/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) 2004 Mips Technologies, Inc * Copyright (C) 2008 Kevin D. Kissell */ #include <linux/clockchips.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/smp.h> #include <linux/cpumask.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/module.h> #include <linux/ftrace.h> #include <linux/slab.h> #include <asm/cpu.h> #include <asm/processor.h> #include <linux/atomic.h> #include <asm/hardirq.h> #include <asm/hazards.h> #include <asm/irq.h> #include <asm/idle.h> #include <asm/mmu_context.h> #include <asm/mipsregs.h> #include <asm/cacheflush.h> #include <asm/time.h> #include <asm/addrspace.h> #include <asm/smtc.h> #include <asm/smtc_proc.h> #include <asm/setup.h> /* * SMTC Kernel needs to manipulate low-level CPU interrupt mask * in do_IRQ. These are passed in setup_irq_smtc() and stored * in this table. */ unsigned long irq_hwmask[NR_IRQS]; #define LOCK_MT_PRA() \ local_irq_save(flags); \ mtflags = dmt() #define UNLOCK_MT_PRA() \ emt(mtflags); \ local_irq_restore(flags) #define LOCK_CORE_PRA() \ local_irq_save(flags); \ mtflags = dvpe() #define UNLOCK_CORE_PRA() \ evpe(mtflags); \ local_irq_restore(flags) /* * Data structures purely associated with SMTC parallelism */ /* * Table for tracking ASIDs whose lifetime is prolonged. */ asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS]; /* * Number of InterProcessor Interrupt (IPI) message buffers to allocate */ #define IPIBUF_PER_CPU 4 struct smtc_ipi_q IPIQ[NR_CPUS]; static struct smtc_ipi_q freeIPIq; /* * Number of FPU contexts for each VPE */ static int smtc_nconf1[MAX_SMTC_VPES]; /* Forward declarations */ void ipi_decode(struct smtc_ipi *); static void post_direct_ipi(int cpu, struct smtc_ipi *pipi); static void setup_cross_vpe_interrupts(unsigned int nvpe); void init_smtc_stats(void); /* Global SMTC Status */ unsigned int smtc_status; /* Boot command line configuration overrides */ static int vpe0limit; static int ipibuffers; static int nostlb; static int asidmask; unsigned long smtc_asid_mask = 0xff; static int __init vpe0tcs(char *str) { get_option(&str, &vpe0limit); return 1; } static int __init ipibufs(char *str) { get_option(&str, &ipibuffers); return 1; } static int __init stlb_disable(char *s) { nostlb = 1; return 1; } static int __init asidmask_set(char *str) { get_option(&str, &asidmask); switch (asidmask) { case 0x1: case 0x3: case 0x7: case 0xf: case 0x1f: case 0x3f: case 0x7f: case 0xff: smtc_asid_mask = (unsigned long)asidmask; break; default: printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask); } return 1; } __setup("vpe0tcs=", vpe0tcs); __setup("ipibufs=", ipibufs); __setup("nostlb", stlb_disable); __setup("asidmask=", asidmask_set); #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG static int hang_trig; static int __init hangtrig_enable(char *s) { hang_trig = 1; return 1; } __setup("hangtrig", hangtrig_enable); #define DEFAULT_BLOCKED_IPI_LIMIT 32 static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT; static int __init tintq(char *str) { get_option(&str, &timerq_limit); return 1; } __setup("tintq=", tintq); static int imstuckcount[MAX_SMTC_VPES][8]; /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */ static int vpemask[MAX_SMTC_VPES][8] = { {0, 0, 1, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 1} }; int tcnoprog[NR_CPUS]; static atomic_t idle_hook_initialized = ATOMIC_INIT(0); static int clock_hang_reported[NR_CPUS]; #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */ /* * Configure shared TLB - VPC configuration bit must be set by caller */ static void smtc_configure_tlb(void) { int i, tlbsiz, vpes; unsigned long mvpconf0; unsigned long config1val; /* Set up ASID preservation table */ for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) { for(i = 0; i < MAX_SMTC_ASIDS; i++) { smtc_live_asid[vpes][i] = 0; } } mvpconf0 = read_c0_mvpconf0(); if ((vpes = ((mvpconf0 & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) > 1) { /* If we have multiple VPEs, try to share the TLB */ if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) { /* * If TLB sizing is programmable, shared TLB * size is the total available complement. * Otherwise, we have to take the sum of all * static VPE TLB entries. */ if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE) >> MVPCONF0_PTLBE_SHIFT)) == 0) { /* * If there's more than one VPE, there had better * be more than one TC, because we need one to bind * to each VPE in turn to be able to read * its configuration state! */ settc(1); /* Stop the TC from doing anything foolish */ write_tc_c0_tchalt(TCHALT_H); mips_ihb(); /* No need to un-Halt - that happens later anyway */ for (i=0; i < vpes; i++) { write_tc_c0_tcbind(i); /* * To be 100% sure we're really getting the right * information, we exit the configuration state * and do an IHB after each rebinding. */ write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC ); mips_ihb(); /* * Only count if the MMU Type indicated is TLB */ if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) { config1val = read_vpe_c0_config1(); tlbsiz += ((config1val >> 25) & 0x3f) + 1; } /* Put core back in configuration state */ write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC ); mips_ihb(); } } write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB); ehb(); /* * Setup kernel data structures to use software total, * rather than read the per-VPE Config1 value. The values * for "CPU 0" gets copied to all the other CPUs as part * of their initialization in smtc_cpu_setup(). */ /* MIPS32 limits TLB indices to 64 */ if (tlbsiz > 64) tlbsiz = 64; cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz; smtc_status |= SMTC_TLB_SHARED; local_flush_tlb_all(); printk("TLB of %d entry pairs shared by %d VPEs\n", tlbsiz, vpes); } else { printk("WARNING: TLB Not Sharable on SMTC Boot!\n"); } } } /* * Incrementally build the CPU map out of constituent MIPS MT cores, * using the specified available VPEs and TCs. Plaform code needs * to ensure that each MIPS MT core invokes this routine on reset, * one at a time(!). * * This version of the build_cpu_map and prepare_cpus routines assumes * that *all* TCs of a MIPS MT core will be used for Linux, and that * they will be spread across *all* available VPEs (to minimise the * loss of efficiency due to exception service serialization). * An improved version would pick up configuration information and * possibly leave some TCs/VPEs as "slave" processors. * * Use c0_MVPConf0 to find out how many TCs are available, setting up * cpu_possible_mask and the logical/physical mappings. */ int __init smtc_build_cpu_map(int start_cpu_slot) { int i, ntcs; /* * The CPU map isn't actually used for anything at this point, * so it's not clear what else we should do apart from set * everything up so that "logical" = "physical". */ ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1; for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) { set_cpu_possible(i, true); __cpu_number_map[i] = i; __cpu_logical_map[i] = i; } #ifdef CONFIG_MIPS_MT_FPAFF /* Initialize map of CPUs with FPUs */ cpus_clear(mt_fpu_cpumask); #endif /* One of those TC's is the one booting, and not a secondary... */ printk("%i available secondary CPU TC(s)\n", i - 1); return i; } /* * Common setup before any secondaries are started * Make sure all CPUs are in a sensible state before we boot any of the * secondaries. * * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly * as possible across the available VPEs. */ static void smtc_tc_setup(int vpe, int tc, int cpu) { static int cp1contexts[MAX_SMTC_VPES]; /* * Make a local copy of the available FPU contexts in order * to keep track of TCs that can have one. */ if (tc == 1) { /* * FIXME: Multi-core SMTC hasn't been tested and the * maximum number of VPEs may change. */ cp1contexts[0] = smtc_nconf1[0] - 1; cp1contexts[1] = smtc_nconf1[1]; } settc(tc); write_tc_c0_tchalt(TCHALT_H); mips_ihb(); write_tc_c0_tcstatus((read_tc_c0_tcstatus() & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A); /* * TCContext gets an offset from the base of the IPIQ array * to be used in low-level code to detect the presence of * an active IPI queue. */ write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16); /* Bind TC to VPE. */ write_tc_c0_tcbind(vpe); /* In general, all TCs should have the same cpu_data indications. */ memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips)); /* Check to see if there is a FPU context available for this TC. */ if (!cp1contexts[vpe]) cpu_data[cpu].options &= ~MIPS_CPU_FPU; else cp1contexts[vpe]--; /* Store the TC and VPE into the cpu_data structure. */ cpu_data[cpu].vpe_id = vpe; cpu_data[cpu].tc_id = tc; /* FIXME: Multi-core SMTC hasn't been tested, but be prepared. */ cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff; } /* * Tweak to get Count registers synced as closely as possible. The * value seems good for 34K-class cores. */ #define CP0_SKEW 8 void smtc_prepare_cpus(int cpus) { int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu; unsigned long flags; unsigned long val; int nipi; struct smtc_ipi *pipi; /* disable interrupts so we can disable MT */ local_irq_save(flags); /* disable MT so we can configure */ dvpe(); dmt(); spin_lock_init(&freeIPIq.lock); /* * We probably don't have as many VPEs as we do SMP "CPUs", * but it's possible - and in any case we'll never use more! */ for (i=0; i<NR_CPUS; i++) { IPIQ[i].head = IPIQ[i].tail = NULL; spin_lock_init(&IPIQ[i].lock); IPIQ[i].depth = 0; IPIQ[i].resched_flag = 0; /* No reschedules queued initially */ } /* cpu_data index starts at zero */ cpu = 0; cpu_data[cpu].vpe_id = 0; cpu_data[cpu].tc_id = 0; cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff; cpu++; /* Report on boot-time options */ mips_mt_set_cpuoptions(); if (vpelimit > 0) printk("Limit of %d VPEs set\n", vpelimit); if (tclimit > 0) printk("Limit of %d TCs set\n", tclimit); if (nostlb) { printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n"); } if (asidmask) printk("ASID mask value override to 0x%x\n", asidmask); /* Temporary */ #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG if (hang_trig) printk("Logic Analyser Trigger on suspected TC hang\n"); #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */ /* Put MVPE's into 'configuration state' */ write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC ); val = read_c0_mvpconf0(); nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1; if (vpelimit > 0 && nvpe > vpelimit) nvpe = vpelimit; ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1; if (ntc > NR_CPUS) ntc = NR_CPUS; if (tclimit > 0 && ntc > tclimit) ntc = tclimit; slop = ntc % nvpe; for (i = 0; i < nvpe; i++) { tcpervpe[i] = ntc / nvpe; if (slop) { if((slop - i) > 0) tcpervpe[i]++; } } /* Handle command line override for VPE0 */ if (vpe0limit > ntc) vpe0limit = ntc; if (vpe0limit > 0) { int slopslop; if (vpe0limit < tcpervpe[0]) { /* Reducing TC count - distribute to others */ slop = tcpervpe[0] - vpe0limit; slopslop = slop % (nvpe - 1); tcpervpe[0] = vpe0limit; for (i = 1; i < nvpe; i++) { tcpervpe[i] += slop / (nvpe - 1); if(slopslop && ((slopslop - (i - 1) > 0))) tcpervpe[i]++; } } else if (vpe0limit > tcpervpe[0]) { /* Increasing TC count - steal from others */ slop = vpe0limit - tcpervpe[0]; slopslop = slop % (nvpe - 1); tcpervpe[0] = vpe0limit; for (i = 1; i < nvpe; i++) { tcpervpe[i] -= slop / (nvpe - 1); if(slopslop && ((slopslop - (i - 1) > 0))) tcpervpe[i]--; } } } /* Set up shared TLB */ smtc_configure_tlb(); for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) { /* Get number of CP1 contexts for each VPE. */ if (tc == 0) { /* * Do not call settc() for TC0 or the FPU context * value will be incorrect. Besides, we know that * we are TC0 anyway. */ smtc_nconf1[0] = ((read_vpe_c0_vpeconf1() & VPECONF1_NCP1) >> VPECONF1_NCP1_SHIFT); if (nvpe == 2) { settc(1); smtc_nconf1[1] = ((read_vpe_c0_vpeconf1() & VPECONF1_NCP1) >> VPECONF1_NCP1_SHIFT); settc(0); } } if (tcpervpe[vpe] == 0) continue; if (vpe != 0) printk(", "); printk("VPE %d: TC", vpe); for (i = 0; i < tcpervpe[vpe]; i++) { /* * TC 0 is bound to VPE 0 at reset, * and is presumably executing this * code. Leave it alone! */ if (tc != 0) { smtc_tc_setup(vpe, tc, cpu); if (vpe != 0) { /* * Set MVP bit (possibly again). Do it * here to catch CPUs that have no TCs * bound to the VPE at reset. In that * case, a TC must be bound to the VPE * before we can set VPEControl[MVP] */ write_vpe_c0_vpeconf0( read_vpe_c0_vpeconf0() | VPECONF0_MVP); } cpu++; } printk(" %d", tc); tc++; } if (vpe != 0) { /* * Allow this VPE to control others. */ write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP); /* * Clear any stale software interrupts from VPE's Cause */ write_vpe_c0_cause(0); /* * Clear ERL/EXL of VPEs other than 0 * and set restricted interrupt enable/mask. */ write_vpe_c0_status((read_vpe_c0_status() & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM)) | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7 | ST0_IE)); /* * set config to be the same as vpe0, * particularly kseg0 coherency alg */ write_vpe_c0_config(read_c0_config()); /* Clear any pending timer interrupt */ write_vpe_c0_compare(0); /* Propagate Config7 */ write_vpe_c0_config7(read_c0_config7()); write_vpe_c0_count(read_c0_count() + CP0_SKEW); ehb(); } /* enable multi-threading within VPE */ write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE); /* enable the VPE */ write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA); } /* * Pull any physically present but unused TCs out of circulation. */ while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) { set_cpu_possible(tc, false); set_cpu_present(tc, false); tc++; } /* release config state */ write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC ); printk("\n"); /* Set up coprocessor affinity CPU mask(s) */ #ifdef CONFIG_MIPS_MT_FPAFF for (tc = 0; tc < ntc; tc++) { if (cpu_data[tc].options & MIPS_CPU_FPU) cpu_set(tc, mt_fpu_cpumask); } #endif /* set up ipi interrupts... */ /* If we have multiple VPEs running, set up the cross-VPE interrupt */ setup_cross_vpe_interrupts(nvpe); /* Set up queue of free IPI "messages". */ nipi = NR_CPUS * IPIBUF_PER_CPU; if (ipibuffers > 0) nipi = ipibuffers; pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL); if (pipi == NULL) panic("kmalloc of IPI message buffers failed"); else printk("IPI buffer pool of %d buffers\n", nipi); for (i = 0; i < nipi; i++) { smtc_ipi_nq(&freeIPIq, pipi); pipi++; } /* Arm multithreading and enable other VPEs - but all TCs are Halted */ emt(EMT_ENABLE); evpe(EVPE_ENABLE); local_irq_restore(flags); /* Initialize SMTC /proc statistics/diagnostics */ init_smtc_stats(); } /* * Setup the PC, SP, and GP of a secondary processor and start it * running! * smp_bootstrap is the place to resume from * __KSTK_TOS(idle) is apparently the stack pointer * (unsigned long)idle->thread_info the gp * */ void smtc_boot_secondary(int cpu, struct task_struct *idle) { extern u32 kernelsp[NR_CPUS]; unsigned long flags; int mtflags; LOCK_MT_PRA(); if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) { dvpe(); } settc(cpu_data[cpu].tc_id); /* pc */ write_tc_c0_tcrestart((unsigned long)&smp_bootstrap); /* stack pointer */ kernelsp[cpu] = __KSTK_TOS(idle); write_tc_gpr_sp(__KSTK_TOS(idle)); /* global pointer */ write_tc_gpr_gp((unsigned long)task_thread_info(idle)); smtc_status |= SMTC_MTC_ACTIVE; write_tc_c0_tchalt(0); if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) { evpe(EVPE_ENABLE); } UNLOCK_MT_PRA(); } void smtc_init_secondary(void) { } void smtc_smp_finish(void) { int cpu = smp_processor_id(); /* * Lowest-numbered CPU per VPE starts a clock tick. * Like per_cpu_trap_init() hack, this assumes that * SMTC init code assigns TCs consdecutively and * in ascending order across available VPEs. */ if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id)) write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ); local_irq_enable(); printk("TC %d going on-line as CPU %d\n", cpu_data[smp_processor_id()].tc_id, smp_processor_id()); } void smtc_cpus_done(void) { } /* * Support for SMTC-optimized driver IRQ registration */ /* * SMTC Kernel needs to manipulate low-level CPU interrupt mask * in do_IRQ. These are passed in setup_irq_smtc() and stored * in this table. */ int setup_irq_smtc(unsigned int irq, struct irqaction * new, unsigned long hwmask) { #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG unsigned int vpe = current_cpu_data.vpe_id; vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1; #endif irq_hwmask[irq] = hwmask; return setup_irq(irq, new); } #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF /* * Support for IRQ affinity to TCs */ void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity) { /* * If a "fast path" cache of quickly decodable affinity state * is maintained, this is where it gets done, on a call up * from the platform affinity code. */ } void smtc_forward_irq(struct irq_data *d) { unsigned int irq = d->irq; int target; /* * OK wise guy, now figure out how to get the IRQ * to be serviced on an authorized "CPU". * * Ideally, to handle the situation where an IRQ has multiple * eligible CPUS, we would maintain state per IRQ that would * allow a fair distribution of service requests. Since the * expected use model is any-or-only-one, for simplicity * and efficiency, we just pick the easiest one to find. */ target = cpumask_first(d->affinity); /* * We depend on the platform code to have correctly processed * IRQ affinity change requests to ensure that the IRQ affinity * mask has been purged of bits corresponding to nonexistent and * offline "CPUs", and to TCs bound to VPEs other than the VPE * connected to the physical interrupt input for the interrupt * in question. Otherwise we have a nasty problem with interrupt * mask management. This is best handled in non-performance-critical * platform IRQ affinity setting code, to minimize interrupt-time * checks. */ /* If no one is eligible, service locally */ if (target >= NR_CPUS) do_IRQ_no_affinity(irq); else smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq); } #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */ /* * IPI model for SMTC is tricky, because interrupts aren't TC-specific. * Within a VPE one TC can interrupt another by different approaches. * The easiest to get right would probably be to make all TCs except * the target IXMT and set a software interrupt, but an IXMT-based * scheme requires that a handler must run before a new IPI could * be sent, which would break the "broadcast" loops in MIPS MT. * A more gonzo approach within a VPE is to halt the TC, extract * its Restart, Status, and a couple of GPRs, and program the Restart * address to emulate an interrupt. * * Within a VPE, one can be confident that the target TC isn't in * a critical EXL state when halted, since the write to the Halt * register could not have issued on the writing thread if the * halting thread had EXL set. So k0 and k1 of the target TC * can be used by the injection code. Across VPEs, one can't * be certain that the target TC isn't in a critical exception * state. So we try a two-step process of sending a software * interrupt to the target VPE, which either handles the event * itself (if it was the target) or injects the event within * the VPE. */ static void smtc_ipi_qdump(void) { int i; struct smtc_ipi *temp; for (i = 0; i < NR_CPUS ;i++) { pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n", i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail, IPIQ[i].depth); temp = IPIQ[i].head; while (temp != IPIQ[i].tail) { pr_debug("%d %d %d: ", temp->type, temp->dest, (int)temp->arg); #ifdef SMTC_IPI_DEBUG pr_debug("%u %lu\n", temp->sender, temp->stamp); #else pr_debug("\n"); #endif temp = temp->flink; } } } /* * The standard atomic.h primitives don't quite do what we want * here: We need an atomic add-and-return-previous-value (which * could be done with atomic_add_return and a decrement) and an * atomic set/zero-and-return-previous-value (which can't really * be done with the atomic.h primitives). And since this is * MIPS MT, we can assume that we have LL/SC. */ static inline int atomic_postincrement(atomic_t *v) { unsigned long result; unsigned long temp; __asm__ __volatile__( "1: ll %0, %2 \n" " addu %1, %0, 1 \n" " sc %1, %2 \n" " beqz %1, 1b \n" __WEAK_LLSC_MB : "=&r" (result), "=&r" (temp), "=m" (v->counter) : "m" (v->counter) : "memory"); return result; } void smtc_send_ipi(int cpu, int type, unsigned int action) { int tcstatus; struct smtc_ipi *pipi; unsigned long flags; int mtflags; unsigned long tcrestart; int set_resched_flag = (type == LINUX_SMP_IPI && action == SMP_RESCHEDULE_YOURSELF); if (cpu == smp_processor_id()) { printk("Cannot Send IPI to self!\n"); return; } if (set_resched_flag && IPIQ[cpu].resched_flag != 0) return; /* There is a reschedule queued already */ /* Set up a descriptor, to be delivered either promptly or queued */ pipi = smtc_ipi_dq(&freeIPIq); if (pipi == NULL) { bust_spinlocks(1); mips_mt_regdump(dvpe()); panic("IPI Msg. Buffers Depleted"); } pipi->type = type; pipi->arg = (void *)action; pipi->dest = cpu; if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) { /* If not on same VPE, enqueue and send cross-VPE interrupt */ IPIQ[cpu].resched_flag |= set_resched_flag; smtc_ipi_nq(&IPIQ[cpu], pipi); LOCK_CORE_PRA(); settc(cpu_data[cpu].tc_id); write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1); UNLOCK_CORE_PRA(); } else { /* * Not sufficient to do a LOCK_MT_PRA (dmt) here, * since ASID shootdown on the other VPE may * collide with this operation. */ LOCK_CORE_PRA(); settc(cpu_data[cpu].tc_id); /* Halt the targeted TC */ write_tc_c0_tchalt(TCHALT_H); mips_ihb(); /* * Inspect TCStatus - if IXMT is set, we have to queue * a message. Otherwise, we set up the "interrupt" * of the other TC */ tcstatus = read_tc_c0_tcstatus(); if ((tcstatus & TCSTATUS_IXMT) != 0) { /* * If we're in the the irq-off version of the wait * loop, we need to force exit from the wait and * do a direct post of the IPI. */ if (cpu_wait == r4k_wait_irqoff) { tcrestart = read_tc_c0_tcrestart(); if (address_is_in_r4k_wait_irqoff(tcrestart)) { write_tc_c0_tcrestart(__pastwait); tcstatus &= ~TCSTATUS_IXMT; write_tc_c0_tcstatus(tcstatus); goto postdirect; } } /* * Otherwise we queue the message for the target TC * to pick up when he does a local_irq_restore() */ write_tc_c0_tchalt(0); UNLOCK_CORE_PRA(); IPIQ[cpu].resched_flag |= set_resched_flag; smtc_ipi_nq(&IPIQ[cpu], pipi); } else { postdirect: post_direct_ipi(cpu, pipi); write_tc_c0_tchalt(0); UNLOCK_CORE_PRA(); } } } /* * Send IPI message to Halted TC, TargTC/TargVPE already having been set */ static void post_direct_ipi(int cpu, struct smtc_ipi *pipi) { struct pt_regs *kstack; unsigned long tcstatus; unsigned long tcrestart; extern u32 kernelsp[NR_CPUS]; extern void __smtc_ipi_vector(void); //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu); /* Extract Status, EPC from halted TC */ tcstatus = read_tc_c0_tcstatus(); tcrestart = read_tc_c0_tcrestart(); /* If TCRestart indicates a WAIT instruction, advance the PC */ if ((tcrestart & 0x80000000) && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) { tcrestart += 4; } /* * Save on TC's future kernel stack * * CU bit of Status is indicator that TC was * already running on a kernel stack... */ if (tcstatus & ST0_CU0) { /* Note that this "- 1" is pointer arithmetic */ kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1; } else { kstack = ((struct pt_regs *)kernelsp[cpu]) - 1; } kstack->cp0_epc = (long)tcrestart; /* Save TCStatus */ kstack->cp0_tcstatus = tcstatus; /* Pass token of operation to be performed kernel stack pad area */ kstack->pad0[4] = (unsigned long)pipi; /* Pass address of function to be called likewise */ kstack->pad0[5] = (unsigned long)&ipi_decode; /* Set interrupt exempt and kernel mode */ tcstatus |= TCSTATUS_IXMT; tcstatus &= ~TCSTATUS_TKSU; write_tc_c0_tcstatus(tcstatus); ehb(); /* Set TC Restart address to be SMTC IPI vector */ write_tc_c0_tcrestart(__smtc_ipi_vector); } static void ipi_resched_interrupt(void) { scheduler_ipi(); } static void ipi_call_interrupt(void) { /* Invoke generic function invocation code in smp.c */ smp_call_function_interrupt(); } DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device); static void __irq_entry smtc_clock_tick_interrupt(void) { unsigned int cpu = smp_processor_id(); struct clock_event_device *cd; int irq = MIPS_CPU_IRQ_BASE + 1; irq_enter(); kstat_incr_irqs_this_cpu(irq, irq_to_desc(irq)); cd = &per_cpu(mips_clockevent_device, cpu); cd->event_handler(cd); irq_exit(); } void ipi_decode(struct smtc_ipi *pipi) { void *arg_copy = pipi->arg; int type_copy = pipi->type; smtc_ipi_nq(&freeIPIq, pipi); switch (type_copy) { case SMTC_CLOCK_TICK: smtc_clock_tick_interrupt(); break; case LINUX_SMP_IPI: switch ((int)arg_copy) { case SMP_RESCHEDULE_YOURSELF: ipi_resched_interrupt(); break; case SMP_CALL_FUNCTION: ipi_call_interrupt(); break; default: printk("Impossible SMTC IPI Argument %p\n", arg_copy); break; } break; #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF case IRQ_AFFINITY_IPI: /* * Accept a "forwarded" interrupt that was initially * taken by a TC who doesn't have affinity for the IRQ. */ do_IRQ_no_affinity((int)arg_copy); break; #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */ default: printk("Impossible SMTC IPI Type 0x%x\n", type_copy); break; } } /* * Similar to smtc_ipi_replay(), but invoked from context restore, * so it reuses the current exception frame rather than set up a * new one with self_ipi. */ void deferred_smtc_ipi(void) { int cpu = smp_processor_id(); /* * Test is not atomic, but much faster than a dequeue, * and the vast majority of invocations will have a null queue. * If irq_disabled when this was called, then any IPIs queued * after we test last will be taken on the next irq_enable/restore. * If interrupts were enabled, then any IPIs added after the * last test will be taken directly. */ while (IPIQ[cpu].head != NULL) { struct smtc_ipi_q *q = &IPIQ[cpu]; struct smtc_ipi *pipi; unsigned long flags; /* * It may be possible we'll come in with interrupts * already enabled. */ local_irq_save(flags); spin_lock(&q->lock); pipi = __smtc_ipi_dq(q); spin_unlock(&q->lock); if (pipi != NULL) { if (pipi->type == LINUX_SMP_IPI && (int)pipi->arg == SMP_RESCHEDULE_YOURSELF) IPIQ[cpu].resched_flag = 0; ipi_decode(pipi); } /* * The use of the __raw_local restore isn't * as obviously necessary here as in smtc_ipi_replay(), * but it's more efficient, given that we're already * running down the IPI queue. */ __arch_local_irq_restore(flags); } } /* * Cross-VPE interrupts in the SMTC prototype use "software interrupts" * set via cross-VPE MTTR manipulation of the Cause register. It would be * in some regards preferable to have external logic for "doorbell" hardware * interrupts. */ static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ; static irqreturn_t ipi_interrupt(int irq, void *dev_idm) { int my_vpe = cpu_data[smp_processor_id()].vpe_id; int my_tc = cpu_data[smp_processor_id()].tc_id; int cpu; struct smtc_ipi *pipi; unsigned long tcstatus; int sent; unsigned long flags; unsigned int mtflags; unsigned int vpflags; /* * So long as cross-VPE interrupts are done via * MFTR/MTTR read-modify-writes of Cause, we need * to stop other VPEs whenever the local VPE does * anything similar. */ local_irq_save(flags); vpflags = dvpe(); clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ); set_c0_status(0x100 << MIPS_CPU_IPI_IRQ); irq_enable_hazard(); evpe(vpflags); local_irq_restore(flags); /* * Cross-VPE Interrupt handler: Try to directly deliver IPIs * queued for TCs on this VPE other than the current one. * Return-from-interrupt should cause us to drain the queue * for the current TC, so we ought not to have to do it explicitly here. */ for_each_online_cpu(cpu) { if (cpu_data[cpu].vpe_id != my_vpe) continue; pipi = smtc_ipi_dq(&IPIQ[cpu]); if (pipi != NULL) { if (cpu_data[cpu].tc_id != my_tc) { sent = 0; LOCK_MT_PRA(); settc(cpu_data[cpu].tc_id); write_tc_c0_tchalt(TCHALT_H); mips_ihb(); tcstatus = read_tc_c0_tcstatus(); if ((tcstatus & TCSTATUS_IXMT) == 0) { post_direct_ipi(cpu, pipi); sent = 1; } write_tc_c0_tchalt(0); UNLOCK_MT_PRA(); if (!sent) { smtc_ipi_req(&IPIQ[cpu], pipi); } } else { /* * ipi_decode() should be called * with interrupts off */ local_irq_save(flags); if (pipi->type == LINUX_SMP_IPI && (int)pipi->arg == SMP_RESCHEDULE_YOURSELF) IPIQ[cpu].resched_flag = 0; ipi_decode(pipi); local_irq_restore(flags); } } } return IRQ_HANDLED; } static void ipi_irq_dispatch(void) { do_IRQ(cpu_ipi_irq); } static struct irqaction irq_ipi = { .handler = ipi_interrupt, .flags = IRQF_PERCPU, .name = "SMTC_IPI" }; static void setup_cross_vpe_interrupts(unsigned int nvpe) { if (nvpe < 1) return; if (!cpu_has_vint) panic("SMTC Kernel requires Vectored Interrupt support"); set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch); setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ)); irq_set_handler(cpu_ipi_irq, handle_percpu_irq); } /* * SMTC-specific hacks invoked from elsewhere in the kernel. */ /* * smtc_ipi_replay is called from raw_local_irq_restore */ void smtc_ipi_replay(void) { unsigned int cpu = smp_processor_id(); /* * To the extent that we've ever turned interrupts off, * we may have accumulated deferred IPIs. This is subtle. * we should be OK: If we pick up something and dispatch * it here, that's great. If we see nothing, but concurrent * with this operation, another TC sends us an IPI, IXMT * is clear, and we'll handle it as a real pseudo-interrupt * and not a pseudo-pseudo interrupt. The important thing * is to do the last check for queued message *after* the * re-enabling of interrupts. */ while (IPIQ[cpu].head != NULL) { struct smtc_ipi_q *q = &IPIQ[cpu]; struct smtc_ipi *pipi; unsigned long flags; /* * It's just possible we'll come in with interrupts * already enabled. */ local_irq_save(flags); spin_lock(&q->lock); pipi = __smtc_ipi_dq(q); spin_unlock(&q->lock); /* ** But use a raw restore here to avoid recursion. */ __arch_local_irq_restore(flags); if (pipi) { self_ipi(pipi); smtc_cpu_stats[cpu].selfipis++; } } } EXPORT_SYMBOL(smtc_ipi_replay); void smtc_idle_loop_hook(void) { #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG int im; int flags; int mtflags; int bit; int vpe; int tc; int hook_ntcs; /* * printk within DMT-protected regions can deadlock, * so buffer diagnostic messages for later output. */ char *pdb_msg; char id_ho_db_msg[768]; /* worst-case use should be less than 700 */ if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */ if (atomic_add_return(1, &idle_hook_initialized) == 1) { int mvpconf0; /* Tedious stuff to just do once */ mvpconf0 = read_c0_mvpconf0(); hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1; if (hook_ntcs > NR_CPUS) hook_ntcs = NR_CPUS; for (tc = 0; tc < hook_ntcs; tc++) { tcnoprog[tc] = 0; clock_hang_reported[tc] = 0; } for (vpe = 0; vpe < 2; vpe++) for (im = 0; im < 8; im++) imstuckcount[vpe][im] = 0; printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs); atomic_set(&idle_hook_initialized, 1000); } else { /* Someone else is initializing in parallel - let 'em finish */ while (atomic_read(&idle_hook_initialized) < 1000) ; } } /* Have we stupidly left IXMT set somewhere? */ if (read_c0_tcstatus() & 0x400) { write_c0_tcstatus(read_c0_tcstatus() & ~0x400); ehb(); printk("Dangling IXMT in cpu_idle()\n"); } /* Have we stupidly left an IM bit turned off? */ #define IM_LIMIT 2000 local_irq_save(flags); mtflags = dmt(); pdb_msg = &id_ho_db_msg[0]; im = read_c0_status(); vpe = current_cpu_data.vpe_id; for (bit = 0; bit < 8; bit++) { /* * In current prototype, I/O interrupts * are masked for VPE > 0 */ if (vpemask[vpe][bit]) { if (!(im & (0x100 << bit))) imstuckcount[vpe][bit]++; else imstuckcount[vpe][bit] = 0; if (imstuckcount[vpe][bit] > IM_LIMIT) { set_c0_status(0x100 << bit); ehb(); imstuckcount[vpe][bit] = 0; pdb_msg += sprintf(pdb_msg, "Dangling IM %d fixed for VPE %d\n", bit, vpe); } } } emt(mtflags); local_irq_restore(flags); if (pdb_msg != &id_ho_db_msg[0]) printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg); #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */ smtc_ipi_replay(); } void smtc_soft_dump(void) { int i; printk("Counter Interrupts taken per CPU (TC)\n"); for (i=0; i < NR_CPUS; i++) { printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints); } printk("Self-IPI invocations:\n"); for (i=0; i < NR_CPUS; i++) { printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis); } smtc_ipi_qdump(); printk("%d Recoveries of \"stolen\" FPU\n", atomic_read(&smtc_fpu_recoveries)); } /* * TLB management routines special to SMTC */ void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu) { unsigned long flags, mtflags, tcstat, prevhalt, asid; int tlb, i; /* * It would be nice to be able to use a spinlock here, * but this is invoked from within TLB flush routines * that protect themselves with DVPE, so if a lock is * held by another TC, it'll never be freed. * * DVPE/DMT must not be done with interrupts enabled, * so even so most callers will already have disabled * them, let's be really careful... */ local_irq_save(flags); if (smtc_status & SMTC_TLB_SHARED) { mtflags = dvpe(); tlb = 0; } else { mtflags = dmt(); tlb = cpu_data[cpu].vpe_id; } asid = asid_cache(cpu); do { if (!((asid += ASID_INC) & ASID_MASK) ) { if (cpu_has_vtag_icache) flush_icache_all(); /* Traverse all online CPUs (hack requires contiguous range) */ for_each_online_cpu(i) { /* * We don't need to worry about our own CPU, nor those of * CPUs who don't share our TLB. */ if ((i != smp_processor_id()) && ((smtc_status & SMTC_TLB_SHARED) || (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) { settc(cpu_data[i].tc_id); prevhalt = read_tc_c0_tchalt() & TCHALT_H; if (!prevhalt) { write_tc_c0_tchalt(TCHALT_H); mips_ihb(); } tcstat = read_tc_c0_tcstatus(); smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i); if (!prevhalt) write_tc_c0_tchalt(0); } } if (!asid) /* fix version if needed */ asid = ASID_FIRST_VERSION; local_flush_tlb_all(); /* start new asid cycle */ } } while (smtc_live_asid[tlb][(asid & ASID_MASK)]); /* * SMTC shares the TLB within VPEs and possibly across all VPEs. */ for_each_online_cpu(i) { if ((smtc_status & SMTC_TLB_SHARED) || (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id)) cpu_context(i, mm) = asid_cache(i) = asid; } if (smtc_status & SMTC_TLB_SHARED) evpe(mtflags); else emt(mtflags); local_irq_restore(flags); } /* * Invoked from macros defined in mmu_context.h * which must already have disabled interrupts * and done a DVPE or DMT as appropriate. */ void smtc_flush_tlb_asid(unsigned long asid) { int entry; unsigned long ehi; entry = read_c0_wired(); /* Traverse all non-wired entries */ while (entry < current_cpu_data.tlbsize) { write_c0_index(entry); ehb(); tlb_read(); ehb(); ehi = read_c0_entryhi(); if ((ehi & ASID_MASK) == asid) { /* * Invalidate only entries with specified ASID, * makiing sure all entries differ. */ write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1))); write_c0_entrylo0(0); write_c0_entrylo1(0); mtc0_tlbw_hazard(); tlb_write_indexed(); } entry++; } write_c0_index(PARKED_INDEX); tlbw_use_hazard(); } /* * Support for single-threading cache flush operations. */ static int halt_state_save[NR_CPUS]; /* * To really, really be sure that nothing is being done * by other TCs, halt them all. This code assumes that * a DVPE has already been done, so while their Halted * state is theoretically architecturally unstable, in * practice, it's not going to change while we're looking * at it. */ void smtc_cflush_lockdown(void) { int cpu; for_each_online_cpu(cpu) { if (cpu != smp_processor_id()) { settc(cpu_data[cpu].tc_id); halt_state_save[cpu] = read_tc_c0_tchalt(); write_tc_c0_tchalt(TCHALT_H); } } mips_ihb(); } /* It would be cheating to change the cpu_online states during a flush! */ void smtc_cflush_release(void) { int cpu; /* * Start with a hazard barrier to ensure * that all CACHE ops have played through. */ mips_ihb(); for_each_online_cpu(cpu) { if (cpu != smp_processor_id()) { settc(cpu_data[cpu].tc_id); write_tc_c0_tchalt(halt_state_save[cpu]); } } mips_ihb(); }