/* * Copyright 1995, Russell King. * Various bits and pieces copyrights include: * Linus Torvalds (test_bit). * Big endian support: Copyright 2001, Nicolas Pitre * reworked by rmk. * * bit 0 is the LSB of an "unsigned long" quantity. * * Please note that the code in this file should never be included * from user space. Many of these are not implemented in assembler * since they would be too costly. Also, they require privileged * instructions (which are not available from user mode) to ensure * that they are atomic. */ #ifndef __ASM_ARM_BITOPS_H #define __ASM_ARM_BITOPS_H #ifdef __KERNEL__ #ifndef _LINUX_BITOPS_H #error only <linux/bitops.h> can be included directly #endif #include <linux/compiler.h> #include <linux/irqflags.h> #define smp_mb__before_clear_bit() smp_mb() #define smp_mb__after_clear_bit() smp_mb() /* * These functions are the basis of our bit ops. * * First, the atomic bitops. These use native endian. */ static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p) { unsigned long flags; unsigned long mask = 1UL << (bit & 31); p += bit >> 5; raw_local_irq_save(flags); *p |= mask; raw_local_irq_restore(flags); } static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p) { unsigned long flags; unsigned long mask = 1UL << (bit & 31); p += bit >> 5; raw_local_irq_save(flags); *p &= ~mask; raw_local_irq_restore(flags); } static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p) { unsigned long flags; unsigned long mask = 1UL << (bit & 31); p += bit >> 5; raw_local_irq_save(flags); *p ^= mask; raw_local_irq_restore(flags); } static inline int ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p) { unsigned long flags; unsigned int res; unsigned long mask = 1UL << (bit & 31); p += bit >> 5; raw_local_irq_save(flags); res = *p; *p = res | mask; raw_local_irq_restore(flags); return (res & mask) != 0; } static inline int ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p) { unsigned long flags; unsigned int res; unsigned long mask = 1UL << (bit & 31); p += bit >> 5; raw_local_irq_save(flags); res = *p; *p = res & ~mask; raw_local_irq_restore(flags); return (res & mask) != 0; } static inline int ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p) { unsigned long flags; unsigned int res; unsigned long mask = 1UL << (bit & 31); p += bit >> 5; raw_local_irq_save(flags); res = *p; *p = res ^ mask; raw_local_irq_restore(flags); return (res & mask) != 0; } #include <asm-generic/bitops/non-atomic.h> /* * A note about Endian-ness. * ------------------------- * * When the ARM is put into big endian mode via CR15, the processor * merely swaps the order of bytes within words, thus: * * ------------ physical data bus bits ----------- * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0 * little byte 3 byte 2 byte 1 byte 0 * big byte 0 byte 1 byte 2 byte 3 * * This means that reading a 32-bit word at address 0 returns the same * value irrespective of the endian mode bit. * * Peripheral devices should be connected with the data bus reversed in * "Big Endian" mode. ARM Application Note 61 is applicable, and is * available from http://www.arm.com/. * * The following assumes that the data bus connectivity for big endian * mode has been followed. * * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0. */ /* * Native endian assembly bitops. nr = 0 -> word 0 bit 0. */ extern void _set_bit(int nr, volatile unsigned long * p); extern void _clear_bit(int nr, volatile unsigned long * p); extern void _change_bit(int nr, volatile unsigned long * p); extern int _test_and_set_bit(int nr, volatile unsigned long * p); extern int _test_and_clear_bit(int nr, volatile unsigned long * p); extern int _test_and_change_bit(int nr, volatile unsigned long * p); /* * Little endian assembly bitops. nr = 0 -> byte 0 bit 0. */ extern int _find_first_zero_bit_le(const void * p, unsigned size); extern int _find_next_zero_bit_le(const void * p, int size, int offset); extern int _find_first_bit_le(const unsigned long *p, unsigned size); extern int _find_next_bit_le(const unsigned long *p, int size, int offset); /* * Big endian assembly bitops. nr = 0 -> byte 3 bit 0. */ extern int _find_first_zero_bit_be(const void * p, unsigned size); extern int _find_next_zero_bit_be(const void * p, int size, int offset); extern int _find_first_bit_be(const unsigned long *p, unsigned size); extern int _find_next_bit_be(const unsigned long *p, int size, int offset); #ifndef CONFIG_SMP /* * The __* form of bitops are non-atomic and may be reordered. */ #define ATOMIC_BITOP(name,nr,p) \ (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p)) #else #define ATOMIC_BITOP(name,nr,p) _##name(nr,p) #endif /* * Native endian atomic definitions. */ #define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p) #define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p) #define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p) #define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p) #define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p) #define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p) #ifndef __ARMEB__ /* * These are the little endian, atomic definitions. */ #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz) #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off) #define find_first_bit(p,sz) _find_first_bit_le(p,sz) #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off) #else /* * These are the big endian, atomic definitions. */ #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz) #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off) #define find_first_bit(p,sz) _find_first_bit_be(p,sz) #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off) #endif #if __LINUX_ARM_ARCH__ < 5 #include <asm-generic/bitops/ffz.h> #include <asm-generic/bitops/__fls.h> #include <asm-generic/bitops/__ffs.h> #include <asm-generic/bitops/fls.h> #include <asm-generic/bitops/ffs.h> #else static inline int constant_fls(int x) { int r = 32; if (!x) return 0; if (!(x & 0xffff0000u)) { x <<= 16; r -= 16; } if (!(x & 0xff000000u)) { x <<= 8; r -= 8; } if (!(x & 0xf0000000u)) { x <<= 4; r -= 4; } if (!(x & 0xc0000000u)) { x <<= 2; r -= 2; } if (!(x & 0x80000000u)) { x <<= 1; r -= 1; } return r; } /* * On ARMv5 and above those functions can be implemented around the * clz instruction for much better code efficiency. __clz returns * the number of leading zeros, zero input will return 32, and * 0x80000000 will return 0. */ static inline unsigned int __clz(unsigned int x) { unsigned int ret; asm("clz\t%0, %1" : "=r" (ret) : "r" (x)); return ret; } /* * fls() returns zero if the input is zero, otherwise returns the bit * position of the last set bit, where the LSB is 1 and MSB is 32. */ static inline int fls(int x) { if (__builtin_constant_p(x)) return constant_fls(x); return 32 - __clz(x); } /* * __fls() returns the bit position of the last bit set, where the * LSB is 0 and MSB is 31. Zero input is undefined. */ static inline unsigned long __fls(unsigned long x) { return fls(x) - 1; } /* * ffs() returns zero if the input was zero, otherwise returns the bit * position of the first set bit, where the LSB is 1 and MSB is 32. */ static inline int ffs(int x) { return fls(x & -x); } /* * __ffs() returns the bit position of the first bit set, where the * LSB is 0 and MSB is 31. Zero input is undefined. */ static inline unsigned long __ffs(unsigned long x) { return ffs(x) - 1; } #define ffz(x) __ffs( ~(x) ) #endif #include <asm-generic/bitops/fls64.h> #include <asm-generic/bitops/sched.h> #include <asm-generic/bitops/hweight.h> #include <asm-generic/bitops/lock.h> #ifdef __ARMEB__ static inline int find_first_zero_bit_le(const void *p, unsigned size) { return _find_first_zero_bit_le(p, size); } #define find_first_zero_bit_le find_first_zero_bit_le static inline int find_next_zero_bit_le(const void *p, int size, int offset) { return _find_next_zero_bit_le(p, size, offset); } #define find_next_zero_bit_le find_next_zero_bit_le static inline int find_next_bit_le(const void *p, int size, int offset) { return _find_next_bit_le(p, size, offset); } #define find_next_bit_le find_next_bit_le #endif #include <asm-generic/bitops/le.h> /* * Ext2 is defined to use little-endian byte ordering. */ #include <asm-generic/bitops/ext2-atomic-setbit.h> #endif /* __KERNEL__ */ #endif /* _ARM_BITOPS_H */