/* * arch/arm/mach-vexpress/tc2_pm.c - TC2 power management support * * Created by: Nicolas Pitre, October 2012 * Copyright: (C) 2012-2013 Linaro Limited * * Some portions of this file were originally written by Achin Gupta * Copyright: (C) 2012 ARM Limited * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/delay.h> #include <linux/init.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/spinlock.h> #include <linux/errno.h> #include <linux/irqchip/arm-gic.h> #include <asm/mcpm.h> #include <asm/proc-fns.h> #include <asm/cacheflush.h> #include <asm/cputype.h> #include <asm/cp15.h> #include <linux/arm-cci.h> #include "spc.h" /* SCC conf registers */ #define RESET_CTRL 0x018 #define RESET_A15_NCORERESET(cpu) (1 << (2 + (cpu))) #define RESET_A7_NCORERESET(cpu) (1 << (16 + (cpu))) #define A15_CONF 0x400 #define A7_CONF 0x500 #define SYS_INFO 0x700 #define SPC_BASE 0xb00 static void __iomem *scc; /* * We can't use regular spinlocks. In the switcher case, it is possible * for an outbound CPU to call power_down() after its inbound counterpart * is already live using the same logical CPU number which trips lockdep * debugging. */ static arch_spinlock_t tc2_pm_lock = __ARCH_SPIN_LOCK_UNLOCKED; #define TC2_CLUSTERS 2 #define TC2_MAX_CPUS_PER_CLUSTER 3 static unsigned int tc2_nr_cpus[TC2_CLUSTERS]; /* Keep per-cpu usage count to cope with unordered up/down requests */ static int tc2_pm_use_count[TC2_MAX_CPUS_PER_CLUSTER][TC2_CLUSTERS]; #define tc2_cluster_unused(cluster) \ (!tc2_pm_use_count[0][cluster] && \ !tc2_pm_use_count[1][cluster] && \ !tc2_pm_use_count[2][cluster]) static int tc2_pm_power_up(unsigned int cpu, unsigned int cluster) { pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); if (cluster >= TC2_CLUSTERS || cpu >= tc2_nr_cpus[cluster]) return -EINVAL; /* * Since this is called with IRQs enabled, and no arch_spin_lock_irq * variant exists, we need to disable IRQs manually here. */ local_irq_disable(); arch_spin_lock(&tc2_pm_lock); if (tc2_cluster_unused(cluster)) ve_spc_powerdown(cluster, false); tc2_pm_use_count[cpu][cluster]++; if (tc2_pm_use_count[cpu][cluster] == 1) { ve_spc_set_resume_addr(cluster, cpu, virt_to_phys(mcpm_entry_point)); ve_spc_cpu_wakeup_irq(cluster, cpu, true); } else if (tc2_pm_use_count[cpu][cluster] != 2) { /* * The only possible values are: * 0 = CPU down * 1 = CPU (still) up * 2 = CPU requested to be up before it had a chance * to actually make itself down. * Any other value is a bug. */ BUG(); } arch_spin_unlock(&tc2_pm_lock); local_irq_enable(); return 0; } static void tc2_pm_down(u64 residency) { unsigned int mpidr, cpu, cluster; bool last_man = false, skip_wfi = false; mpidr = read_cpuid_mpidr(); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER); __mcpm_cpu_going_down(cpu, cluster); arch_spin_lock(&tc2_pm_lock); BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP); tc2_pm_use_count[cpu][cluster]--; if (tc2_pm_use_count[cpu][cluster] == 0) { ve_spc_cpu_wakeup_irq(cluster, cpu, true); if (tc2_cluster_unused(cluster)) { ve_spc_powerdown(cluster, true); ve_spc_global_wakeup_irq(true); last_man = true; } } else if (tc2_pm_use_count[cpu][cluster] == 1) { /* * A power_up request went ahead of us. * Even if we do not want to shut this CPU down, * the caller expects a certain state as if the WFI * was aborted. So let's continue with cache cleaning. */ skip_wfi = true; } else BUG(); /* * If the CPU is committed to power down, make sure * the power controller will be in charge of waking it * up upon IRQ, ie IRQ lines are cut from GIC CPU IF * to the CPU by disabling the GIC CPU IF to prevent wfi * from completing execution behind power controller back */ if (!skip_wfi) gic_cpu_if_down(); if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) { arch_spin_unlock(&tc2_pm_lock); if (read_cpuid_part_number() == ARM_CPU_PART_CORTEX_A15) { /* * On the Cortex-A15 we need to disable * L2 prefetching before flushing the cache. */ asm volatile( "mcr p15, 1, %0, c15, c0, 3 \n\t" "isb \n\t" "dsb " : : "r" (0x400) ); } v7_exit_coherency_flush(all); cci_disable_port_by_cpu(mpidr); __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); } else { /* * If last man then undo any setup done previously. */ if (last_man) { ve_spc_powerdown(cluster, false); ve_spc_global_wakeup_irq(false); } arch_spin_unlock(&tc2_pm_lock); v7_exit_coherency_flush(louis); } __mcpm_cpu_down(cpu, cluster); /* Now we are prepared for power-down, do it: */ if (!skip_wfi) wfi(); /* Not dead at this point? Let our caller cope. */ } static void tc2_pm_power_down(void) { tc2_pm_down(0); } static int tc2_core_in_reset(unsigned int cpu, unsigned int cluster) { u32 mask = cluster ? RESET_A7_NCORERESET(cpu) : RESET_A15_NCORERESET(cpu); return !(readl_relaxed(scc + RESET_CTRL) & mask); } #define POLL_MSEC 10 #define TIMEOUT_MSEC 1000 static int tc2_pm_power_down_finish(unsigned int cpu, unsigned int cluster) { unsigned tries; pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER); for (tries = 0; tries < TIMEOUT_MSEC / POLL_MSEC; ++tries) { /* * Only examine the hardware state if the target CPU has * caught up at least as far as tc2_pm_down(): */ if (ACCESS_ONCE(tc2_pm_use_count[cpu][cluster]) == 0) { pr_debug("%s(cpu=%u, cluster=%u): RESET_CTRL = 0x%08X\n", __func__, cpu, cluster, readl_relaxed(scc + RESET_CTRL)); /* * We need the CPU to reach WFI, but the power * controller may put the cluster in reset and * power it off as soon as that happens, before * we have a chance to see STANDBYWFI. * * So we need to check for both conditions: */ if (tc2_core_in_reset(cpu, cluster) || ve_spc_cpu_in_wfi(cpu, cluster)) return 0; /* success: the CPU is halted */ } /* Otherwise, wait and retry: */ msleep(POLL_MSEC); } return -ETIMEDOUT; /* timeout */ } static void tc2_pm_suspend(u64 residency) { unsigned int mpidr, cpu, cluster; mpidr = read_cpuid_mpidr(); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); ve_spc_set_resume_addr(cluster, cpu, virt_to_phys(mcpm_entry_point)); tc2_pm_down(residency); } static void tc2_pm_powered_up(void) { unsigned int mpidr, cpu, cluster; unsigned long flags; mpidr = read_cpuid_mpidr(); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER); local_irq_save(flags); arch_spin_lock(&tc2_pm_lock); if (tc2_cluster_unused(cluster)) { ve_spc_powerdown(cluster, false); ve_spc_global_wakeup_irq(false); } if (!tc2_pm_use_count[cpu][cluster]) tc2_pm_use_count[cpu][cluster] = 1; ve_spc_cpu_wakeup_irq(cluster, cpu, false); ve_spc_set_resume_addr(cluster, cpu, 0); arch_spin_unlock(&tc2_pm_lock); local_irq_restore(flags); } static const struct mcpm_platform_ops tc2_pm_power_ops = { .power_up = tc2_pm_power_up, .power_down = tc2_pm_power_down, .power_down_finish = tc2_pm_power_down_finish, .suspend = tc2_pm_suspend, .powered_up = tc2_pm_powered_up, }; static bool __init tc2_pm_usage_count_init(void) { unsigned int mpidr, cpu, cluster; mpidr = read_cpuid_mpidr(); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); if (cluster >= TC2_CLUSTERS || cpu >= tc2_nr_cpus[cluster]) { pr_err("%s: boot CPU is out of bound!\n", __func__); return false; } tc2_pm_use_count[cpu][cluster] = 1; return true; } /* * Enable cluster-level coherency, in preparation for turning on the MMU. */ static void __naked tc2_pm_power_up_setup(unsigned int affinity_level) { asm volatile (" \n" " cmp r0, #1 \n" " bxne lr \n" " b cci_enable_port_for_self "); } static int __init tc2_pm_init(void) { int ret, irq; u32 a15_cluster_id, a7_cluster_id, sys_info; struct device_node *np; /* * The power management-related features are hidden behind * SCC registers. We need to extract runtime information like * cluster ids and number of CPUs really available in clusters. */ np = of_find_compatible_node(NULL, NULL, "arm,vexpress-scc,v2p-ca15_a7"); scc = of_iomap(np, 0); if (!scc) return -ENODEV; a15_cluster_id = readl_relaxed(scc + A15_CONF) & 0xf; a7_cluster_id = readl_relaxed(scc + A7_CONF) & 0xf; if (a15_cluster_id >= TC2_CLUSTERS || a7_cluster_id >= TC2_CLUSTERS) return -EINVAL; sys_info = readl_relaxed(scc + SYS_INFO); tc2_nr_cpus[a15_cluster_id] = (sys_info >> 16) & 0xf; tc2_nr_cpus[a7_cluster_id] = (sys_info >> 20) & 0xf; irq = irq_of_parse_and_map(np, 0); /* * A subset of the SCC registers is also used to communicate * with the SPC (power controller). We need to be able to * drive it very early in the boot process to power up * processors, so we initialize the SPC driver here. */ ret = ve_spc_init(scc + SPC_BASE, a15_cluster_id, irq); if (ret) return ret; if (!cci_probed()) return -ENODEV; if (!tc2_pm_usage_count_init()) return -EINVAL; ret = mcpm_platform_register(&tc2_pm_power_ops); if (!ret) { mcpm_sync_init(tc2_pm_power_up_setup); pr_info("TC2 power management initialized\n"); } return ret; } early_initcall(tc2_pm_init);