/* * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights * reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the NetLogic * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <linux/kernel.h> #include <linux/threads.h> #include <asm/asm.h> #include <asm/asm-offsets.h> #include <asm/mipsregs.h> #include <asm/addrspace.h> #include <asm/string.h> #include <asm/netlogic/haldefs.h> #include <asm/netlogic/common.h> #include <asm/netlogic/mips-extns.h> #include <asm/netlogic/xlp-hal/iomap.h> #include <asm/netlogic/xlp-hal/xlp.h> #include <asm/netlogic/xlp-hal/pic.h> #include <asm/netlogic/xlp-hal/sys.h> static int xlp_wakeup_core(uint64_t sysbase, int node, int core) { uint32_t coremask, value; int count, resetreg; coremask = (1 << core); /* Enable CPU clock in case of 8xx/3xx */ if (!cpu_is_xlpii()) { value = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIS_CTRL); value &= ~coremask; nlm_write_sys_reg(sysbase, SYS_CORE_DFS_DIS_CTRL, value); } /* On 9XX, mark coherent first */ if (cpu_is_xlp9xx()) { value = nlm_read_sys_reg(sysbase, SYS_9XX_CPU_NONCOHERENT_MODE); value &= ~coremask; nlm_write_sys_reg(sysbase, SYS_9XX_CPU_NONCOHERENT_MODE, value); } /* Remove CPU Reset */ resetreg = cpu_is_xlp9xx() ? SYS_9XX_CPU_RESET : SYS_CPU_RESET; value = nlm_read_sys_reg(sysbase, resetreg); value &= ~coremask; nlm_write_sys_reg(sysbase, resetreg, value); /* We are done on 9XX */ if (cpu_is_xlp9xx()) return 1; /* Poll for CPU to mark itself coherent on other type of XLP */ count = 100000; do { value = nlm_read_sys_reg(sysbase, SYS_CPU_NONCOHERENT_MODE); } while ((value & coremask) != 0 && --count > 0); return count != 0; } static int wait_for_cpus(int cpu, int bootcpu) { volatile uint32_t *cpu_ready = nlm_get_boot_data(BOOT_CPU_READY); int i, count, notready; count = 0x800000; do { notready = nlm_threads_per_core; for (i = 0; i < nlm_threads_per_core; i++) if (cpu_ready[cpu + i] || cpu == bootcpu) --notready; } while (notready != 0 && --count > 0); return count != 0; } static void xlp_enable_secondary_cores(const cpumask_t *wakeup_mask) { struct nlm_soc_info *nodep; uint64_t syspcibase, fusebase; uint32_t syscoremask, mask, fusemask; int core, n, cpu; for (n = 0; n < NLM_NR_NODES; n++) { if (n != 0) { /* check if node exists and is online */ if (cpu_is_xlp9xx()) { int b = xlp9xx_get_socbus(n); pr_info("Node %d SoC PCI bus %d.\n", n, b); if (b == 0) break; } else { syspcibase = nlm_get_sys_pcibase(n); if (nlm_read_reg(syspcibase, 0) == 0xffffffff) break; } nlm_node_init(n); } /* read cores in reset from SYS */ nodep = nlm_get_node(n); if (cpu_is_xlp9xx()) { fusebase = nlm_get_fuse_regbase(n); fusemask = nlm_read_reg(fusebase, FUSE_9XX_DEVCFG6); mask = 0xfffff; } else { fusemask = nlm_read_sys_reg(nodep->sysbase, SYS_EFUSE_DEVICE_CFG_STATUS0); switch (read_c0_prid() & 0xff00) { case PRID_IMP_NETLOGIC_XLP3XX: mask = 0xf; break; case PRID_IMP_NETLOGIC_XLP2XX: mask = 0x3; break; case PRID_IMP_NETLOGIC_XLP8XX: default: mask = 0xff; break; } } /* * Fused out cores are set in the fusemask, and the remaining * cores are renumbered to range 0 .. nactive-1 */ syscoremask = (1 << hweight32(~fusemask & mask)) - 1; /* The boot cpu */ if (n == 0) nodep->coremask = 1; pr_info("Node %d - SYS/FUSE coremask %x\n", n, syscoremask); for (core = 0; core < nlm_cores_per_node(); core++) { /* we will be on node 0 core 0 */ if (n == 0 && core == 0) continue; /* see if the core exists */ if ((syscoremask & (1 << core)) == 0) continue; /* see if at least the first hw thread is enabled */ cpu = (n * nlm_cores_per_node() + core) * NLM_THREADS_PER_CORE; if (!cpumask_test_cpu(cpu, wakeup_mask)) continue; /* wake up the core */ if (!xlp_wakeup_core(nodep->sysbase, n, core)) continue; /* core is up */ nodep->coremask |= 1u << core; /* spin until the hw threads sets their ready */ if (!wait_for_cpus(cpu, 0)) pr_err("Node %d : timeout core %d\n", n, core); } } } void xlp_wakeup_secondary_cpus() { /* * In case of u-boot, the secondaries are in reset * first wakeup core 0 threads */ xlp_boot_core0_siblings(); if (!wait_for_cpus(0, 0)) pr_err("Node 0 : timeout core 0\n"); /* now get other cores out of reset */ xlp_enable_secondary_cores(&nlm_cpumask); }