- 根目录:
- drivers
- spi
- spi-topcliff-pch.c
/*
* SPI bus driver for the Topcliff PCH used by Intel SoCs
*
* Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/wait.h>
#include <linux/spi/spi.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/spi/spidev.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
#include <linux/pch_dma.h>
/* Register offsets */
#define PCH_SPCR 0x00 /* SPI control register */
#define PCH_SPBRR 0x04 /* SPI baud rate register */
#define PCH_SPSR 0x08 /* SPI status register */
#define PCH_SPDWR 0x0C /* SPI write data register */
#define PCH_SPDRR 0x10 /* SPI read data register */
#define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
#define PCH_SRST 0x1C /* SPI reset register */
#define PCH_ADDRESS_SIZE 0x20
#define PCH_SPSR_TFD 0x000007C0
#define PCH_SPSR_RFD 0x0000F800
#define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
#define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
#define PCH_RX_THOLD 7
#define PCH_RX_THOLD_MAX 15
#define PCH_TX_THOLD 2
#define PCH_MAX_BAUDRATE 5000000
#define PCH_MAX_FIFO_DEPTH 16
#define STATUS_RUNNING 1
#define STATUS_EXITING 2
#define PCH_SLEEP_TIME 10
#define SSN_LOW 0x02U
#define SSN_HIGH 0x03U
#define SSN_NO_CONTROL 0x00U
#define PCH_MAX_CS 0xFF
#define PCI_DEVICE_ID_GE_SPI 0x8816
#define SPCR_SPE_BIT (1 << 0)
#define SPCR_MSTR_BIT (1 << 1)
#define SPCR_LSBF_BIT (1 << 4)
#define SPCR_CPHA_BIT (1 << 5)
#define SPCR_CPOL_BIT (1 << 6)
#define SPCR_TFIE_BIT (1 << 8)
#define SPCR_RFIE_BIT (1 << 9)
#define SPCR_FIE_BIT (1 << 10)
#define SPCR_ORIE_BIT (1 << 11)
#define SPCR_MDFIE_BIT (1 << 12)
#define SPCR_FICLR_BIT (1 << 24)
#define SPSR_TFI_BIT (1 << 0)
#define SPSR_RFI_BIT (1 << 1)
#define SPSR_FI_BIT (1 << 2)
#define SPSR_ORF_BIT (1 << 3)
#define SPBRR_SIZE_BIT (1 << 10)
#define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
#define SPCR_RFIC_FIELD 20
#define SPCR_TFIC_FIELD 16
#define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
#define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
#define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
#define PCH_CLOCK_HZ 50000000
#define PCH_MAX_SPBR 1023
/* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
#define PCI_VENDOR_ID_ROHM 0x10DB
#define PCI_DEVICE_ID_ML7213_SPI 0x802c
#define PCI_DEVICE_ID_ML7223_SPI 0x800F
#define PCI_DEVICE_ID_ML7831_SPI 0x8816
/*
* Set the number of SPI instance max
* Intel EG20T PCH : 1ch
* LAPIS Semiconductor ML7213 IOH : 2ch
* LAPIS Semiconductor ML7223 IOH : 1ch
* LAPIS Semiconductor ML7831 IOH : 1ch
*/
#define PCH_SPI_MAX_DEV 2
#define PCH_BUF_SIZE 4096
#define PCH_DMA_TRANS_SIZE 12
static int use_dma = 1;
struct pch_spi_dma_ctrl {
struct dma_async_tx_descriptor *desc_tx;
struct dma_async_tx_descriptor *desc_rx;
struct pch_dma_slave param_tx;
struct pch_dma_slave param_rx;
struct dma_chan *chan_tx;
struct dma_chan *chan_rx;
struct scatterlist *sg_tx_p;
struct scatterlist *sg_rx_p;
struct scatterlist sg_tx;
struct scatterlist sg_rx;
int nent;
void *tx_buf_virt;
void *rx_buf_virt;
dma_addr_t tx_buf_dma;
dma_addr_t rx_buf_dma;
};
/**
* struct pch_spi_data - Holds the SPI channel specific details
* @io_remap_addr: The remapped PCI base address
* @master: Pointer to the SPI master structure
* @work: Reference to work queue handler
* @wk: Workqueue for carrying out execution of the
* requests
* @wait: Wait queue for waking up upon receiving an
* interrupt.
* @transfer_complete: Status of SPI Transfer
* @bcurrent_msg_processing: Status flag for message processing
* @lock: Lock for protecting this structure
* @queue: SPI Message queue
* @status: Status of the SPI driver
* @bpw_len: Length of data to be transferred in bits per
* word
* @transfer_active: Flag showing active transfer
* @tx_index: Transmit data count; for bookkeeping during
* transfer
* @rx_index: Receive data count; for bookkeeping during
* transfer
* @tx_buff: Buffer for data to be transmitted
* @rx_index: Buffer for Received data
* @n_curnt_chip: The chip number that this SPI driver currently
* operates on
* @current_chip: Reference to the current chip that this SPI
* driver currently operates on
* @current_msg: The current message that this SPI driver is
* handling
* @cur_trans: The current transfer that this SPI driver is
* handling
* @board_dat: Reference to the SPI device data structure
* @plat_dev: platform_device structure
* @ch: SPI channel number
* @irq_reg_sts: Status of IRQ registration
*/
struct pch_spi_data {
void __iomem *io_remap_addr;
unsigned long io_base_addr;
struct spi_master *master;
struct work_struct work;
struct workqueue_struct *wk;
wait_queue_head_t wait;
u8 transfer_complete;
u8 bcurrent_msg_processing;
spinlock_t lock;
struct list_head queue;
u8 status;
u32 bpw_len;
u8 transfer_active;
u32 tx_index;
u32 rx_index;
u16 *pkt_tx_buff;
u16 *pkt_rx_buff;
u8 n_curnt_chip;
struct spi_device *current_chip;
struct spi_message *current_msg;
struct spi_transfer *cur_trans;
struct pch_spi_board_data *board_dat;
struct platform_device *plat_dev;
int ch;
struct pch_spi_dma_ctrl dma;
int use_dma;
u8 irq_reg_sts;
int save_total_len;
};
/**
* struct pch_spi_board_data - Holds the SPI device specific details
* @pdev: Pointer to the PCI device
* @suspend_sts: Status of suspend
* @num: The number of SPI device instance
*/
struct pch_spi_board_data {
struct pci_dev *pdev;
u8 suspend_sts;
int num;
};
struct pch_pd_dev_save {
int num;
struct platform_device *pd_save[PCH_SPI_MAX_DEV];
struct pch_spi_board_data *board_dat;
};
static DEFINE_PCI_DEVICE_TABLE(pch_spi_pcidev_id) = {
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
{ }
};
/**
* pch_spi_writereg() - Performs register writes
* @master: Pointer to struct spi_master.
* @idx: Register offset.
* @val: Value to be written to register.
*/
static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
{
struct pch_spi_data *data = spi_master_get_devdata(master);
iowrite32(val, (data->io_remap_addr + idx));
}
/**
* pch_spi_readreg() - Performs register reads
* @master: Pointer to struct spi_master.
* @idx: Register offset.
*/
static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
{
struct pch_spi_data *data = spi_master_get_devdata(master);
return ioread32(data->io_remap_addr + idx);
}
static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
u32 set, u32 clr)
{
u32 tmp = pch_spi_readreg(master, idx);
tmp = (tmp & ~clr) | set;
pch_spi_writereg(master, idx, tmp);
}
static void pch_spi_set_master_mode(struct spi_master *master)
{
pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
}
/**
* pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
* @master: Pointer to struct spi_master.
*/
static void pch_spi_clear_fifo(struct spi_master *master)
{
pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
}
static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
void __iomem *io_remap_addr)
{
u32 n_read, tx_index, rx_index, bpw_len;
u16 *pkt_rx_buffer, *pkt_tx_buff;
int read_cnt;
u32 reg_spcr_val;
void __iomem *spsr;
void __iomem *spdrr;
void __iomem *spdwr;
spsr = io_remap_addr + PCH_SPSR;
iowrite32(reg_spsr_val, spsr);
if (data->transfer_active) {
rx_index = data->rx_index;
tx_index = data->tx_index;
bpw_len = data->bpw_len;
pkt_rx_buffer = data->pkt_rx_buff;
pkt_tx_buff = data->pkt_tx_buff;
spdrr = io_remap_addr + PCH_SPDRR;
spdwr = io_remap_addr + PCH_SPDWR;
n_read = PCH_READABLE(reg_spsr_val);
for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
pkt_rx_buffer[rx_index++] = ioread32(spdrr);
if (tx_index < bpw_len)
iowrite32(pkt_tx_buff[tx_index++], spdwr);
}
/* disable RFI if not needed */
if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
/* reset rx threshold */
reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
}
/* update counts */
data->tx_index = tx_index;
data->rx_index = rx_index;
/* if transfer complete interrupt */
if (reg_spsr_val & SPSR_FI_BIT) {
if ((tx_index == bpw_len) && (rx_index == tx_index)) {
/* disable interrupts */
pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
PCH_ALL);
/* transfer is completed;
inform pch_spi_process_messages */
data->transfer_complete = true;
data->transfer_active = false;
wake_up(&data->wait);
} else {
dev_err(&data->master->dev,
"%s : Transfer is not completed",
__func__);
}
}
}
}
/**
* pch_spi_handler() - Interrupt handler
* @irq: The interrupt number.
* @dev_id: Pointer to struct pch_spi_board_data.
*/
static irqreturn_t pch_spi_handler(int irq, void *dev_id)
{
u32 reg_spsr_val;
void __iomem *spsr;
void __iomem *io_remap_addr;
irqreturn_t ret = IRQ_NONE;
struct pch_spi_data *data = dev_id;
struct pch_spi_board_data *board_dat = data->board_dat;
if (board_dat->suspend_sts) {
dev_dbg(&board_dat->pdev->dev,
"%s returning due to suspend\n", __func__);
return IRQ_NONE;
}
io_remap_addr = data->io_remap_addr;
spsr = io_remap_addr + PCH_SPSR;
reg_spsr_val = ioread32(spsr);
if (reg_spsr_val & SPSR_ORF_BIT) {
dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
if (data->current_msg->complete != 0) {
data->transfer_complete = true;
data->current_msg->status = -EIO;
data->current_msg->complete(data->current_msg->context);
data->bcurrent_msg_processing = false;
data->current_msg = NULL;
data->cur_trans = NULL;
}
}
if (data->use_dma)
return IRQ_NONE;
/* Check if the interrupt is for SPI device */
if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
ret = IRQ_HANDLED;
}
dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
__func__, ret);
return ret;
}
/**
* pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
* @master: Pointer to struct spi_master.
* @speed_hz: Baud rate.
*/
static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
{
u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
/* if baud rate is less than we can support limit it */
if (n_spbr > PCH_MAX_SPBR)
n_spbr = PCH_MAX_SPBR;
pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
}
/**
* pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
* @master: Pointer to struct spi_master.
* @bits_per_word: Bits per word for SPI transfer.
*/
static void pch_spi_set_bits_per_word(struct spi_master *master,
u8 bits_per_word)
{
if (bits_per_word == 8)
pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
else
pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
}
/**
* pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
* @spi: Pointer to struct spi_device.
*/
static void pch_spi_setup_transfer(struct spi_device *spi)
{
u32 flags = 0;
dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
spi->max_speed_hz);
pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
/* set bits per word */
pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
if (!(spi->mode & SPI_LSB_FIRST))
flags |= SPCR_LSBF_BIT;
if (spi->mode & SPI_CPOL)
flags |= SPCR_CPOL_BIT;
if (spi->mode & SPI_CPHA)
flags |= SPCR_CPHA_BIT;
pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
(SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
/* Clear the FIFO by toggling FICLR to 1 and back to 0 */
pch_spi_clear_fifo(spi->master);
}
/**
* pch_spi_reset() - Clears SPI registers
* @master: Pointer to struct spi_master.
*/
static void pch_spi_reset(struct spi_master *master)
{
/* write 1 to reset SPI */
pch_spi_writereg(master, PCH_SRST, 0x1);
/* clear reset */
pch_spi_writereg(master, PCH_SRST, 0x0);
}
static int pch_spi_setup(struct spi_device *pspi)
{
/* check bits per word */
if (pspi->bits_per_word == 0) {
pspi->bits_per_word = 8;
dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
}
if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
return -EINVAL;
}
/* Check baud rate setting */
/* if baud rate of chip is greater than
max we can support,return error */
if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
pspi->max_speed_hz = PCH_MAX_BAUDRATE;
dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
(pspi->mode) & (SPI_CPOL | SPI_CPHA));
return 0;
}
static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
{
struct spi_transfer *transfer;
struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
int retval;
unsigned long flags;
/* validate spi message and baud rate */
if (unlikely(list_empty(&pmsg->transfers) == 1)) {
dev_err(&pspi->dev, "%s list empty\n", __func__);
retval = -EINVAL;
goto err_out;
}
if (unlikely(pspi->max_speed_hz == 0)) {
dev_err(&pspi->dev, "%s pch_spi_transfer maxspeed=%d\n",
__func__, pspi->max_speed_hz);
retval = -EINVAL;
goto err_out;
}
dev_dbg(&pspi->dev, "%s Transfer List not empty. "
"Transfer Speed is set.\n", __func__);
spin_lock_irqsave(&data->lock, flags);
/* validate Tx/Rx buffers and Transfer length */
list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
if (!transfer->tx_buf && !transfer->rx_buf) {
dev_err(&pspi->dev,
"%s Tx and Rx buffer NULL\n", __func__);
retval = -EINVAL;
goto err_return_spinlock;
}
if (!transfer->len) {
dev_err(&pspi->dev, "%s Transfer length invalid\n",
__func__);
retval = -EINVAL;
goto err_return_spinlock;
}
dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
" valid\n", __func__);
/* if baud rate has been specified validate the same */
if (transfer->speed_hz > PCH_MAX_BAUDRATE)
transfer->speed_hz = PCH_MAX_BAUDRATE;
/* if bits per word has been specified validate the same */
if (transfer->bits_per_word) {
if ((transfer->bits_per_word != 8)
&& (transfer->bits_per_word != 16)) {
retval = -EINVAL;
dev_err(&pspi->dev,
"%s Invalid bits per word\n", __func__);
goto err_return_spinlock;
}
}
}
spin_unlock_irqrestore(&data->lock, flags);
/* We won't process any messages if we have been asked to terminate */
if (data->status == STATUS_EXITING) {
dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
retval = -ESHUTDOWN;
goto err_out;
}
/* If suspended ,return -EINVAL */
if (data->board_dat->suspend_sts) {
dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
retval = -EINVAL;
goto err_out;
}
/* set status of message */
pmsg->actual_length = 0;
dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
pmsg->status = -EINPROGRESS;
spin_lock_irqsave(&data->lock, flags);
/* add message to queue */
list_add_tail(&pmsg->queue, &data->queue);
spin_unlock_irqrestore(&data->lock, flags);
dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
/* schedule work queue to run */
queue_work(data->wk, &data->work);
dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
retval = 0;
err_out:
dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
return retval;
err_return_spinlock:
dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
spin_unlock_irqrestore(&data->lock, flags);
return retval;
}
static inline void pch_spi_select_chip(struct pch_spi_data *data,
struct spi_device *pspi)
{
if (data->current_chip != NULL) {
if (pspi->chip_select != data->n_curnt_chip) {
dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
data->current_chip = NULL;
}
}
data->current_chip = pspi;
data->n_curnt_chip = data->current_chip->chip_select;
dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
pch_spi_setup_transfer(pspi);
}
static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
{
int size;
u32 n_writes;
int j;
struct spi_message *pmsg, *tmp;
const u8 *tx_buf;
const u16 *tx_sbuf;
/* set baud rate if needed */
if (data->cur_trans->speed_hz) {
dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
}
/* set bits per word if needed */
if (data->cur_trans->bits_per_word &&
(data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
pch_spi_set_bits_per_word(data->master,
data->cur_trans->bits_per_word);
*bpw = data->cur_trans->bits_per_word;
} else {
*bpw = data->current_msg->spi->bits_per_word;
}
/* reset Tx/Rx index */
data->tx_index = 0;
data->rx_index = 0;
data->bpw_len = data->cur_trans->len / (*bpw / 8);
/* find alloc size */
size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
if (data->pkt_tx_buff != NULL) {
data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
if (!data->pkt_rx_buff)
kfree(data->pkt_tx_buff);
}
if (!data->pkt_rx_buff) {
/* flush queue and set status of all transfers to -ENOMEM */
dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
pmsg->status = -ENOMEM;
if (pmsg->complete != 0)
pmsg->complete(pmsg->context);
/* delete from queue */
list_del_init(&pmsg->queue);
}
return;
}
/* copy Tx Data */
if (data->cur_trans->tx_buf != NULL) {
if (*bpw == 8) {
tx_buf = data->cur_trans->tx_buf;
for (j = 0; j < data->bpw_len; j++)
data->pkt_tx_buff[j] = *tx_buf++;
} else {
tx_sbuf = data->cur_trans->tx_buf;
for (j = 0; j < data->bpw_len; j++)
data->pkt_tx_buff[j] = *tx_sbuf++;
}
}
/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
n_writes = data->bpw_len;
if (n_writes > PCH_MAX_FIFO_DEPTH)
n_writes = PCH_MAX_FIFO_DEPTH;
dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
"0x2 to SSNXCR\n", __func__);
pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
for (j = 0; j < n_writes; j++)
pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
/* update tx_index */
data->tx_index = j;
/* reset transfer complete flag */
data->transfer_complete = false;
data->transfer_active = true;
}
static void pch_spi_nomore_transfer(struct pch_spi_data *data)
{
struct spi_message *pmsg, *tmp;
dev_dbg(&data->master->dev, "%s called\n", __func__);
/* Invoke complete callback
* [To the spi core..indicating end of transfer] */
data->current_msg->status = 0;
if (data->current_msg->complete != 0) {
dev_dbg(&data->master->dev,
"%s:Invoking callback of SPI core\n", __func__);
data->current_msg->complete(data->current_msg->context);
}
/* update status in global variable */
data->bcurrent_msg_processing = false;
dev_dbg(&data->master->dev,
"%s:data->bcurrent_msg_processing = false\n", __func__);
data->current_msg = NULL;
data->cur_trans = NULL;
/* check if we have items in list and not suspending
* return 1 if list empty */
if ((list_empty(&data->queue) == 0) &&
(!data->board_dat->suspend_sts) &&
(data->status != STATUS_EXITING)) {
/* We have some more work to do (either there is more tranint
* bpw;sfer requests in the current message or there are
*more messages)
*/
dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
queue_work(data->wk, &data->work);
} else if (data->board_dat->suspend_sts ||
data->status == STATUS_EXITING) {
dev_dbg(&data->master->dev,
"%s suspend/remove initiated, flushing queue\n",
__func__);
list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
pmsg->status = -EIO;
if (pmsg->complete)
pmsg->complete(pmsg->context);
/* delete from queue */
list_del_init(&pmsg->queue);
}
}
}
static void pch_spi_set_ir(struct pch_spi_data *data)
{
/* enable interrupts, set threshold, enable SPI */
if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
/* set receive threshold to PCH_RX_THOLD */
pch_spi_setclr_reg(data->master, PCH_SPCR,
PCH_RX_THOLD << SPCR_RFIC_FIELD |
SPCR_FIE_BIT | SPCR_RFIE_BIT |
SPCR_ORIE_BIT | SPCR_SPE_BIT,
MASK_RFIC_SPCR_BITS | PCH_ALL);
else
/* set receive threshold to maximum */
pch_spi_setclr_reg(data->master, PCH_SPCR,
PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
SPCR_FIE_BIT | SPCR_ORIE_BIT |
SPCR_SPE_BIT,
MASK_RFIC_SPCR_BITS | PCH_ALL);
/* Wait until the transfer completes; go to sleep after
initiating the transfer. */
dev_dbg(&data->master->dev,
"%s:waiting for transfer to get over\n", __func__);
wait_event_interruptible(data->wait, data->transfer_complete);
/* clear all interrupts */
pch_spi_writereg(data->master, PCH_SPSR,
pch_spi_readreg(data->master, PCH_SPSR));
/* Disable interrupts and SPI transfer */
pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
/* clear FIFO */
pch_spi_clear_fifo(data->master);
}
static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
{
int j;
u8 *rx_buf;
u16 *rx_sbuf;
/* copy Rx Data */
if (!data->cur_trans->rx_buf)
return;
if (bpw == 8) {
rx_buf = data->cur_trans->rx_buf;
for (j = 0; j < data->bpw_len; j++)
*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
} else {
rx_sbuf = data->cur_trans->rx_buf;
for (j = 0; j < data->bpw_len; j++)
*rx_sbuf++ = data->pkt_rx_buff[j];
}
}
static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
{
int j;
u8 *rx_buf;
u16 *rx_sbuf;
const u8 *rx_dma_buf;
const u16 *rx_dma_sbuf;
/* copy Rx Data */
if (!data->cur_trans->rx_buf)
return;
if (bpw == 8) {
rx_buf = data->cur_trans->rx_buf;
rx_dma_buf = data->dma.rx_buf_virt;
for (j = 0; j < data->bpw_len; j++)
*rx_buf++ = *rx_dma_buf++ & 0xFF;
data->cur_trans->rx_buf = rx_buf;
} else {
rx_sbuf = data->cur_trans->rx_buf;
rx_dma_sbuf = data->dma.rx_buf_virt;
for (j = 0; j < data->bpw_len; j++)
*rx_sbuf++ = *rx_dma_sbuf++;
data->cur_trans->rx_buf = rx_sbuf;
}
}
static int pch_spi_start_transfer(struct pch_spi_data *data)
{
struct pch_spi_dma_ctrl *dma;
unsigned long flags;
int rtn;
dma = &data->dma;
spin_lock_irqsave(&data->lock, flags);
/* disable interrupts, SPI set enable */
pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
spin_unlock_irqrestore(&data->lock, flags);
/* Wait until the transfer completes; go to sleep after
initiating the transfer. */
dev_dbg(&data->master->dev,
"%s:waiting for transfer to get over\n", __func__);
rtn = wait_event_interruptible_timeout(data->wait,
data->transfer_complete,
msecs_to_jiffies(2 * HZ));
if (!rtn)
dev_err(&data->master->dev,
"%s wait-event timeout\n", __func__);
dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
DMA_FROM_DEVICE);
dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
DMA_FROM_DEVICE);
memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
async_tx_ack(dma->desc_rx);
async_tx_ack(dma->desc_tx);
kfree(dma->sg_tx_p);
kfree(dma->sg_rx_p);
spin_lock_irqsave(&data->lock, flags);
/* clear fifo threshold, disable interrupts, disable SPI transfer */
pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
SPCR_SPE_BIT);
/* clear all interrupts */
pch_spi_writereg(data->master, PCH_SPSR,
pch_spi_readreg(data->master, PCH_SPSR));
/* clear FIFO */
pch_spi_clear_fifo(data->master);
spin_unlock_irqrestore(&data->lock, flags);
return rtn;
}
static void pch_dma_rx_complete(void *arg)
{
struct pch_spi_data *data = arg;
/* transfer is completed;inform pch_spi_process_messages_dma */
data->transfer_complete = true;
wake_up_interruptible(&data->wait);
}
static bool pch_spi_filter(struct dma_chan *chan, void *slave)
{
struct pch_dma_slave *param = slave;
if ((chan->chan_id == param->chan_id) &&
(param->dma_dev == chan->device->dev)) {
chan->private = param;
return true;
} else {
return false;
}
}
static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
{
dma_cap_mask_t mask;
struct dma_chan *chan;
struct pci_dev *dma_dev;
struct pch_dma_slave *param;
struct pch_spi_dma_ctrl *dma;
unsigned int width;
if (bpw == 8)
width = PCH_DMA_WIDTH_1_BYTE;
else
width = PCH_DMA_WIDTH_2_BYTES;
dma = &data->dma;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
/* Get DMA's dev information */
dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
PCI_DEVFN(12, 0));
/* Set Tx DMA */
param = &dma->param_tx;
param->dma_dev = &dma_dev->dev;
param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
param->tx_reg = data->io_base_addr + PCH_SPDWR;
param->width = width;
chan = dma_request_channel(mask, pch_spi_filter, param);
if (!chan) {
dev_err(&data->master->dev,
"ERROR: dma_request_channel FAILS(Tx)\n");
data->use_dma = 0;
return;
}
dma->chan_tx = chan;
/* Set Rx DMA */
param = &dma->param_rx;
param->dma_dev = &dma_dev->dev;
param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
param->rx_reg = data->io_base_addr + PCH_SPDRR;
param->width = width;
chan = dma_request_channel(mask, pch_spi_filter, param);
if (!chan) {
dev_err(&data->master->dev,
"ERROR: dma_request_channel FAILS(Rx)\n");
dma_release_channel(dma->chan_tx);
dma->chan_tx = NULL;
data->use_dma = 0;
return;
}
dma->chan_rx = chan;
}
static void pch_spi_release_dma(struct pch_spi_data *data)
{
struct pch_spi_dma_ctrl *dma;
dma = &data->dma;
if (dma->chan_tx) {
dma_release_channel(dma->chan_tx);
dma->chan_tx = NULL;
}
if (dma->chan_rx) {
dma_release_channel(dma->chan_rx);
dma->chan_rx = NULL;
}
return;
}
static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
{
const u8 *tx_buf;
const u16 *tx_sbuf;
u8 *tx_dma_buf;
u16 *tx_dma_sbuf;
struct scatterlist *sg;
struct dma_async_tx_descriptor *desc_tx;
struct dma_async_tx_descriptor *desc_rx;
int num;
int i;
int size;
int rem;
int head;
unsigned long flags;
struct pch_spi_dma_ctrl *dma;
dma = &data->dma;
/* set baud rate if needed */
if (data->cur_trans->speed_hz) {
dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
spin_lock_irqsave(&data->lock, flags);
pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
spin_unlock_irqrestore(&data->lock, flags);
}
/* set bits per word if needed */
if (data->cur_trans->bits_per_word &&
(data->current_msg->spi->bits_per_word !=
data->cur_trans->bits_per_word)) {
dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
spin_lock_irqsave(&data->lock, flags);
pch_spi_set_bits_per_word(data->master,
data->cur_trans->bits_per_word);
spin_unlock_irqrestore(&data->lock, flags);
*bpw = data->cur_trans->bits_per_word;
} else {
*bpw = data->current_msg->spi->bits_per_word;
}
data->bpw_len = data->cur_trans->len / (*bpw / 8);
if (data->bpw_len > PCH_BUF_SIZE) {
data->bpw_len = PCH_BUF_SIZE;
data->cur_trans->len -= PCH_BUF_SIZE;
}
/* copy Tx Data */
if (data->cur_trans->tx_buf != NULL) {
if (*bpw == 8) {
tx_buf = data->cur_trans->tx_buf;
tx_dma_buf = dma->tx_buf_virt;
for (i = 0; i < data->bpw_len; i++)
*tx_dma_buf++ = *tx_buf++;
} else {
tx_sbuf = data->cur_trans->tx_buf;
tx_dma_sbuf = dma->tx_buf_virt;
for (i = 0; i < data->bpw_len; i++)
*tx_dma_sbuf++ = *tx_sbuf++;
}
}
/* Calculate Rx parameter for DMA transmitting */
if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
} else {
num = data->bpw_len / PCH_DMA_TRANS_SIZE;
rem = PCH_DMA_TRANS_SIZE;
}
size = PCH_DMA_TRANS_SIZE;
} else {
num = 1;
size = data->bpw_len;
rem = data->bpw_len;
}
dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
__func__, num, size, rem);
spin_lock_irqsave(&data->lock, flags);
/* set receive fifo threshold and transmit fifo threshold */
pch_spi_setclr_reg(data->master, PCH_SPCR,
((size - 1) << SPCR_RFIC_FIELD) |
(PCH_TX_THOLD << SPCR_TFIC_FIELD),
MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
spin_unlock_irqrestore(&data->lock, flags);
/* RX */
dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
/* offset, length setting */
sg = dma->sg_rx_p;
for (i = 0; i < num; i++, sg++) {
if (i == (num - 2)) {
sg->offset = size * i;
sg->offset = sg->offset * (*bpw / 8);
sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
sg->offset);
sg_dma_len(sg) = rem;
} else if (i == (num - 1)) {
sg->offset = size * (i - 1) + rem;
sg->offset = sg->offset * (*bpw / 8);
sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
sg->offset);
sg_dma_len(sg) = size;
} else {
sg->offset = size * i;
sg->offset = sg->offset * (*bpw / 8);
sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
sg->offset);
sg_dma_len(sg) = size;
}
sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
}
sg = dma->sg_rx_p;
desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
num, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_rx) {
dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
__func__);
return;
}
dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
desc_rx->callback = pch_dma_rx_complete;
desc_rx->callback_param = data;
dma->nent = num;
dma->desc_rx = desc_rx;
/* Calculate Tx parameter for DMA transmitting */
if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
} else {
num = data->bpw_len / PCH_DMA_TRANS_SIZE;
rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
PCH_DMA_TRANS_SIZE - head;
}
size = PCH_DMA_TRANS_SIZE;
} else {
num = 1;
size = data->bpw_len;
rem = data->bpw_len;
head = 0;
}
dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
/* offset, length setting */
sg = dma->sg_tx_p;
for (i = 0; i < num; i++, sg++) {
if (i == 0) {
sg->offset = 0;
sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
sg->offset);
sg_dma_len(sg) = size + head;
} else if (i == (num - 1)) {
sg->offset = head + size * i;
sg->offset = sg->offset * (*bpw / 8);
sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
sg->offset);
sg_dma_len(sg) = rem;
} else {
sg->offset = head + size * i;
sg->offset = sg->offset * (*bpw / 8);
sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
sg->offset);
sg_dma_len(sg) = size;
}
sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
}
sg = dma->sg_tx_p;
desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
sg, num, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_tx) {
dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
__func__);
return;
}
dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
desc_tx->callback = NULL;
desc_tx->callback_param = data;
dma->nent = num;
dma->desc_tx = desc_tx;
dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
"0x2 to SSNXCR\n", __func__);
spin_lock_irqsave(&data->lock, flags);
pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
desc_rx->tx_submit(desc_rx);
desc_tx->tx_submit(desc_tx);
spin_unlock_irqrestore(&data->lock, flags);
/* reset transfer complete flag */
data->transfer_complete = false;
}
static void pch_spi_process_messages(struct work_struct *pwork)
{
struct spi_message *pmsg, *tmp;
struct pch_spi_data *data;
int bpw;
data = container_of(pwork, struct pch_spi_data, work);
dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
spin_lock(&data->lock);
/* check if suspend has been initiated;if yes flush queue */
if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
"flushing queue\n", __func__);
list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
pmsg->status = -EIO;
if (pmsg->complete != 0) {
spin_unlock(&data->lock);
pmsg->complete(pmsg->context);
spin_lock(&data->lock);
}
/* delete from queue */
list_del_init(&pmsg->queue);
}
spin_unlock(&data->lock);
return;
}
data->bcurrent_msg_processing = true;
dev_dbg(&data->master->dev,
"%s Set data->bcurrent_msg_processing= true\n", __func__);
/* Get the message from the queue and delete it from there. */
data->current_msg = list_entry(data->queue.next, struct spi_message,
queue);
list_del_init(&data->current_msg->queue);
data->current_msg->status = 0;
pch_spi_select_chip(data, data->current_msg->spi);
spin_unlock(&data->lock);
if (data->use_dma)
pch_spi_request_dma(data,
data->current_msg->spi->bits_per_word);
pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
do {
int cnt;
/* If we are already processing a message get the next
transfer structure from the message otherwise retrieve
the 1st transfer request from the message. */
spin_lock(&data->lock);
if (data->cur_trans == NULL) {
data->cur_trans =
list_entry(data->current_msg->transfers.next,
struct spi_transfer, transfer_list);
dev_dbg(&data->master->dev, "%s "
":Getting 1st transfer message\n", __func__);
} else {
data->cur_trans =
list_entry(data->cur_trans->transfer_list.next,
struct spi_transfer, transfer_list);
dev_dbg(&data->master->dev, "%s "
":Getting next transfer message\n", __func__);
}
spin_unlock(&data->lock);
if (!data->cur_trans->len)
goto out;
cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
data->save_total_len = data->cur_trans->len;
if (data->use_dma) {
int i;
char *save_rx_buf = data->cur_trans->rx_buf;
for (i = 0; i < cnt; i ++) {
pch_spi_handle_dma(data, &bpw);
if (!pch_spi_start_transfer(data)) {
data->transfer_complete = true;
data->current_msg->status = -EIO;
data->current_msg->complete
(data->current_msg->context);
data->bcurrent_msg_processing = false;
data->current_msg = NULL;
data->cur_trans = NULL;
goto out;
}
pch_spi_copy_rx_data_for_dma(data, bpw);
}
data->cur_trans->rx_buf = save_rx_buf;
} else {
pch_spi_set_tx(data, &bpw);
pch_spi_set_ir(data);
pch_spi_copy_rx_data(data, bpw);
kfree(data->pkt_rx_buff);
data->pkt_rx_buff = NULL;
kfree(data->pkt_tx_buff);
data->pkt_tx_buff = NULL;
}
/* increment message count */
data->cur_trans->len = data->save_total_len;
data->current_msg->actual_length += data->cur_trans->len;
dev_dbg(&data->master->dev,
"%s:data->current_msg->actual_length=%d\n",
__func__, data->current_msg->actual_length);
/* check for delay */
if (data->cur_trans->delay_usecs) {
dev_dbg(&data->master->dev, "%s:"
"delay in usec=%d\n", __func__,
data->cur_trans->delay_usecs);
udelay(data->cur_trans->delay_usecs);
}
spin_lock(&data->lock);
/* No more transfer in this message. */
if ((data->cur_trans->transfer_list.next) ==
&(data->current_msg->transfers)) {
pch_spi_nomore_transfer(data);
}
spin_unlock(&data->lock);
} while (data->cur_trans != NULL);
out:
pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
if (data->use_dma)
pch_spi_release_dma(data);
}
static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
struct pch_spi_data *data)
{
dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
/* free workqueue */
if (data->wk != NULL) {
destroy_workqueue(data->wk);
data->wk = NULL;
dev_dbg(&board_dat->pdev->dev,
"%s destroy_workqueue invoked successfully\n",
__func__);
}
}
static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
struct pch_spi_data *data)
{
int retval = 0;
dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
/* create workqueue */
data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
if (!data->wk) {
dev_err(&board_dat->pdev->dev,
"%s create_singlet hread_workqueue failed\n", __func__);
retval = -EBUSY;
goto err_return;
}
/* reset PCH SPI h/w */
pch_spi_reset(data->master);
dev_dbg(&board_dat->pdev->dev,
"%s pch_spi_reset invoked successfully\n", __func__);
dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
err_return:
if (retval != 0) {
dev_err(&board_dat->pdev->dev,
"%s FAIL:invoking pch_spi_free_resources\n", __func__);
pch_spi_free_resources(board_dat, data);
}
dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
return retval;
}
static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
struct pch_spi_data *data)
{
struct pch_spi_dma_ctrl *dma;
dma = &data->dma;
if (dma->tx_buf_dma)
dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
dma->tx_buf_virt, dma->tx_buf_dma);
if (dma->rx_buf_dma)
dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
dma->rx_buf_virt, dma->rx_buf_dma);
return;
}
static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
struct pch_spi_data *data)
{
struct pch_spi_dma_ctrl *dma;
dma = &data->dma;
/* Get Consistent memory for Tx DMA */
dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
/* Get Consistent memory for Rx DMA */
dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
}
static int pch_spi_pd_probe(struct platform_device *plat_dev)
{
int ret;
struct spi_master *master;
struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
struct pch_spi_data *data;
dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
master = spi_alloc_master(&board_dat->pdev->dev,
sizeof(struct pch_spi_data));
if (!master) {
dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
plat_dev->id);
return -ENOMEM;
}
data = spi_master_get_devdata(master);
data->master = master;
platform_set_drvdata(plat_dev, data);
/* baseaddress + address offset) */
data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
PCH_ADDRESS_SIZE * plat_dev->id;
data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
PCH_ADDRESS_SIZE * plat_dev->id;
if (!data->io_remap_addr) {
dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
ret = -ENOMEM;
goto err_pci_iomap;
}
dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
plat_dev->id, data->io_remap_addr);
/* initialize members of SPI master */
master->num_chipselect = PCH_MAX_CS;
master->setup = pch_spi_setup;
master->transfer = pch_spi_transfer;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
data->board_dat = board_dat;
data->plat_dev = plat_dev;
data->n_curnt_chip = 255;
data->status = STATUS_RUNNING;
data->ch = plat_dev->id;
data->use_dma = use_dma;
INIT_LIST_HEAD(&data->queue);
spin_lock_init(&data->lock);
INIT_WORK(&data->work, pch_spi_process_messages);
init_waitqueue_head(&data->wait);
ret = pch_spi_get_resources(board_dat, data);
if (ret) {
dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
goto err_spi_get_resources;
}
ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
IRQF_SHARED, KBUILD_MODNAME, data);
if (ret) {
dev_err(&plat_dev->dev,
"%s request_irq failed\n", __func__);
goto err_request_irq;
}
data->irq_reg_sts = true;
pch_spi_set_master_mode(master);
ret = spi_register_master(master);
if (ret != 0) {
dev_err(&plat_dev->dev,
"%s spi_register_master FAILED\n", __func__);
goto err_spi_register_master;
}
if (use_dma) {
dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
pch_alloc_dma_buf(board_dat, data);
}
return 0;
err_spi_register_master:
free_irq(board_dat->pdev->irq, data);
err_request_irq:
pch_spi_free_resources(board_dat, data);
err_spi_get_resources:
pci_iounmap(board_dat->pdev, data->io_remap_addr);
err_pci_iomap:
spi_master_put(master);
return ret;
}
static int pch_spi_pd_remove(struct platform_device *plat_dev)
{
struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
struct pch_spi_data *data = platform_get_drvdata(plat_dev);
int count;
unsigned long flags;
dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
__func__, plat_dev->id, board_dat->pdev->irq);
if (use_dma)
pch_free_dma_buf(board_dat, data);
/* check for any pending messages; no action is taken if the queue
* is still full; but at least we tried. Unload anyway */
count = 500;
spin_lock_irqsave(&data->lock, flags);
data->status = STATUS_EXITING;
while ((list_empty(&data->queue) == 0) && --count) {
dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
__func__);
spin_unlock_irqrestore(&data->lock, flags);
msleep(PCH_SLEEP_TIME);
spin_lock_irqsave(&data->lock, flags);
}
spin_unlock_irqrestore(&data->lock, flags);
pch_spi_free_resources(board_dat, data);
/* disable interrupts & free IRQ */
if (data->irq_reg_sts) {
/* disable interrupts */
pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
data->irq_reg_sts = false;
free_irq(board_dat->pdev->irq, data);
}
pci_iounmap(board_dat->pdev, data->io_remap_addr);
spi_unregister_master(data->master);
return 0;
}
#ifdef CONFIG_PM
static int pch_spi_pd_suspend(struct platform_device *pd_dev,
pm_message_t state)
{
u8 count;
struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
struct pch_spi_data *data = platform_get_drvdata(pd_dev);
dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
if (!board_dat) {
dev_err(&pd_dev->dev,
"%s pci_get_drvdata returned NULL\n", __func__);
return -EFAULT;
}
/* check if the current message is processed:
Only after thats done the transfer will be suspended */
count = 255;
while ((--count) > 0) {
if (!(data->bcurrent_msg_processing))
break;
msleep(PCH_SLEEP_TIME);
}
/* Free IRQ */
if (data->irq_reg_sts) {
/* disable all interrupts */
pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
pch_spi_reset(data->master);
free_irq(board_dat->pdev->irq, data);
data->irq_reg_sts = false;
dev_dbg(&pd_dev->dev,
"%s free_irq invoked successfully.\n", __func__);
}
return 0;
}
static int pch_spi_pd_resume(struct platform_device *pd_dev)
{
struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
struct pch_spi_data *data = platform_get_drvdata(pd_dev);
int retval;
if (!board_dat) {
dev_err(&pd_dev->dev,
"%s pci_get_drvdata returned NULL\n", __func__);
return -EFAULT;
}
if (!data->irq_reg_sts) {
/* register IRQ */
retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
IRQF_SHARED, KBUILD_MODNAME, data);
if (retval < 0) {
dev_err(&pd_dev->dev,
"%s request_irq failed\n", __func__);
return retval;
}
/* reset PCH SPI h/w */
pch_spi_reset(data->master);
pch_spi_set_master_mode(data->master);
data->irq_reg_sts = true;
}
return 0;
}
#else
#define pch_spi_pd_suspend NULL
#define pch_spi_pd_resume NULL
#endif
static struct platform_driver pch_spi_pd_driver = {
.driver = {
.name = "pch-spi",
.owner = THIS_MODULE,
},
.probe = pch_spi_pd_probe,
.remove = pch_spi_pd_remove,
.suspend = pch_spi_pd_suspend,
.resume = pch_spi_pd_resume
};
static int pch_spi_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct pch_spi_board_data *board_dat;
struct platform_device *pd_dev = NULL;
int retval;
int i;
struct pch_pd_dev_save *pd_dev_save;
pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
if (!pd_dev_save) {
dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
return -ENOMEM;
}
board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
if (!board_dat) {
dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
retval = -ENOMEM;
goto err_no_mem;
}
retval = pci_request_regions(pdev, KBUILD_MODNAME);
if (retval) {
dev_err(&pdev->dev, "%s request_region failed\n", __func__);
goto pci_request_regions;
}
board_dat->pdev = pdev;
board_dat->num = id->driver_data;
pd_dev_save->num = id->driver_data;
pd_dev_save->board_dat = board_dat;
retval = pci_enable_device(pdev);
if (retval) {
dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
goto pci_enable_device;
}
for (i = 0; i < board_dat->num; i++) {
pd_dev = platform_device_alloc("pch-spi", i);
if (!pd_dev) {
dev_err(&pdev->dev, "platform_device_alloc failed\n");
retval = -ENOMEM;
goto err_platform_device;
}
pd_dev_save->pd_save[i] = pd_dev;
pd_dev->dev.parent = &pdev->dev;
retval = platform_device_add_data(pd_dev, board_dat,
sizeof(*board_dat));
if (retval) {
dev_err(&pdev->dev,
"platform_device_add_data failed\n");
platform_device_put(pd_dev);
goto err_platform_device;
}
retval = platform_device_add(pd_dev);
if (retval) {
dev_err(&pdev->dev, "platform_device_add failed\n");
platform_device_put(pd_dev);
goto err_platform_device;
}
}
pci_set_drvdata(pdev, pd_dev_save);
return 0;
err_platform_device:
pci_disable_device(pdev);
pci_enable_device:
pci_release_regions(pdev);
pci_request_regions:
kfree(board_dat);
err_no_mem:
kfree(pd_dev_save);
return retval;
}
static void pch_spi_remove(struct pci_dev *pdev)
{
int i;
struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
for (i = 0; i < pd_dev_save->num; i++)
platform_device_unregister(pd_dev_save->pd_save[i]);
pci_disable_device(pdev);
pci_release_regions(pdev);
kfree(pd_dev_save->board_dat);
kfree(pd_dev_save);
}
#ifdef CONFIG_PM
static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
{
int retval;
struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
pd_dev_save->board_dat->suspend_sts = true;
/* save config space */
retval = pci_save_state(pdev);
if (retval == 0) {
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_disable_device(pdev);
pci_set_power_state(pdev, PCI_D3hot);
} else {
dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
}
return retval;
}
static int pch_spi_resume(struct pci_dev *pdev)
{
int retval;
struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
retval = pci_enable_device(pdev);
if (retval < 0) {
dev_err(&pdev->dev,
"%s pci_enable_device failed\n", __func__);
} else {
pci_enable_wake(pdev, PCI_D3hot, 0);
/* set suspend status to false */
pd_dev_save->board_dat->suspend_sts = false;
}
return retval;
}
#else
#define pch_spi_suspend NULL
#define pch_spi_resume NULL
#endif
static struct pci_driver pch_spi_pcidev_driver = {
.name = "pch_spi",
.id_table = pch_spi_pcidev_id,
.probe = pch_spi_probe,
.remove = pch_spi_remove,
.suspend = pch_spi_suspend,
.resume = pch_spi_resume,
};
static int __init pch_spi_init(void)
{
int ret;
ret = platform_driver_register(&pch_spi_pd_driver);
if (ret)
return ret;
ret = pci_register_driver(&pch_spi_pcidev_driver);
if (ret) {
platform_driver_unregister(&pch_spi_pd_driver);
return ret;
}
return 0;
}
module_init(pch_spi_init);
static void __exit pch_spi_exit(void)
{
pci_unregister_driver(&pch_spi_pcidev_driver);
platform_driver_unregister(&pch_spi_pd_driver);
}
module_exit(pch_spi_exit);
module_param(use_dma, int, 0644);
MODULE_PARM_DESC(use_dma,
"to use DMA for data transfers pass 1 else 0; default 1");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");