CACHE_SNOOP mn10300_dcache_flush(); mn10300_icache_inv(); #endif } void arch_remove_kprobe(struct kprobe *p) { } static inline void __kprobes disarm_kprobe(struct kprobe *p, struct pt_regs *regs) { *p->addr = p->opcode; regs->pc = (unsigned long) p->addr; #ifndef CONFIG_MN10300_CACHE_SNOOP mn10300_dcache_flush(); mn10300_icache_inv(); #endif } static inline void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) { unsigned long nextpc; cur_kprobe_orig_pc = regs->pc; memcpy(cur_kprobe_ss_buf, &p->ainsn.insn[0], MAX_INSN_SIZE); regs->pc = (unsigned long) cur_kprobe_ss_buf; nextpc = find_nextpc(regs, &cur_kprobe_ss_flags); if (cur_kprobe_ss_flags & SINGLESTEP_PCREL) cur_kprobe_next_pc = cur_kprobe_orig_pc + (nextpc - regs->pc); else cur_kprobe_next_pc = nextpc; /* branching instructions need special handling */ if (cur_kprobe_ss_flags & SINGLESTEP_BRANCH) nextpc = singlestep_branch_setup(regs); cur_kprobe_bp_addr = nextpc; *(u8 *) nextpc = BREAKPOINT_INSTRUCTION; mn10300_dcache_flush_range2((unsigned) cur_kprobe_ss_buf, sizeof(cur_kprobe_ss_buf)); mn10300_icache_inv(); } static inline int __kprobes kprobe_handler(struct pt_regs *regs) { struct kprobe *p; int ret = 0; unsigned int *addr = (unsigned int *) regs->pc; /* We're in an interrupt, but this is clear and BUG()-safe. */ preempt_disable(); /* Check we're not actually recursing */ if (kprobe_running()) { /* We *are* holding lock here, so this is safe. Disarm the probe we just hit, and ignore it. */ p = get_kprobe(addr); if (p) { disarm_kprobe(p, regs); ret = 1; } else { p = cur_kprobe; if (p->break_handler && p->break_handler(p, regs)) goto ss_probe; } /* If it's not ours, can't be delete race, (we hold lock). */ goto no_kprobe; } p = get_kprobe(addr); if (!p) { if (*addr != BREAKPOINT_INSTRUCTION) { /* The breakpoint instruction was removed right after * we hit it. Another cpu has removed either a * probepoint or a debugger breakpoint at this address. * In either case, no further handling of this * interrupt is appropriate. */ ret = 1; } /* Not one of ours: let kernel handle it */ goto no_kprobe; } kprobe_status = KPROBE_HIT_ACTIVE; cur_kprobe = p; if (p->pre_handler(p, regs)) { /* handler has already set things up, so skip ss setup */ return 1; } ss_probe: prepare_singlestep(p, regs); kprobe_status = KPROBE_HIT_SS; return 1; no_kprobe: preempt_enable_no_resched(); return ret; } /* * Called after single-stepping. p->addr is the address of the * instruction whose first byte has been replaced by the "breakpoint" * instruction. To avoid the SMP problems that can occur when we * temporarily put back the original opcode to single-step, we * single-stepped a copy of the instruction. The address of this * copy is p->ainsn.insn. */ static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) { /* we may need to fixup regs/stack after singlestepping a call insn */ if (cur_kprobe_ss_flags & SINGLESTEP_BRANCH) { regs->pc = cur_kprobe_orig_pc; switch (p->ainsn.insn[0]) { case 0xcd: /* CALL (d16,PC) */ *(unsigned *) regs->sp = regs->mdr = regs->pc + 5; break; case 0xdd: /* CALL (d32,PC) */ /* fixup mdr and return address on stack */ *(unsigned *) regs->sp = regs->mdr = regs->pc + 7; break; case 0xf0: if (p->ainsn.insn[1] >= 0xf0 && p->ainsn.insn[1] <= 0xf3) { /* CALLS (An) */ /* fixup MDR and return address on stack */ regs->mdr = regs->pc + 2; *(unsigned *) regs->sp = regs->mdr; } break; case 0xfa: /* CALLS (d16,PC) */ /* fixup MDR and return address on stack */ *(unsigned *) regs->sp = regs->mdr = regs->pc + 4; break; case 0xfc: /* CALLS (d32,PC) */ /* fixup MDR and return address on stack */ *(unsigned *) regs->sp = regs->mdr = regs->pc + 6; break; } } regs->pc = cur_kprobe_next_pc; cur_kprobe_bp_addr = 0; } static inline int __kprobes post_kprobe_handler(struct pt_regs *regs) { if (!kprobe_running()) return 0; if (cur_kprobe->post_handler) cur_kprobe->post_handler(cur_kprobe, regs, 0); resume_execution(cur_kprobe, regs); reset_current_kprobe(); preempt_enable_no_resched(); return 1; } /* Interrupts disabled, kprobe_lock held. */ static inline int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) { if (cur_kprobe->fault_handler && cur_kprobe->fault_handler(cur_kprobe, regs, trapnr)) return 1; if (kprobe_status & KPROBE_HIT_SS) { resume_execution(cur_kprobe, regs); reset_current_kprobe(); preempt_enable_no_resched(); } return 0; } /* * Wrapper routine to for handling exceptions. */ int __kprobes kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = data; switch (val) { case DIE_BREAKPOINT: if (cur_kprobe_bp_addr != args->regs->pc) { if (kprobe_handler(args->regs)) return NOTIFY_STOP; } else { if (post_kprobe_handler(args->regs)) return NOTIFY_STOP; } break; case DIE_GPF: if (kprobe_running() && kprobe_fault_handler(args->regs, args->trapnr)) return NOTIFY_STOP; break; default: break; } return NOTIFY_DONE; } /* Jprobes support. */ static struct pt_regs jprobe_saved_regs; static struct pt_regs *jprobe_saved_regs_location; static kprobe_opcode_t jprobe_saved_stack[MAX_STACK_SIZE]; int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct jprobe *jp = container_of(p, struct jprobe, kp); jprobe_saved_regs_location = regs; memcpy(&jprobe_saved_regs, regs, sizeof(struct pt_regs)); /* Save a whole stack frame, this gets arguments * pushed onto the stack after using up all the * arg registers. */ memcpy(&jprobe_saved_stack, regs + 1, sizeof(jprobe_saved_stack)); /* setup return addr to the jprobe handler routine */ regs->pc = (unsigned long) jp->entry; return 1; } void __kprobes jprobe_return(void) { void *orig_sp = jprobe_saved_regs_location + 1; preempt_enable_no_resched(); asm volatile(" mov %0,sp\n" ".globl jprobe_return_bp_addr\n" "jprobe_return_bp_addr:\n\t" " .byte 0xff\n" : : "d" (orig_sp)); } extern void jprobe_return_bp_addr(void); int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) { u8 *addr = (u8 *) regs->pc; if (addr == (u8 *) jprobe_return_bp_addr) { if (jprobe_saved_regs_location != regs) { printk(KERN_ERR"JPROBE:" " Current regs (%p) does not match saved regs" " (%p).\n", regs, jprobe_saved_regs_location); BUG(); } /* Restore old register state. */ memcpy(regs, &jprobe_saved_regs, sizeof(struct pt_regs)); memcpy(regs + 1, &jprobe_saved_stack, sizeof(jprobe_saved_stack)); return 1; } return 0; } int __init arch_init_kprobes(void) { return 0; }