/* * arch/arm/include/asm/pgalloc.h * * Copyright (C) 2000-2001 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef _ASMARM_PGALLOC_H #define _ASMARM_PGALLOC_H #include <linux/pagemap.h> #include <asm/domain.h> #include <asm/pgtable-hwdef.h> #include <asm/processor.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #define check_pgt_cache() do { } while (0) #ifdef CONFIG_MMU #define _PAGE_USER_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_USER)) #define _PAGE_KERNEL_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_KERNEL)) #ifdef CONFIG_ARM_LPAE static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) { return (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_REPEAT); } static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd) { BUG_ON((unsigned long)pmd & (PAGE_SIZE-1)); free_page((unsigned long)pmd); } static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) { set_pud(pud, __pud(__pa(pmd) | PMD_TYPE_TABLE)); } #else /* !CONFIG_ARM_LPAE */ /* * Since we have only two-level page tables, these are trivial */ #define pmd_alloc_one(mm,addr) ({ BUG(); ((pmd_t *)2); }) #define pmd_free(mm, pmd) do { } while (0) #define pud_populate(mm,pmd,pte) BUG() #endif /* CONFIG_ARM_LPAE */ extern pgd_t *pgd_alloc(struct mm_struct *mm); extern void pgd_free(struct mm_struct *mm, pgd_t *pgd); #define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO) static inline void clean_pte_table(pte_t *pte) { clean_dcache_area(pte + PTE_HWTABLE_PTRS, PTE_HWTABLE_SIZE); } /* * Allocate one PTE table. * * This actually allocates two hardware PTE tables, but we wrap this up * into one table thus: * * +------------+ * | Linux pt 0 | * +------------+ * | Linux pt 1 | * +------------+ * | h/w pt 0 | * +------------+ * | h/w pt 1 | * +------------+ */ static inline pte_t * pte_alloc_one_kernel(struct mm_struct *mm, unsigned long addr) { pte_t *pte; pte = (pte_t *)__get_free_page(PGALLOC_GFP); if (pte) clean_pte_table(pte); return pte; } static inline pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long addr) { struct page *pte; #ifdef CONFIG_HIGHPTE pte = alloc_pages(PGALLOC_GFP | __GFP_HIGHMEM, 0); #else pte = alloc_pages(PGALLOC_GFP, 0); #endif if (!pte) return NULL; if (!PageHighMem(pte)) clean_pte_table(page_address(pte)); if (!pgtable_page_ctor(pte)) { __free_page(pte); return NULL; } return pte; } /* * Free one PTE table. */ static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte) { if (pte) free_page((unsigned long)pte); } static inline void pte_free(struct mm_struct *mm, pgtable_t pte) { pgtable_page_dtor(pte); __free_page(pte); } static inline void __pmd_populate(pmd_t *pmdp, phys_addr_t pte, pmdval_t prot) { pmdval_t pmdval = (pte + PTE_HWTABLE_OFF) | prot; pmdp[0] = __pmd(pmdval); #ifndef CONFIG_ARM_LPAE pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t)); #endif flush_pmd_entry(pmdp); } /* * Populate the pmdp entry with a pointer to the pte. This pmd is part * of the mm address space. * * Ensure that we always set both PMD entries. */ static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmdp, pte_t *ptep) { /* * The pmd must be loaded with the physical address of the PTE table */ __pmd_populate(pmdp, __pa(ptep), _PAGE_KERNEL_TABLE); } static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, pgtable_t ptep) { __pmd_populate(pmdp, page_to_phys(ptep), _PAGE_USER_TABLE); } #define pmd_pgtable(pmd) pmd_page(pmd) #endif /* CONFIG_MMU */ #endif