/* * Copyright (C) 2012,2013 - ARM Ltd * Author: Marc Zyngier <marc.zyngier@arm.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <linux/linkage.h> #include <linux/irqchip/arm-gic.h> #include <asm/assembler.h> #include <asm/memory.h> #include <asm/asm-offsets.h> #include <asm/fpsimdmacros.h> #include <asm/kvm.h> #include <asm/kvm_asm.h> #include <asm/kvm_arm.h> #include <asm/kvm_mmu.h> #define CPU_GP_REG_OFFSET(x) (CPU_GP_REGS + x) #define CPU_XREG_OFFSET(x) CPU_GP_REG_OFFSET(CPU_USER_PT_REGS + 8*x) #define CPU_SPSR_OFFSET(x) CPU_GP_REG_OFFSET(CPU_SPSR + 8*x) #define CPU_SYSREG_OFFSET(x) (CPU_SYSREGS + 8*x) .text .pushsection .hyp.text, "ax" .align PAGE_SHIFT __kvm_hyp_code_start: .globl __kvm_hyp_code_start .macro save_common_regs // x2: base address for cpu context // x3: tmp register add x3, x2, #CPU_XREG_OFFSET(19) stp x19, x20, [x3] stp x21, x22, [x3, #16] stp x23, x24, [x3, #32] stp x25, x26, [x3, #48] stp x27, x28, [x3, #64] stp x29, lr, [x3, #80] mrs x19, sp_el0 mrs x20, elr_el2 // EL1 PC mrs x21, spsr_el2 // EL1 pstate stp x19, x20, [x3, #96] str x21, [x3, #112] mrs x22, sp_el1 mrs x23, elr_el1 mrs x24, spsr_el1 str x22, [x2, #CPU_GP_REG_OFFSET(CPU_SP_EL1)] str x23, [x2, #CPU_GP_REG_OFFSET(CPU_ELR_EL1)] str x24, [x2, #CPU_SPSR_OFFSET(KVM_SPSR_EL1)] .endm .macro restore_common_regs // x2: base address for cpu context // x3: tmp register ldr x22, [x2, #CPU_GP_REG_OFFSET(CPU_SP_EL1)] ldr x23, [x2, #CPU_GP_REG_OFFSET(CPU_ELR_EL1)] ldr x24, [x2, #CPU_SPSR_OFFSET(KVM_SPSR_EL1)] msr sp_el1, x22 msr elr_el1, x23 msr spsr_el1, x24 add x3, x2, #CPU_XREG_OFFSET(31) // SP_EL0 ldp x19, x20, [x3] ldr x21, [x3, #16] msr sp_el0, x19 msr elr_el2, x20 // EL1 PC msr spsr_el2, x21 // EL1 pstate add x3, x2, #CPU_XREG_OFFSET(19) ldp x19, x20, [x3] ldp x21, x22, [x3, #16] ldp x23, x24, [x3, #32] ldp x25, x26, [x3, #48] ldp x27, x28, [x3, #64] ldp x29, lr, [x3, #80] .endm .macro save_host_regs save_common_regs .endm .macro restore_host_regs restore_common_regs .endm .macro save_fpsimd // x2: cpu context address // x3, x4: tmp regs add x3, x2, #CPU_GP_REG_OFFSET(CPU_FP_REGS) fpsimd_save x3, 4 .endm .macro restore_fpsimd // x2: cpu context address // x3, x4: tmp regs add x3, x2, #CPU_GP_REG_OFFSET(CPU_FP_REGS) fpsimd_restore x3, 4 .endm .macro save_guest_regs // x0 is the vcpu address // x1 is the return code, do not corrupt! // x2 is the cpu context // x3 is a tmp register // Guest's x0-x3 are on the stack // Compute base to save registers add x3, x2, #CPU_XREG_OFFSET(4) stp x4, x5, [x3] stp x6, x7, [x3, #16] stp x8, x9, [x3, #32] stp x10, x11, [x3, #48] stp x12, x13, [x3, #64] stp x14, x15, [x3, #80] stp x16, x17, [x3, #96] str x18, [x3, #112] pop x6, x7 // x2, x3 pop x4, x5 // x0, x1 add x3, x2, #CPU_XREG_OFFSET(0) stp x4, x5, [x3] stp x6, x7, [x3, #16] save_common_regs .endm .macro restore_guest_regs // x0 is the vcpu address. // x2 is the cpu context // x3 is a tmp register // Prepare x0-x3 for later restore add x3, x2, #CPU_XREG_OFFSET(0) ldp x4, x5, [x3] ldp x6, x7, [x3, #16] push x4, x5 // Push x0-x3 on the stack push x6, x7 // x4-x18 ldp x4, x5, [x3, #32] ldp x6, x7, [x3, #48] ldp x8, x9, [x3, #64] ldp x10, x11, [x3, #80] ldp x12, x13, [x3, #96] ldp x14, x15, [x3, #112] ldp x16, x17, [x3, #128] ldr x18, [x3, #144] // x19-x29, lr, sp*, elr*, spsr* restore_common_regs // Last bits of the 64bit state pop x2, x3 pop x0, x1 // Do not touch any register after this! .endm /* * Macros to perform system register save/restore. * * Ordering here is absolutely critical, and must be kept consistent * in {save,restore}_sysregs, {save,restore}_guest_32bit_state, * and in kvm_asm.h. * * In other words, don't touch any of these unless you know what * you are doing. */ .macro save_sysregs // x2: base address for cpu context // x3: tmp register add x3, x2, #CPU_SYSREG_OFFSET(MPIDR_EL1) mrs x4, vmpidr_el2 mrs x5, csselr_el1 mrs x6, sctlr_el1 mrs x7, actlr_el1 mrs x8, cpacr_el1 mrs x9, ttbr0_el1 mrs x10, ttbr1_el1 mrs x11, tcr_el1 mrs x12, esr_el1 mrs x13, afsr0_el1 mrs x14, afsr1_el1 mrs x15, far_el1 mrs x16, mair_el1 mrs x17, vbar_el1 mrs x18, contextidr_el1 mrs x19, tpidr_el0 mrs x20, tpidrro_el0 mrs x21, tpidr_el1 mrs x22, amair_el1 mrs x23, cntkctl_el1 mrs x24, par_el1 stp x4, x5, [x3] stp x6, x7, [x3, #16] stp x8, x9, [x3, #32] stp x10, x11, [x3, #48] stp x12, x13, [x3, #64] stp x14, x15, [x3, #80] stp x16, x17, [x3, #96] stp x18, x19, [x3, #112] stp x20, x21, [x3, #128] stp x22, x23, [x3, #144] str x24, [x3, #160] .endm .macro restore_sysregs // x2: base address for cpu context // x3: tmp register add x3, x2, #CPU_SYSREG_OFFSET(MPIDR_EL1) ldp x4, x5, [x3] ldp x6, x7, [x3, #16] ldp x8, x9, [x3, #32] ldp x10, x11, [x3, #48] ldp x12, x13, [x3, #64] ldp x14, x15, [x3, #80] ldp x16, x17, [x3, #96] ldp x18, x19, [x3, #112] ldp x20, x21, [x3, #128] ldp x22, x23, [x3, #144] ldr x24, [x3, #160] msr vmpidr_el2, x4 msr csselr_el1, x5 msr sctlr_el1, x6 msr actlr_el1, x7 msr cpacr_el1, x8 msr ttbr0_el1, x9 msr ttbr1_el1, x10 msr tcr_el1, x11 msr esr_el1, x12 msr afsr0_el1, x13 msr afsr1_el1, x14 msr far_el1, x15 msr mair_el1, x16 msr vbar_el1, x17 msr contextidr_el1, x18 msr tpidr_el0, x19 msr tpidrro_el0, x20 msr tpidr_el1, x21 msr amair_el1, x22 msr cntkctl_el1, x23 msr par_el1, x24 .endm .macro skip_32bit_state tmp, target // Skip 32bit state if not needed mrs \tmp, hcr_el2 tbnz \tmp, #HCR_RW_SHIFT, \target .endm .macro skip_tee_state tmp, target // Skip ThumbEE state if not needed mrs \tmp, id_pfr0_el1 tbz \tmp, #12, \target .endm .macro save_guest_32bit_state skip_32bit_state x3, 1f add x3, x2, #CPU_SPSR_OFFSET(KVM_SPSR_ABT) mrs x4, spsr_abt mrs x5, spsr_und mrs x6, spsr_irq mrs x7, spsr_fiq stp x4, x5, [x3] stp x6, x7, [x3, #16] add x3, x2, #CPU_SYSREG_OFFSET(DACR32_EL2) mrs x4, dacr32_el2 mrs x5, ifsr32_el2 mrs x6, fpexc32_el2 mrs x7, dbgvcr32_el2 stp x4, x5, [x3] stp x6, x7, [x3, #16] skip_tee_state x8, 1f add x3, x2, #CPU_SYSREG_OFFSET(TEECR32_EL1) mrs x4, teecr32_el1 mrs x5, teehbr32_el1 stp x4, x5, [x3] 1: .endm .macro restore_guest_32bit_state skip_32bit_state x3, 1f add x3, x2, #CPU_SPSR_OFFSET(KVM_SPSR_ABT) ldp x4, x5, [x3] ldp x6, x7, [x3, #16] msr spsr_abt, x4 msr spsr_und, x5 msr spsr_irq, x6 msr spsr_fiq, x7 add x3, x2, #CPU_SYSREG_OFFSET(DACR32_EL2) ldp x4, x5, [x3] ldp x6, x7, [x3, #16] msr dacr32_el2, x4 msr ifsr32_el2, x5 msr fpexc32_el2, x6 msr dbgvcr32_el2, x7 skip_tee_state x8, 1f add x3, x2, #CPU_SYSREG_OFFSET(TEECR32_EL1) ldp x4, x5, [x3] msr teecr32_el1, x4 msr teehbr32_el1, x5 1: .endm .macro activate_traps ldr x2, [x0, #VCPU_IRQ_LINES] ldr x1, [x0, #VCPU_HCR_EL2] orr x2, x2, x1 msr hcr_el2, x2 ldr x2, =(CPTR_EL2_TTA) msr cptr_el2, x2 ldr x2, =(1 << 15) // Trap CP15 Cr=15 msr hstr_el2, x2 mrs x2, mdcr_el2 and x2, x2, #MDCR_EL2_HPMN_MASK orr x2, x2, #(MDCR_EL2_TPM | MDCR_EL2_TPMCR) msr mdcr_el2, x2 .endm .macro deactivate_traps mov x2, #HCR_RW msr hcr_el2, x2 msr cptr_el2, xzr msr hstr_el2, xzr mrs x2, mdcr_el2 and x2, x2, #MDCR_EL2_HPMN_MASK msr mdcr_el2, x2 .endm .macro activate_vm ldr x1, [x0, #VCPU_KVM] kern_hyp_va x1 ldr x2, [x1, #KVM_VTTBR] msr vttbr_el2, x2 .endm .macro deactivate_vm msr vttbr_el2, xzr .endm /* * Save the VGIC CPU state into memory * x0: Register pointing to VCPU struct * Do not corrupt x1!!! */ .macro save_vgic_state /* Get VGIC VCTRL base into x2 */ ldr x2, [x0, #VCPU_KVM] kern_hyp_va x2 ldr x2, [x2, #KVM_VGIC_VCTRL] kern_hyp_va x2 cbz x2, 2f // disabled /* Compute the address of struct vgic_cpu */ add x3, x0, #VCPU_VGIC_CPU /* Save all interesting registers */ ldr w4, [x2, #GICH_HCR] ldr w5, [x2, #GICH_VMCR] ldr w6, [x2, #GICH_MISR] ldr w7, [x2, #GICH_EISR0] ldr w8, [x2, #GICH_EISR1] ldr w9, [x2, #GICH_ELRSR0] ldr w10, [x2, #GICH_ELRSR1] ldr w11, [x2, #GICH_APR] CPU_BE( rev w4, w4 ) CPU_BE( rev w5, w5 ) CPU_BE( rev w6, w6 ) CPU_BE( rev w7, w7 ) CPU_BE( rev w8, w8 ) CPU_BE( rev w9, w9 ) CPU_BE( rev w10, w10 ) CPU_BE( rev w11, w11 ) str w4, [x3, #VGIC_CPU_HCR] str w5, [x3, #VGIC_CPU_VMCR] str w6, [x3, #VGIC_CPU_MISR] str w7, [x3, #VGIC_CPU_EISR] str w8, [x3, #(VGIC_CPU_EISR + 4)] str w9, [x3, #VGIC_CPU_ELRSR] str w10, [x3, #(VGIC_CPU_ELRSR + 4)] str w11, [x3, #VGIC_CPU_APR] /* Clear GICH_HCR */ str wzr, [x2, #GICH_HCR] /* Save list registers */ add x2, x2, #GICH_LR0 ldr w4, [x3, #VGIC_CPU_NR_LR] add x3, x3, #VGIC_CPU_LR 1: ldr w5, [x2], #4 CPU_BE( rev w5, w5 ) str w5, [x3], #4 sub w4, w4, #1 cbnz w4, 1b 2: .endm /* * Restore the VGIC CPU state from memory * x0: Register pointing to VCPU struct */ .macro restore_vgic_state /* Get VGIC VCTRL base into x2 */ ldr x2, [x0, #VCPU_KVM] kern_hyp_va x2 ldr x2, [x2, #KVM_VGIC_VCTRL] kern_hyp_va x2 cbz x2, 2f // disabled /* Compute the address of struct vgic_cpu */ add x3, x0, #VCPU_VGIC_CPU /* We only restore a minimal set of registers */ ldr w4, [x3, #VGIC_CPU_HCR] ldr w5, [x3, #VGIC_CPU_VMCR] ldr w6, [x3, #VGIC_CPU_APR] CPU_BE( rev w4, w4 ) CPU_BE( rev w5, w5 ) CPU_BE( rev w6, w6 ) str w4, [x2, #GICH_HCR] str w5, [x2, #GICH_VMCR] str w6, [x2, #GICH_APR] /* Restore list registers */ add x2, x2, #GICH_LR0 ldr w4, [x3, #VGIC_CPU_NR_LR] add x3, x3, #VGIC_CPU_LR 1: ldr w5, [x3], #4 CPU_BE( rev w5, w5 ) str w5, [x2], #4 sub w4, w4, #1 cbnz w4, 1b 2: .endm .macro save_timer_state // x0: vcpu pointer ldr x2, [x0, #VCPU_KVM] kern_hyp_va x2 ldr w3, [x2, #KVM_TIMER_ENABLED] cbz w3, 1f mrs x3, cntv_ctl_el0 and x3, x3, #3 str w3, [x0, #VCPU_TIMER_CNTV_CTL] bic x3, x3, #1 // Clear Enable msr cntv_ctl_el0, x3 isb mrs x3, cntv_cval_el0 str x3, [x0, #VCPU_TIMER_CNTV_CVAL] 1: // Allow physical timer/counter access for the host mrs x2, cnthctl_el2 orr x2, x2, #3 msr cnthctl_el2, x2 // Clear cntvoff for the host msr cntvoff_el2, xzr .endm .macro restore_timer_state // x0: vcpu pointer // Disallow physical timer access for the guest // Physical counter access is allowed mrs x2, cnthctl_el2 orr x2, x2, #1 bic x2, x2, #2 msr cnthctl_el2, x2 ldr x2, [x0, #VCPU_KVM] kern_hyp_va x2 ldr w3, [x2, #KVM_TIMER_ENABLED] cbz w3, 1f ldr x3, [x2, #KVM_TIMER_CNTVOFF] msr cntvoff_el2, x3 ldr x2, [x0, #VCPU_TIMER_CNTV_CVAL] msr cntv_cval_el0, x2 isb ldr w2, [x0, #VCPU_TIMER_CNTV_CTL] and x2, x2, #3 msr cntv_ctl_el0, x2 1: .endm __save_sysregs: save_sysregs ret __restore_sysregs: restore_sysregs ret __save_fpsimd: save_fpsimd ret __restore_fpsimd: restore_fpsimd ret /* * u64 __kvm_vcpu_run(struct kvm_vcpu *vcpu); * * This is the world switch. The first half of the function * deals with entering the guest, and anything from __kvm_vcpu_return * to the end of the function deals with reentering the host. * On the enter path, only x0 (vcpu pointer) must be preserved until * the last moment. On the exit path, x0 (vcpu pointer) and x1 (exception * code) must both be preserved until the epilogue. * In both cases, x2 points to the CPU context we're saving/restoring from/to. */ ENTRY(__kvm_vcpu_run) kern_hyp_va x0 msr tpidr_el2, x0 // Save the vcpu register // Host context ldr x2, [x0, #VCPU_HOST_CONTEXT] kern_hyp_va x2 save_host_regs bl __save_fpsimd bl __save_sysregs activate_traps activate_vm restore_vgic_state restore_timer_state // Guest context add x2, x0, #VCPU_CONTEXT bl __restore_sysregs bl __restore_fpsimd restore_guest_32bit_state restore_guest_regs // That's it, no more messing around. eret __kvm_vcpu_return: // Assume x0 is the vcpu pointer, x1 the return code // Guest's x0-x3 are on the stack // Guest context add x2, x0, #VCPU_CONTEXT save_guest_regs bl __save_fpsimd bl __save_sysregs save_guest_32bit_state save_timer_state save_vgic_state deactivate_traps deactivate_vm // Host context ldr x2, [x0, #VCPU_HOST_CONTEXT] kern_hyp_va x2 bl __restore_sysregs bl __restore_fpsimd restore_host_regs mov x0, x1 ret END(__kvm_vcpu_run) // void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa); ENTRY(__kvm_tlb_flush_vmid_ipa) dsb ishst kern_hyp_va x0 ldr x2, [x0, #KVM_VTTBR] msr vttbr_el2, x2 isb /* * We could do so much better if we had the VA as well. * Instead, we invalidate Stage-2 for this IPA, and the * whole of Stage-1. Weep... */ tlbi ipas2e1is, x1 dsb sy tlbi vmalle1is dsb sy isb msr vttbr_el2, xzr ret ENDPROC(__kvm_tlb_flush_vmid_ipa) ENTRY(__kvm_flush_vm_context) dsb ishst tlbi alle1is ic ialluis dsb sy ret ENDPROC(__kvm_flush_vm_context) __kvm_hyp_panic: // Guess the context by looking at VTTBR: // If zero, then we're already a host. // Otherwise restore a minimal host context before panicing. mrs x0, vttbr_el2 cbz x0, 1f mrs x0, tpidr_el2 deactivate_traps deactivate_vm ldr x2, [x0, #VCPU_HOST_CONTEXT] kern_hyp_va x2 bl __restore_sysregs 1: adr x0, __hyp_panic_str adr x1, 2f ldp x2, x3, [x1] sub x0, x0, x2 add x0, x0, x3 mrs x1, spsr_el2 mrs x2, elr_el2 mrs x3, esr_el2 mrs x4, far_el2 mrs x5, hpfar_el2 mrs x6, par_el1 mrs x7, tpidr_el2 mov lr, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\ PSR_MODE_EL1h) msr spsr_el2, lr ldr lr, =panic msr elr_el2, lr eret .align 3 2: .quad HYP_PAGE_OFFSET .quad PAGE_OFFSET ENDPROC(__kvm_hyp_panic) __hyp_panic_str: .ascii "HYP panic:\nPS:%08x PC:%p ESR:%p\nFAR:%p HPFAR:%p PAR:%p\nVCPU:%p\n\0" .align 2 /* * u64 kvm_call_hyp(void *hypfn, ...); * * This is not really a variadic function in the classic C-way and care must * be taken when calling this to ensure parameters are passed in registers * only, since the stack will change between the caller and the callee. * * Call the function with the first argument containing a pointer to the * function you wish to call in Hyp mode, and subsequent arguments will be * passed as x0, x1, and x2 (a maximum of 3 arguments in addition to the * function pointer can be passed). The function being called must be mapped * in Hyp mode (see init_hyp_mode in arch/arm/kvm/arm.c). Return values are * passed in r0 and r1. * * A function pointer with a value of 0 has a special meaning, and is * used to implement __hyp_get_vectors in the same way as in * arch/arm64/kernel/hyp_stub.S. */ ENTRY(kvm_call_hyp) hvc #0 ret ENDPROC(kvm_call_hyp) .macro invalid_vector label, target .align 2 \label: b \target ENDPROC(\label) .endm /* None of these should ever happen */ invalid_vector el2t_sync_invalid, __kvm_hyp_panic invalid_vector el2t_irq_invalid, __kvm_hyp_panic invalid_vector el2t_fiq_invalid, __kvm_hyp_panic invalid_vector el2t_error_invalid, __kvm_hyp_panic invalid_vector el2h_sync_invalid, __kvm_hyp_panic invalid_vector el2h_irq_invalid, __kvm_hyp_panic invalid_vector el2h_fiq_invalid, __kvm_hyp_panic invalid_vector el2h_error_invalid, __kvm_hyp_panic invalid_vector el1_sync_invalid, __kvm_hyp_panic invalid_vector el1_irq_invalid, __kvm_hyp_panic invalid_vector el1_fiq_invalid, __kvm_hyp_panic invalid_vector el1_error_invalid, __kvm_hyp_panic el1_sync: // Guest trapped into EL2 push x0, x1 push x2, x3 mrs x1, esr_el2 lsr x2, x1, #ESR_EL2_EC_SHIFT cmp x2, #ESR_EL2_EC_HVC64 b.ne el1_trap mrs x3, vttbr_el2 // If vttbr is valid, the 64bit guest cbnz x3, el1_trap // called HVC /* Here, we're pretty sure the host called HVC. */ pop x2, x3 pop x0, x1 /* Check for __hyp_get_vectors */ cbnz x0, 1f mrs x0, vbar_el2 b 2f 1: push lr, xzr /* * Compute the function address in EL2, and shuffle the parameters. */ kern_hyp_va x0 mov lr, x0 mov x0, x1 mov x1, x2 mov x2, x3 blr lr pop lr, xzr 2: eret el1_trap: /* * x1: ESR * x2: ESR_EC */ cmp x2, #ESR_EL2_EC_DABT mov x0, #ESR_EL2_EC_IABT ccmp x2, x0, #4, ne b.ne 1f // Not an abort we care about /* This is an abort. Check for permission fault */ and x2, x1, #ESR_EL2_FSC_TYPE cmp x2, #FSC_PERM b.ne 1f // Not a permission fault /* * Check for Stage-1 page table walk, which is guaranteed * to give a valid HPFAR_EL2. */ tbnz x1, #7, 1f // S1PTW is set /* Preserve PAR_EL1 */ mrs x3, par_el1 push x3, xzr /* * Permission fault, HPFAR_EL2 is invalid. * Resolve the IPA the hard way using the guest VA. * Stage-1 translation already validated the memory access rights. * As such, we can use the EL1 translation regime, and don't have * to distinguish between EL0 and EL1 access. */ mrs x2, far_el2 at s1e1r, x2 isb /* Read result */ mrs x3, par_el1 pop x0, xzr // Restore PAR_EL1 from the stack msr par_el1, x0 tbnz x3, #0, 3f // Bail out if we failed the translation ubfx x3, x3, #12, #36 // Extract IPA lsl x3, x3, #4 // and present it like HPFAR b 2f 1: mrs x3, hpfar_el2 mrs x2, far_el2 2: mrs x0, tpidr_el2 str x1, [x0, #VCPU_ESR_EL2] str x2, [x0, #VCPU_FAR_EL2] str x3, [x0, #VCPU_HPFAR_EL2] mov x1, #ARM_EXCEPTION_TRAP b __kvm_vcpu_return /* * Translation failed. Just return to the guest and * let it fault again. Another CPU is probably playing * behind our back. */ 3: pop x2, x3 pop x0, x1 eret el1_irq: push x0, x1 push x2, x3 mrs x0, tpidr_el2 mov x1, #ARM_EXCEPTION_IRQ b __kvm_vcpu_return .ltorg .align 11 ENTRY(__kvm_hyp_vector) ventry el2t_sync_invalid // Synchronous EL2t ventry el2t_irq_invalid // IRQ EL2t ventry el2t_fiq_invalid // FIQ EL2t ventry el2t_error_invalid // Error EL2t ventry el2h_sync_invalid // Synchronous EL2h ventry el2h_irq_invalid // IRQ EL2h ventry el2h_fiq_invalid // FIQ EL2h ventry el2h_error_invalid // Error EL2h ventry el1_sync // Synchronous 64-bit EL1 ventry el1_irq // IRQ 64-bit EL1 ventry el1_fiq_invalid // FIQ 64-bit EL1 ventry el1_error_invalid // Error 64-bit EL1 ventry el1_sync // Synchronous 32-bit EL1 ventry el1_irq // IRQ 32-bit EL1 ventry el1_fiq_invalid // FIQ 32-bit EL1 ventry el1_error_invalid // Error 32-bit EL1 ENDPROC(__kvm_hyp_vector) __kvm_hyp_code_end: .globl __kvm_hyp_code_end .popsection