Kernel  |  3.10

下载     查看原文件
C++程序  |  676行  |  16.86 KB
/*
 * Marvell EBU clock core handling defined at reset
 *
 * Copyright (C) 2012 Marvell
 *
 * Gregory CLEMENT <gregory.clement@free-electrons.com>
 * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2.  This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/of_address.h>
#include <linux/io.h>
#include <linux/of.h>
#include "clk-core.h"

struct core_ratio {
	int id;
	const char *name;
};

struct core_clocks {
	u32 (*get_tclk_freq)(void __iomem *sar);
	u32 (*get_cpu_freq)(void __iomem *sar);
	void (*get_clk_ratio)(void __iomem *sar, int id, int *mult, int *div);
	const struct core_ratio *ratios;
	int num_ratios;
};

static struct clk_onecell_data clk_data;

static void __init mvebu_clk_core_setup(struct device_node *np,
				 struct core_clocks *coreclk)
{
	const char *tclk_name = "tclk";
	const char *cpuclk_name = "cpuclk";
	void __iomem *base;
	unsigned long rate;
	int n;

	base = of_iomap(np, 0);
	if (WARN_ON(!base))
		return;

	/*
	 * Allocate struct for TCLK, cpu clk, and core ratio clocks
	 */
	clk_data.clk_num = 2 + coreclk->num_ratios;
	clk_data.clks = kzalloc(clk_data.clk_num * sizeof(struct clk *),
				GFP_KERNEL);
	if (WARN_ON(!clk_data.clks))
		return;

	/*
	 * Register TCLK
	 */
	of_property_read_string_index(np, "clock-output-names", 0,
				      &tclk_name);
	rate = coreclk->get_tclk_freq(base);
	clk_data.clks[0] = clk_register_fixed_rate(NULL, tclk_name, NULL,
						   CLK_IS_ROOT, rate);
	WARN_ON(IS_ERR(clk_data.clks[0]));

	/*
	 * Register CPU clock
	 */
	of_property_read_string_index(np, "clock-output-names", 1,
				      &cpuclk_name);
	rate = coreclk->get_cpu_freq(base);
	clk_data.clks[1] = clk_register_fixed_rate(NULL, cpuclk_name, NULL,
						   CLK_IS_ROOT, rate);
	WARN_ON(IS_ERR(clk_data.clks[1]));

	/*
	 * Register fixed-factor clocks derived from CPU clock
	 */
	for (n = 0; n < coreclk->num_ratios; n++) {
		const char *rclk_name = coreclk->ratios[n].name;
		int mult, div;

		of_property_read_string_index(np, "clock-output-names",
					      2+n, &rclk_name);
		coreclk->get_clk_ratio(base, coreclk->ratios[n].id,
				       &mult, &div);
		clk_data.clks[2+n] = clk_register_fixed_factor(NULL, rclk_name,
				       cpuclk_name, 0, mult, div);
		WARN_ON(IS_ERR(clk_data.clks[2+n]));
	};

	/*
	 * SAR register isn't needed anymore
	 */
	iounmap(base);

	of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data);
}

#ifdef CONFIG_MACH_ARMADA_370_XP
/*
 * Armada 370/XP Sample At Reset is a 64 bit bitfiled split in two
 * register of 32 bits
 */

#define SARL				    0	/* Low part [0:31] */
#define	    SARL_AXP_PCLK_FREQ_OPT	    21
#define	    SARL_AXP_PCLK_FREQ_OPT_MASK	    0x7
#define	    SARL_A370_PCLK_FREQ_OPT	    11
#define	    SARL_A370_PCLK_FREQ_OPT_MASK    0xF
#define	    SARL_AXP_FAB_FREQ_OPT	    24
#define	    SARL_AXP_FAB_FREQ_OPT_MASK	    0xF
#define	    SARL_A370_FAB_FREQ_OPT	    15
#define	    SARL_A370_FAB_FREQ_OPT_MASK	    0x1F
#define	    SARL_A370_TCLK_FREQ_OPT	    20
#define	    SARL_A370_TCLK_FREQ_OPT_MASK    0x1
#define SARH				    4	/* High part [32:63] */
#define	    SARH_AXP_PCLK_FREQ_OPT	    (52-32)
#define	    SARH_AXP_PCLK_FREQ_OPT_MASK	    0x1
#define	    SARH_AXP_PCLK_FREQ_OPT_SHIFT    3
#define	    SARH_AXP_FAB_FREQ_OPT	    (51-32)
#define	    SARH_AXP_FAB_FREQ_OPT_MASK	    0x1
#define	    SARH_AXP_FAB_FREQ_OPT_SHIFT	    4

static const u32 __initconst armada_370_tclk_frequencies[] = {
	16600000,
	20000000,
};

static u32 __init armada_370_get_tclk_freq(void __iomem *sar)
{
	u8 tclk_freq_select = 0;

	tclk_freq_select = ((readl(sar) >> SARL_A370_TCLK_FREQ_OPT) &
			    SARL_A370_TCLK_FREQ_OPT_MASK);
	return armada_370_tclk_frequencies[tclk_freq_select];
}

static const u32 __initconst armada_370_cpu_frequencies[] = {
	400000000,
	533000000,
	667000000,
	800000000,
	1000000000,
	1067000000,
	1200000000,
};

static u32 __init armada_370_get_cpu_freq(void __iomem *sar)
{
	u32 cpu_freq;
	u8 cpu_freq_select = 0;

	cpu_freq_select = ((readl(sar) >> SARL_A370_PCLK_FREQ_OPT) &
			   SARL_A370_PCLK_FREQ_OPT_MASK);
	if (cpu_freq_select >= ARRAY_SIZE(armada_370_cpu_frequencies)) {
		pr_err("CPU freq select unsupported %d\n", cpu_freq_select);
		cpu_freq = 0;
	} else
		cpu_freq = armada_370_cpu_frequencies[cpu_freq_select];

	return cpu_freq;
}

enum { A370_XP_NBCLK, A370_XP_HCLK, A370_XP_DRAMCLK };

static const struct core_ratio __initconst armada_370_xp_core_ratios[] = {
	{ .id = A370_XP_NBCLK,	 .name = "nbclk" },
	{ .id = A370_XP_HCLK,	 .name = "hclk" },
	{ .id = A370_XP_DRAMCLK, .name = "dramclk" },
};

static const int __initconst armada_370_xp_nbclk_ratios[32][2] = {
	{0, 1}, {1, 2}, {2, 2}, {2, 2},
	{1, 2}, {1, 2}, {1, 1}, {2, 3},
	{0, 1}, {1, 2}, {2, 4}, {0, 1},
	{1, 2}, {0, 1}, {0, 1}, {2, 2},
	{0, 1}, {0, 1}, {0, 1}, {1, 1},
	{2, 3}, {0, 1}, {0, 1}, {0, 1},
	{0, 1}, {0, 1}, {0, 1}, {1, 1},
	{0, 1}, {0, 1}, {0, 1}, {0, 1},
};

static const int __initconst armada_370_xp_hclk_ratios[32][2] = {
	{0, 1}, {1, 2}, {2, 6}, {2, 3},
	{1, 3}, {1, 4}, {1, 2}, {2, 6},
	{0, 1}, {1, 6}, {2, 10}, {0, 1},
	{1, 4}, {0, 1}, {0, 1}, {2, 5},
	{0, 1}, {0, 1}, {0, 1}, {1, 2},
	{2, 6}, {0, 1}, {0, 1}, {0, 1},
	{0, 1}, {0, 1}, {0, 1}, {1, 1},
	{0, 1}, {0, 1}, {0, 1}, {0, 1},
};

static const int __initconst armada_370_xp_dramclk_ratios[32][2] = {
	{0, 1}, {1, 2}, {2, 3}, {2, 3},
	{1, 3}, {1, 2}, {1, 2}, {2, 6},
	{0, 1}, {1, 3}, {2, 5}, {0, 1},
	{1, 4}, {0, 1}, {0, 1}, {2, 5},
	{0, 1}, {0, 1}, {0, 1}, {1, 1},
	{2, 3}, {0, 1}, {0, 1}, {0, 1},
	{0, 1}, {0, 1}, {0, 1}, {1, 1},
	{0, 1}, {0, 1}, {0, 1}, {0, 1},
};

static void __init armada_370_xp_get_clk_ratio(u32 opt,
	void __iomem *sar, int id, int *mult, int *div)
{
	switch (id) {
	case A370_XP_NBCLK:
		*mult = armada_370_xp_nbclk_ratios[opt][0];
		*div = armada_370_xp_nbclk_ratios[opt][1];
		break;
	case A370_XP_HCLK:
		*mult = armada_370_xp_hclk_ratios[opt][0];
		*div = armada_370_xp_hclk_ratios[opt][1];
		break;
	case A370_XP_DRAMCLK:
		*mult = armada_370_xp_dramclk_ratios[opt][0];
		*div = armada_370_xp_dramclk_ratios[opt][1];
		break;
	}
}

static void __init armada_370_get_clk_ratio(
	void __iomem *sar, int id, int *mult, int *div)
{
	u32 opt = ((readl(sar) >> SARL_A370_FAB_FREQ_OPT) &
		SARL_A370_FAB_FREQ_OPT_MASK);

	armada_370_xp_get_clk_ratio(opt, sar, id, mult, div);
}


static const struct core_clocks armada_370_core_clocks = {
	.get_tclk_freq = armada_370_get_tclk_freq,
	.get_cpu_freq = armada_370_get_cpu_freq,
	.get_clk_ratio = armada_370_get_clk_ratio,
	.ratios = armada_370_xp_core_ratios,
	.num_ratios = ARRAY_SIZE(armada_370_xp_core_ratios),
};

static const u32 __initconst armada_xp_cpu_frequencies[] = {
	1000000000,
	1066000000,
	1200000000,
	1333000000,
	1500000000,
	1666000000,
	1800000000,
	2000000000,
	667000000,
	0,
	800000000,
	1600000000,
};

/* For Armada XP TCLK frequency is fix: 250MHz */
static u32 __init armada_xp_get_tclk_freq(void __iomem *sar)
{
	return 250 * 1000 * 1000;
}

static u32 __init armada_xp_get_cpu_freq(void __iomem *sar)
{
	u32 cpu_freq;
	u8 cpu_freq_select = 0;

	cpu_freq_select = ((readl(sar) >> SARL_AXP_PCLK_FREQ_OPT) &
			   SARL_AXP_PCLK_FREQ_OPT_MASK);
	/*
	 * The upper bit is not contiguous to the other ones and
	 * located in the high part of the SAR registers
	 */
	cpu_freq_select |= (((readl(sar+4) >> SARH_AXP_PCLK_FREQ_OPT) &
			     SARH_AXP_PCLK_FREQ_OPT_MASK)
			    << SARH_AXP_PCLK_FREQ_OPT_SHIFT);
	if (cpu_freq_select >= ARRAY_SIZE(armada_xp_cpu_frequencies)) {
		pr_err("CPU freq select unsupported: %d\n", cpu_freq_select);
		cpu_freq = 0;
	} else
		cpu_freq = armada_xp_cpu_frequencies[cpu_freq_select];

	return cpu_freq;
}

static void __init armada_xp_get_clk_ratio(
	void __iomem *sar, int id, int *mult, int *div)
{

	u32 opt = ((readl(sar) >> SARL_AXP_FAB_FREQ_OPT) &
	      SARL_AXP_FAB_FREQ_OPT_MASK);
	/*
	 * The upper bit is not contiguous to the other ones and
	 * located in the high part of the SAR registers
	 */
	opt |= (((readl(sar+4) >> SARH_AXP_FAB_FREQ_OPT) &
		SARH_AXP_FAB_FREQ_OPT_MASK)
	       << SARH_AXP_FAB_FREQ_OPT_SHIFT);

	armada_370_xp_get_clk_ratio(opt, sar, id, mult, div);
}

static const struct core_clocks armada_xp_core_clocks = {
	.get_tclk_freq = armada_xp_get_tclk_freq,
	.get_cpu_freq = armada_xp_get_cpu_freq,
	.get_clk_ratio = armada_xp_get_clk_ratio,
	.ratios = armada_370_xp_core_ratios,
	.num_ratios = ARRAY_SIZE(armada_370_xp_core_ratios),
};

#endif /* CONFIG_MACH_ARMADA_370_XP */

/*
 * Dove PLL sample-at-reset configuration
 *
 * SAR0[8:5]   : CPU frequency
 *		 5  = 1000 MHz
 *		 6  =  933 MHz
 *		 7  =  933 MHz
 *		 8  =  800 MHz
 *		 9  =  800 MHz
 *		 10 =  800 MHz
 *		 11 = 1067 MHz
 *		 12 =  667 MHz
 *		 13 =  533 MHz
 *		 14 =  400 MHz
 *		 15 =  333 MHz
 *		 others reserved.
 *
 * SAR0[11:9]  : CPU to L2 Clock divider ratio
 *		 0 = (1/1) * CPU
 *		 2 = (1/2) * CPU
 *		 4 = (1/3) * CPU
 *		 6 = (1/4) * CPU
 *		 others reserved.
 *
 * SAR0[15:12] : CPU to DDR DRAM Clock divider ratio
 *		 0  = (1/1) * CPU
 *		 2  = (1/2) * CPU
 *		 3  = (2/5) * CPU
 *		 4  = (1/3) * CPU
 *		 6  = (1/4) * CPU
 *		 8  = (1/5) * CPU
 *		 10 = (1/6) * CPU
 *		 12 = (1/7) * CPU
 *		 14 = (1/8) * CPU
 *		 15 = (1/10) * CPU
 *		 others reserved.
 *
 * SAR0[24:23] : TCLK frequency
 *		 0 = 166 MHz
 *		 1 = 125 MHz
 *		 others reserved.
 */
#ifdef CONFIG_ARCH_DOVE
#define SAR_DOVE_CPU_FREQ		5
#define SAR_DOVE_CPU_FREQ_MASK		0xf
#define SAR_DOVE_L2_RATIO		9
#define SAR_DOVE_L2_RATIO_MASK		0x7
#define SAR_DOVE_DDR_RATIO		12
#define SAR_DOVE_DDR_RATIO_MASK		0xf
#define SAR_DOVE_TCLK_FREQ		23
#define SAR_DOVE_TCLK_FREQ_MASK		0x3

static const u32 __initconst dove_tclk_frequencies[] = {
	166666667,
	125000000,
	0, 0
};

static u32 __init dove_get_tclk_freq(void __iomem *sar)
{
	u32 opt = (readl(sar) >> SAR_DOVE_TCLK_FREQ) &
		SAR_DOVE_TCLK_FREQ_MASK;
	return dove_tclk_frequencies[opt];
}

static const u32 __initconst dove_cpu_frequencies[] = {
	0, 0, 0, 0, 0,
	1000000000,
	933333333, 933333333,
	800000000, 800000000, 800000000,
	1066666667,
	666666667,
	533333333,
	400000000,
	333333333
};

static u32 __init dove_get_cpu_freq(void __iomem *sar)
{
	u32 opt = (readl(sar) >> SAR_DOVE_CPU_FREQ) &
		SAR_DOVE_CPU_FREQ_MASK;
	return dove_cpu_frequencies[opt];
}

enum { DOVE_CPU_TO_L2, DOVE_CPU_TO_DDR };

static const struct core_ratio __initconst dove_core_ratios[] = {
	{ .id = DOVE_CPU_TO_L2, .name = "l2clk", },
	{ .id = DOVE_CPU_TO_DDR, .name = "ddrclk", }
};

static const int __initconst dove_cpu_l2_ratios[8][2] = {
	{ 1, 1 }, { 0, 1 }, { 1, 2 }, { 0, 1 },
	{ 1, 3 }, { 0, 1 }, { 1, 4 }, { 0, 1 }
};

static const int __initconst dove_cpu_ddr_ratios[16][2] = {
	{ 1, 1 }, { 0, 1 }, { 1, 2 }, { 2, 5 },
	{ 1, 3 }, { 0, 1 }, { 1, 4 }, { 0, 1 },
	{ 1, 5 }, { 0, 1 }, { 1, 6 }, { 0, 1 },
	{ 1, 7 }, { 0, 1 }, { 1, 8 }, { 1, 10 }
};

static void __init dove_get_clk_ratio(
	void __iomem *sar, int id, int *mult, int *div)
{
	switch (id) {
	case DOVE_CPU_TO_L2:
	{
		u32 opt = (readl(sar) >> SAR_DOVE_L2_RATIO) &
			SAR_DOVE_L2_RATIO_MASK;
		*mult = dove_cpu_l2_ratios[opt][0];
		*div = dove_cpu_l2_ratios[opt][1];
		break;
	}
	case DOVE_CPU_TO_DDR:
	{
		u32 opt = (readl(sar) >> SAR_DOVE_DDR_RATIO) &
			SAR_DOVE_DDR_RATIO_MASK;
		*mult = dove_cpu_ddr_ratios[opt][0];
		*div = dove_cpu_ddr_ratios[opt][1];
		break;
	}
	}
}

static const struct core_clocks dove_core_clocks = {
	.get_tclk_freq = dove_get_tclk_freq,
	.get_cpu_freq = dove_get_cpu_freq,
	.get_clk_ratio = dove_get_clk_ratio,
	.ratios = dove_core_ratios,
	.num_ratios = ARRAY_SIZE(dove_core_ratios),
};
#endif /* CONFIG_ARCH_DOVE */

/*
 * Kirkwood PLL sample-at-reset configuration
 * (6180 has different SAR layout than other Kirkwood SoCs)
 *
 * SAR0[4:3,22,1] : CPU frequency (6281,6292,6282)
 *	4  =  600 MHz
 *	6  =  800 MHz
 *	7  = 1000 MHz
 *	9  = 1200 MHz
 *	12 = 1500 MHz
 *	13 = 1600 MHz
 *	14 = 1800 MHz
 *	15 = 2000 MHz
 *	others reserved.
 *
 * SAR0[19,10:9] : CPU to L2 Clock divider ratio (6281,6292,6282)
 *	1 = (1/2) * CPU
 *	3 = (1/3) * CPU
 *	5 = (1/4) * CPU
 *	others reserved.
 *
 * SAR0[8:5] : CPU to DDR DRAM Clock divider ratio (6281,6292,6282)
 *	2 = (1/2) * CPU
 *	4 = (1/3) * CPU
 *	6 = (1/4) * CPU
 *	7 = (2/9) * CPU
 *	8 = (1/5) * CPU
 *	9 = (1/6) * CPU
 *	others reserved.
 *
 * SAR0[4:2] : Kirkwood 6180 cpu/l2/ddr clock configuration (6180 only)
 *	5 = [CPU =  600 MHz, L2 = (1/2) * CPU, DDR = 200 MHz = (1/3) * CPU]
 *	6 = [CPU =  800 MHz, L2 = (1/2) * CPU, DDR = 200 MHz = (1/4) * CPU]
 *	7 = [CPU = 1000 MHz, L2 = (1/2) * CPU, DDR = 200 MHz = (1/5) * CPU]
 *	others reserved.
 *
 * SAR0[21] : TCLK frequency
 *	0 = 200 MHz
 *	1 = 166 MHz
 *	others reserved.
 */
#ifdef CONFIG_ARCH_KIRKWOOD
#define SAR_KIRKWOOD_CPU_FREQ(x)	\
	(((x & (1 <<  1)) >>  1) |	\
	 ((x & (1 << 22)) >> 21) |	\
	 ((x & (3 <<  3)) >>  1))
#define SAR_KIRKWOOD_L2_RATIO(x)	\
	(((x & (3 <<  9)) >> 9) |	\
	 (((x & (1 << 19)) >> 17)))
#define SAR_KIRKWOOD_DDR_RATIO		5
#define SAR_KIRKWOOD_DDR_RATIO_MASK	0xf
#define SAR_MV88F6180_CLK		2
#define SAR_MV88F6180_CLK_MASK		0x7
#define SAR_KIRKWOOD_TCLK_FREQ		21
#define SAR_KIRKWOOD_TCLK_FREQ_MASK	0x1

enum { KIRKWOOD_CPU_TO_L2, KIRKWOOD_CPU_TO_DDR };

static const struct core_ratio __initconst kirkwood_core_ratios[] = {
	{ .id = KIRKWOOD_CPU_TO_L2, .name = "l2clk", },
	{ .id = KIRKWOOD_CPU_TO_DDR, .name = "ddrclk", }
};

static u32 __init kirkwood_get_tclk_freq(void __iomem *sar)
{
	u32 opt = (readl(sar) >> SAR_KIRKWOOD_TCLK_FREQ) &
		SAR_KIRKWOOD_TCLK_FREQ_MASK;
	return (opt) ? 166666667 : 200000000;
}

static const u32 __initconst kirkwood_cpu_frequencies[] = {
	0, 0, 0, 0,
	600000000,
	0,
	800000000,
	1000000000,
	0,
	1200000000,
	0, 0,
	1500000000,
	1600000000,
	1800000000,
	2000000000
};

static u32 __init kirkwood_get_cpu_freq(void __iomem *sar)
{
	u32 opt = SAR_KIRKWOOD_CPU_FREQ(readl(sar));
	return kirkwood_cpu_frequencies[opt];
}

static const int __initconst kirkwood_cpu_l2_ratios[8][2] = {
	{ 0, 1 }, { 1, 2 }, { 0, 1 }, { 1, 3 },
	{ 0, 1 }, { 1, 4 }, { 0, 1 }, { 0, 1 }
};

static const int __initconst kirkwood_cpu_ddr_ratios[16][2] = {
	{ 0, 1 }, { 0, 1 }, { 1, 2 }, { 0, 1 },
	{ 1, 3 }, { 0, 1 }, { 1, 4 }, { 2, 9 },
	{ 1, 5 }, { 1, 6 }, { 0, 1 }, { 0, 1 },
	{ 0, 1 }, { 0, 1 }, { 0, 1 }, { 0, 1 }
};

static void __init kirkwood_get_clk_ratio(
	void __iomem *sar, int id, int *mult, int *div)
{
	switch (id) {
	case KIRKWOOD_CPU_TO_L2:
	{
		u32 opt = SAR_KIRKWOOD_L2_RATIO(readl(sar));
		*mult = kirkwood_cpu_l2_ratios[opt][0];
		*div = kirkwood_cpu_l2_ratios[opt][1];
		break;
	}
	case KIRKWOOD_CPU_TO_DDR:
	{
		u32 opt = (readl(sar) >> SAR_KIRKWOOD_DDR_RATIO) &
			SAR_KIRKWOOD_DDR_RATIO_MASK;
		*mult = kirkwood_cpu_ddr_ratios[opt][0];
		*div = kirkwood_cpu_ddr_ratios[opt][1];
		break;
	}
	}
}

static const struct core_clocks kirkwood_core_clocks = {
	.get_tclk_freq = kirkwood_get_tclk_freq,
	.get_cpu_freq = kirkwood_get_cpu_freq,
	.get_clk_ratio = kirkwood_get_clk_ratio,
	.ratios = kirkwood_core_ratios,
	.num_ratios = ARRAY_SIZE(kirkwood_core_ratios),
};

static const u32 __initconst mv88f6180_cpu_frequencies[] = {
	0, 0, 0, 0, 0,
	600000000,
	800000000,
	1000000000
};

static u32 __init mv88f6180_get_cpu_freq(void __iomem *sar)
{
	u32 opt = (readl(sar) >> SAR_MV88F6180_CLK) & SAR_MV88F6180_CLK_MASK;
	return mv88f6180_cpu_frequencies[opt];
}

static const int __initconst mv88f6180_cpu_ddr_ratios[8][2] = {
	{ 0, 1 }, { 0, 1 }, { 0, 1 }, { 0, 1 },
	{ 0, 1 }, { 1, 3 }, { 1, 4 }, { 1, 5 }
};

static void __init mv88f6180_get_clk_ratio(
	void __iomem *sar, int id, int *mult, int *div)
{
	switch (id) {
	case KIRKWOOD_CPU_TO_L2:
	{
		/* mv88f6180 has a fixed 1:2 CPU-to-L2 ratio */
		*mult = 1;
		*div = 2;
		break;
	}
	case KIRKWOOD_CPU_TO_DDR:
	{
		u32 opt = (readl(sar) >> SAR_MV88F6180_CLK) &
			SAR_MV88F6180_CLK_MASK;
		*mult = mv88f6180_cpu_ddr_ratios[opt][0];
		*div = mv88f6180_cpu_ddr_ratios[opt][1];
		break;
	}
	}
}

static const struct core_clocks mv88f6180_core_clocks = {
	.get_tclk_freq = kirkwood_get_tclk_freq,
	.get_cpu_freq = mv88f6180_get_cpu_freq,
	.get_clk_ratio = mv88f6180_get_clk_ratio,
	.ratios = kirkwood_core_ratios,
	.num_ratios = ARRAY_SIZE(kirkwood_core_ratios),
};
#endif /* CONFIG_ARCH_KIRKWOOD */

static const __initdata struct of_device_id clk_core_match[] = {
#ifdef CONFIG_MACH_ARMADA_370_XP
	{
		.compatible = "marvell,armada-370-core-clock",
		.data = &armada_370_core_clocks,
	},
	{
		.compatible = "marvell,armada-xp-core-clock",
		.data = &armada_xp_core_clocks,
	},
#endif
#ifdef CONFIG_ARCH_DOVE
	{
		.compatible = "marvell,dove-core-clock",
		.data = &dove_core_clocks,
	},
#endif

#ifdef CONFIG_ARCH_KIRKWOOD
	{
		.compatible = "marvell,kirkwood-core-clock",
		.data = &kirkwood_core_clocks,
	},
	{
		.compatible = "marvell,mv88f6180-core-clock",
		.data = &mv88f6180_core_clocks,
	},
#endif

	{ }
};

void __init mvebu_core_clk_init(void)
{
	struct device_node *np;

	for_each_matching_node(np, clk_core_match) {
		const struct of_device_id *match =
			of_match_node(clk_core_match, np);
		mvebu_clk_core_setup(np, (struct core_clocks *)match->data);
	}
}