/* * ALSA driver for ICEnsemble VT1724 (Envy24HT) * * Lowlevel functions for Infrasonic Quartet * * Copyright (c) 2009 Pavel Hofman <pavel.hofman@ivitera.com> * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/tlv.h> #include <sound/info.h> #include "ice1712.h" #include "envy24ht.h" #include <sound/ak4113.h> #include "quartet.h" struct qtet_spec { struct ak4113 *ak4113; unsigned int scr; /* system control register */ unsigned int mcr; /* monitoring control register */ unsigned int cpld; /* cpld register */ }; struct qtet_kcontrol_private { unsigned int bit; void (*set_register)(struct snd_ice1712 *ice, unsigned int val); unsigned int (*get_register)(struct snd_ice1712 *ice); unsigned char * const texts[2]; }; enum { IN12_SEL = 0, IN34_SEL, AIN34_SEL, COAX_OUT, IN12_MON12, IN12_MON34, IN34_MON12, IN34_MON34, OUT12_MON34, OUT34_MON12, }; static const char * const ext_clock_names[3] = {"IEC958 In", "Word Clock 1xFS", "Word Clock 256xFS"}; /* chip address on I2C bus */ #define AK4113_ADDR 0x26 /* S/PDIF receiver */ /* chip address on SPI bus */ #define AK4620_ADDR 0x02 /* ADC/DAC */ /* * GPIO pins */ /* GPIO0 - O - DATA0, def. 0 */ #define GPIO_D0 (1<<0) /* GPIO1 - I/O - DATA1, Jack Detect Input0 (0:present, 1:missing), def. 1 */ #define GPIO_D1_JACKDTC0 (1<<1) /* GPIO2 - I/O - DATA2, Jack Detect Input1 (0:present, 1:missing), def. 1 */ #define GPIO_D2_JACKDTC1 (1<<2) /* GPIO3 - I/O - DATA3, def. 1 */ #define GPIO_D3 (1<<3) /* GPIO4 - I/O - DATA4, SPI CDTO, def. 1 */ #define GPIO_D4_SPI_CDTO (1<<4) /* GPIO5 - I/O - DATA5, SPI CCLK, def. 1 */ #define GPIO_D5_SPI_CCLK (1<<5) /* GPIO6 - I/O - DATA6, Cable Detect Input (0:detected, 1:not detected */ #define GPIO_D6_CD (1<<6) /* GPIO7 - I/O - DATA7, Device Detect Input (0:detected, 1:not detected */ #define GPIO_D7_DD (1<<7) /* GPIO8 - O - CPLD Chip Select, def. 1 */ #define GPIO_CPLD_CSN (1<<8) /* GPIO9 - O - CPLD register read/write (0:write, 1:read), def. 0 */ #define GPIO_CPLD_RW (1<<9) /* GPIO10 - O - SPI Chip Select for CODEC#0, def. 1 */ #define GPIO_SPI_CSN0 (1<<10) /* GPIO11 - O - SPI Chip Select for CODEC#1, def. 1 */ #define GPIO_SPI_CSN1 (1<<11) /* GPIO12 - O - Ex. Register Output Enable (0:enable, 1:disable), def. 1, * init 0 */ #define GPIO_EX_GPIOE (1<<12) /* GPIO13 - O - Ex. Register0 Chip Select for System Control Register, * def. 1 */ #define GPIO_SCR (1<<13) /* GPIO14 - O - Ex. Register1 Chip Select for Monitor Control Register, * def. 1 */ #define GPIO_MCR (1<<14) #define GPIO_SPI_ALL (GPIO_D4_SPI_CDTO | GPIO_D5_SPI_CCLK |\ GPIO_SPI_CSN0 | GPIO_SPI_CSN1) #define GPIO_DATA_MASK (GPIO_D0 | GPIO_D1_JACKDTC0 | \ GPIO_D2_JACKDTC1 | GPIO_D3 | \ GPIO_D4_SPI_CDTO | GPIO_D5_SPI_CCLK | \ GPIO_D6_CD | GPIO_D7_DD) /* System Control Register GPIO_SCR data bits */ /* Mic/Line select relay (0:line, 1:mic) */ #define SCR_RELAY GPIO_D0 /* Phantom power drive control (0:5V, 1:48V) */ #define SCR_PHP_V GPIO_D1_JACKDTC0 /* H/W mute control (0:Normal, 1:Mute) */ #define SCR_MUTE GPIO_D2_JACKDTC1 /* Phantom power control (0:Phantom on, 1:off) */ #define SCR_PHP GPIO_D3 /* Analog input 1/2 Source Select */ #define SCR_AIN12_SEL0 GPIO_D4_SPI_CDTO #define SCR_AIN12_SEL1 GPIO_D5_SPI_CCLK /* Analog input 3/4 Source Select (0:line, 1:hi-z) */ #define SCR_AIN34_SEL GPIO_D6_CD /* Codec Power Down (0:power down, 1:normal) */ #define SCR_CODEC_PDN GPIO_D7_DD #define SCR_AIN12_LINE (0) #define SCR_AIN12_MIC (SCR_AIN12_SEL0) #define SCR_AIN12_LOWCUT (SCR_AIN12_SEL1 | SCR_AIN12_SEL0) /* Monitor Control Register GPIO_MCR data bits */ /* Input 1/2 to Monitor 1/2 (0:off, 1:on) */ #define MCR_IN12_MON12 GPIO_D0 /* Input 1/2 to Monitor 3/4 (0:off, 1:on) */ #define MCR_IN12_MON34 GPIO_D1_JACKDTC0 /* Input 3/4 to Monitor 1/2 (0:off, 1:on) */ #define MCR_IN34_MON12 GPIO_D2_JACKDTC1 /* Input 3/4 to Monitor 3/4 (0:off, 1:on) */ #define MCR_IN34_MON34 GPIO_D3 /* Output to Monitor 1/2 (0:off, 1:on) */ #define MCR_OUT34_MON12 GPIO_D4_SPI_CDTO /* Output to Monitor 3/4 (0:off, 1:on) */ #define MCR_OUT12_MON34 GPIO_D5_SPI_CCLK /* CPLD Register DATA bits */ /* Clock Rate Select */ #define CPLD_CKS0 GPIO_D0 #define CPLD_CKS1 GPIO_D1_JACKDTC0 #define CPLD_CKS2 GPIO_D2_JACKDTC1 /* Sync Source Select (0:Internal, 1:External) */ #define CPLD_SYNC_SEL GPIO_D3 /* Word Clock FS Select (0:FS, 1:256FS) */ #define CPLD_WORD_SEL GPIO_D4_SPI_CDTO /* Coaxial Output Source (IS-Link) (0:SPDIF, 1:I2S) */ #define CPLD_COAX_OUT GPIO_D5_SPI_CCLK /* Input 1/2 Source Select (0:Analog12, 1:An34) */ #define CPLD_IN12_SEL GPIO_D6_CD /* Input 3/4 Source Select (0:Analog34, 1:Digital In) */ #define CPLD_IN34_SEL GPIO_D7_DD /* internal clock (CPLD_SYNC_SEL = 0) options */ #define CPLD_CKS_44100HZ (0) #define CPLD_CKS_48000HZ (CPLD_CKS0) #define CPLD_CKS_88200HZ (CPLD_CKS1) #define CPLD_CKS_96000HZ (CPLD_CKS1 | CPLD_CKS0) #define CPLD_CKS_176400HZ (CPLD_CKS2) #define CPLD_CKS_192000HZ (CPLD_CKS2 | CPLD_CKS0) #define CPLD_CKS_MASK (CPLD_CKS0 | CPLD_CKS1 | CPLD_CKS2) /* external clock (CPLD_SYNC_SEL = 1) options */ /* external clock - SPDIF */ #define CPLD_EXT_SPDIF (0 | CPLD_SYNC_SEL) /* external clock - WordClock 1xfs */ #define CPLD_EXT_WORDCLOCK_1FS (CPLD_CKS1 | CPLD_SYNC_SEL) /* external clock - WordClock 256xfs */ #define CPLD_EXT_WORDCLOCK_256FS (CPLD_CKS1 | CPLD_WORD_SEL |\ CPLD_SYNC_SEL) #define EXT_SPDIF_TYPE 0 #define EXT_WORDCLOCK_1FS_TYPE 1 #define EXT_WORDCLOCK_256FS_TYPE 2 #define AK4620_DFS0 (1<<0) #define AK4620_DFS1 (1<<1) #define AK4620_CKS0 (1<<2) #define AK4620_CKS1 (1<<3) /* Clock and Format Control register */ #define AK4620_DFS_REG 0x02 /* Deem and Volume Control register */ #define AK4620_DEEMVOL_REG 0x03 #define AK4620_SMUTE (1<<7) /* * Conversion from int value to its binary form. Used for debugging. * The output buffer must be allocated prior to calling the function. */ static char *get_binary(char *buffer, int value) { int i, j, pos; pos = 0; for (i = 0; i < 4; ++i) { for (j = 0; j < 8; ++j) { if (value & (1 << (31-(i*8 + j)))) buffer[pos] = '1'; else buffer[pos] = '0'; pos++; } if (i < 3) { buffer[pos] = ' '; pos++; } } buffer[pos] = '\0'; return buffer; } /* * Initial setup of the conversion array GPIO <-> rate */ static unsigned int qtet_rates[] = { 44100, 48000, 88200, 96000, 176400, 192000, }; static unsigned int cks_vals[] = { CPLD_CKS_44100HZ, CPLD_CKS_48000HZ, CPLD_CKS_88200HZ, CPLD_CKS_96000HZ, CPLD_CKS_176400HZ, CPLD_CKS_192000HZ, }; static struct snd_pcm_hw_constraint_list qtet_rates_info = { .count = ARRAY_SIZE(qtet_rates), .list = qtet_rates, .mask = 0, }; static void qtet_ak4113_write(void *private_data, unsigned char reg, unsigned char val) { snd_vt1724_write_i2c((struct snd_ice1712 *)private_data, AK4113_ADDR, reg, val); } static unsigned char qtet_ak4113_read(void *private_data, unsigned char reg) { return snd_vt1724_read_i2c((struct snd_ice1712 *)private_data, AK4113_ADDR, reg); } /* * AK4620 section */ /* * Write data to addr register of ak4620 */ static void qtet_akm_write(struct snd_akm4xxx *ak, int chip, unsigned char addr, unsigned char data) { unsigned int tmp, orig_dir; int idx; unsigned int addrdata; struct snd_ice1712 *ice = ak->private_data[0]; if (snd_BUG_ON(chip < 0 || chip >= 4)) return; /*printk(KERN_DEBUG "Writing to AK4620: chip=%d, addr=0x%x, data=0x%x\n", chip, addr, data);*/ orig_dir = ice->gpio.get_dir(ice); ice->gpio.set_dir(ice, orig_dir | GPIO_SPI_ALL); /* set mask - only SPI bits */ ice->gpio.set_mask(ice, ~GPIO_SPI_ALL); tmp = ice->gpio.get_data(ice); /* high all */ tmp |= GPIO_SPI_ALL; ice->gpio.set_data(ice, tmp); udelay(100); /* drop chip select */ if (chip) /* CODEC 1 */ tmp &= ~GPIO_SPI_CSN1; else tmp &= ~GPIO_SPI_CSN0; ice->gpio.set_data(ice, tmp); udelay(100); /* build I2C address + data byte */ addrdata = (AK4620_ADDR << 6) | 0x20 | (addr & 0x1f); addrdata = (addrdata << 8) | data; for (idx = 15; idx >= 0; idx--) { /* drop clock */ tmp &= ~GPIO_D5_SPI_CCLK; ice->gpio.set_data(ice, tmp); udelay(100); /* set data */ if (addrdata & (1 << idx)) tmp |= GPIO_D4_SPI_CDTO; else tmp &= ~GPIO_D4_SPI_CDTO; ice->gpio.set_data(ice, tmp); udelay(100); /* raise clock */ tmp |= GPIO_D5_SPI_CCLK; ice->gpio.set_data(ice, tmp); udelay(100); } /* all back to 1 */ tmp |= GPIO_SPI_ALL; ice->gpio.set_data(ice, tmp); udelay(100); /* return all gpios to non-writable */ ice->gpio.set_mask(ice, 0xffffff); /* restore GPIOs direction */ ice->gpio.set_dir(ice, orig_dir); } static void qtet_akm_set_regs(struct snd_akm4xxx *ak, unsigned char addr, unsigned char mask, unsigned char value) { unsigned char tmp; int chip; for (chip = 0; chip < ak->num_chips; chip++) { tmp = snd_akm4xxx_get(ak, chip, addr); /* clear the bits */ tmp &= ~mask; /* set the new bits */ tmp |= value; snd_akm4xxx_write(ak, chip, addr, tmp); } } /* * change the rate of AK4620 */ static void qtet_akm_set_rate_val(struct snd_akm4xxx *ak, unsigned int rate) { unsigned char ak4620_dfs; if (rate == 0) /* no hint - S/PDIF input is master or the new spdif input rate undetected, simply return */ return; /* adjust DFS on codecs - see datasheet */ if (rate > 108000) ak4620_dfs = AK4620_DFS1 | AK4620_CKS1; else if (rate > 54000) ak4620_dfs = AK4620_DFS0 | AK4620_CKS0; else ak4620_dfs = 0; /* set new value */ qtet_akm_set_regs(ak, AK4620_DFS_REG, AK4620_DFS0 | AK4620_DFS1 | AK4620_CKS0 | AK4620_CKS1, ak4620_dfs); } #define AK_CONTROL(xname, xch) { .name = xname, .num_channels = xch } #define PCM_12_PLAYBACK_VOLUME "PCM 1/2 Playback Volume" #define PCM_34_PLAYBACK_VOLUME "PCM 3/4 Playback Volume" #define PCM_12_CAPTURE_VOLUME "PCM 1/2 Capture Volume" #define PCM_34_CAPTURE_VOLUME "PCM 3/4 Capture Volume" static const struct snd_akm4xxx_dac_channel qtet_dac[] = { AK_CONTROL(PCM_12_PLAYBACK_VOLUME, 2), AK_CONTROL(PCM_34_PLAYBACK_VOLUME, 2), }; static const struct snd_akm4xxx_adc_channel qtet_adc[] = { AK_CONTROL(PCM_12_CAPTURE_VOLUME, 2), AK_CONTROL(PCM_34_CAPTURE_VOLUME, 2), }; static struct snd_akm4xxx akm_qtet_dac = { .type = SND_AK4620, .num_dacs = 4, /* DAC1 - Output 12 */ .num_adcs = 4, /* ADC1 - Input 12 */ .ops = { .write = qtet_akm_write, .set_rate_val = qtet_akm_set_rate_val, }, .dac_info = qtet_dac, .adc_info = qtet_adc, }; /* Communication routines with the CPLD */ /* Writes data to external register reg, both reg and data are * GPIO representations */ static void reg_write(struct snd_ice1712 *ice, unsigned int reg, unsigned int data) { unsigned int tmp; mutex_lock(&ice->gpio_mutex); /* set direction of used GPIOs*/ /* all outputs */ tmp = 0x00ffff; ice->gpio.set_dir(ice, tmp); /* mask - writable bits */ ice->gpio.set_mask(ice, ~(tmp)); /* write the data */ tmp = ice->gpio.get_data(ice); tmp &= ~GPIO_DATA_MASK; tmp |= data; ice->gpio.set_data(ice, tmp); udelay(100); /* drop output enable */ tmp &= ~GPIO_EX_GPIOE; ice->gpio.set_data(ice, tmp); udelay(100); /* drop the register gpio */ tmp &= ~reg; ice->gpio.set_data(ice, tmp); udelay(100); /* raise the register GPIO */ tmp |= reg; ice->gpio.set_data(ice, tmp); udelay(100); /* raise all data gpios */ tmp |= GPIO_DATA_MASK; ice->gpio.set_data(ice, tmp); /* mask - immutable bits */ ice->gpio.set_mask(ice, 0xffffff); /* outputs only 8-15 */ ice->gpio.set_dir(ice, 0x00ff00); mutex_unlock(&ice->gpio_mutex); } static unsigned int get_scr(struct snd_ice1712 *ice) { struct qtet_spec *spec = ice->spec; return spec->scr; } static unsigned int get_mcr(struct snd_ice1712 *ice) { struct qtet_spec *spec = ice->spec; return spec->mcr; } static unsigned int get_cpld(struct snd_ice1712 *ice) { struct qtet_spec *spec = ice->spec; return spec->cpld; } static void set_scr(struct snd_ice1712 *ice, unsigned int val) { struct qtet_spec *spec = ice->spec; reg_write(ice, GPIO_SCR, val); spec->scr = val; } static void set_mcr(struct snd_ice1712 *ice, unsigned int val) { struct qtet_spec *spec = ice->spec; reg_write(ice, GPIO_MCR, val); spec->mcr = val; } static void set_cpld(struct snd_ice1712 *ice, unsigned int val) { struct qtet_spec *spec = ice->spec; reg_write(ice, GPIO_CPLD_CSN, val); spec->cpld = val; } #ifdef CONFIG_PROC_FS static void proc_regs_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_ice1712 *ice = entry->private_data; char bin_buffer[36]; snd_iprintf(buffer, "SCR: %s\n", get_binary(bin_buffer, get_scr(ice))); snd_iprintf(buffer, "MCR: %s\n", get_binary(bin_buffer, get_mcr(ice))); snd_iprintf(buffer, "CPLD: %s\n", get_binary(bin_buffer, get_cpld(ice))); } static void proc_init(struct snd_ice1712 *ice) { struct snd_info_entry *entry; if (!snd_card_proc_new(ice->card, "quartet", &entry)) snd_info_set_text_ops(entry, ice, proc_regs_read); } #else /* !CONFIG_PROC_FS */ static void proc_init(struct snd_ice1712 *ice) {} #endif static int qtet_mute_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); unsigned int val; val = get_scr(ice) & SCR_MUTE; ucontrol->value.integer.value[0] = (val) ? 0 : 1; return 0; } static int qtet_mute_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); unsigned int old, new, smute; old = get_scr(ice) & SCR_MUTE; if (ucontrol->value.integer.value[0]) { /* unmute */ new = 0; /* un-smuting DAC */ smute = 0; } else { /* mute */ new = SCR_MUTE; /* smuting DAC */ smute = AK4620_SMUTE; } if (old != new) { struct snd_akm4xxx *ak = ice->akm; set_scr(ice, (get_scr(ice) & ~SCR_MUTE) | new); /* set smute */ qtet_akm_set_regs(ak, AK4620_DEEMVOL_REG, AK4620_SMUTE, smute); return 1; } /* no change */ return 0; } static int qtet_ain12_enum_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char * const texts[3] = {"Line In 1/2", "Mic", "Mic + Low-cut"}; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = ARRAY_SIZE(texts); if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1; strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); return 0; } static int qtet_ain12_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); unsigned int val, result; val = get_scr(ice) & (SCR_AIN12_SEL1 | SCR_AIN12_SEL0); switch (val) { case SCR_AIN12_LINE: result = 0; break; case SCR_AIN12_MIC: result = 1; break; case SCR_AIN12_LOWCUT: result = 2; break; default: /* BUG - no other combinations allowed */ snd_BUG(); result = 0; } ucontrol->value.integer.value[0] = result; return 0; } static int qtet_ain12_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); unsigned int old, new, tmp, masked_old; old = new = get_scr(ice); masked_old = old & (SCR_AIN12_SEL1 | SCR_AIN12_SEL0); tmp = ucontrol->value.integer.value[0]; if (tmp == 2) tmp = 3; /* binary 10 is not supported */ tmp <<= 4; /* shifting to SCR_AIN12_SEL0 */ if (tmp != masked_old) { /* change requested */ switch (tmp) { case SCR_AIN12_LINE: new = old & ~(SCR_AIN12_SEL1 | SCR_AIN12_SEL0); set_scr(ice, new); /* turn off relay */ new &= ~SCR_RELAY; set_scr(ice, new); break; case SCR_AIN12_MIC: /* turn on relay */ new = old | SCR_RELAY; set_scr(ice, new); new = (new & ~SCR_AIN12_SEL1) | SCR_AIN12_SEL0; set_scr(ice, new); break; case SCR_AIN12_LOWCUT: /* turn on relay */ new = old | SCR_RELAY; set_scr(ice, new); new |= SCR_AIN12_SEL1 | SCR_AIN12_SEL0; set_scr(ice, new); break; default: snd_BUG(); } return 1; } /* no change */ return 0; } static int qtet_php_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); unsigned int val; /* if phantom voltage =48V, phantom on */ val = get_scr(ice) & SCR_PHP_V; ucontrol->value.integer.value[0] = val ? 1 : 0; return 0; } static int qtet_php_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); unsigned int old, new; old = new = get_scr(ice); if (ucontrol->value.integer.value[0] /* phantom on requested */ && (~old & SCR_PHP_V)) /* 0 = voltage 5V */ { /* is off, turn on */ /* turn voltage on first, = 1 */ new = old | SCR_PHP_V; set_scr(ice, new); /* turn phantom on, = 0 */ new &= ~SCR_PHP; set_scr(ice, new); } else if (!ucontrol->value.integer.value[0] && (old & SCR_PHP_V)) { /* phantom off requested and 1 = voltage 48V */ /* is on, turn off */ /* turn voltage off first, = 0 */ new = old & ~SCR_PHP_V; set_scr(ice, new); /* turn phantom off, = 1 */ new |= SCR_PHP; set_scr(ice, new); } if (old != new) return 1; /* no change */ return 0; } #define PRIV_SW(xid, xbit, xreg) [xid] = {.bit = xbit,\ .set_register = set_##xreg,\ .get_register = get_##xreg, } #define PRIV_ENUM2(xid, xbit, xreg, xtext1, xtext2) [xid] = {.bit = xbit,\ .set_register = set_##xreg,\ .get_register = get_##xreg,\ .texts = {xtext1, xtext2} } static struct qtet_kcontrol_private qtet_privates[] = { PRIV_ENUM2(IN12_SEL, CPLD_IN12_SEL, cpld, "An In 1/2", "An In 3/4"), PRIV_ENUM2(IN34_SEL, CPLD_IN34_SEL, cpld, "An In 3/4", "IEC958 In"), PRIV_ENUM2(AIN34_SEL, SCR_AIN34_SEL, scr, "Line In 3/4", "Hi-Z"), PRIV_ENUM2(COAX_OUT, CPLD_COAX_OUT, cpld, "IEC958", "I2S"), PRIV_SW(IN12_MON12, MCR_IN12_MON12, mcr), PRIV_SW(IN12_MON34, MCR_IN12_MON34, mcr), PRIV_SW(IN34_MON12, MCR_IN34_MON12, mcr), PRIV_SW(IN34_MON34, MCR_IN34_MON34, mcr), PRIV_SW(OUT12_MON34, MCR_OUT12_MON34, mcr), PRIV_SW(OUT34_MON12, MCR_OUT34_MON12, mcr), }; static int qtet_enum_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct qtet_kcontrol_private private = qtet_privates[kcontrol->private_value]; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = ARRAY_SIZE(private.texts); if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1; strcpy(uinfo->value.enumerated.name, private.texts[uinfo->value.enumerated.item]); return 0; } static int qtet_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct qtet_kcontrol_private private = qtet_privates[kcontrol->private_value]; struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = (private.get_register(ice) & private.bit) ? 1 : 0; return 0; } static int qtet_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct qtet_kcontrol_private private = qtet_privates[kcontrol->private_value]; struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); unsigned int old, new; old = private.get_register(ice); if (ucontrol->value.integer.value[0]) new = old | private.bit; else new = old & ~private.bit; if (old != new) { private.set_register(ice, new); return 1; } /* no change */ return 0; } #define qtet_sw_info snd_ctl_boolean_mono_info #define QTET_CONTROL(xname, xtype, xpriv) \ {.iface = SNDRV_CTL_ELEM_IFACE_MIXER,\ .name = xname,\ .info = qtet_##xtype##_info,\ .get = qtet_sw_get,\ .put = qtet_sw_put,\ .private_value = xpriv } static struct snd_kcontrol_new qtet_controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Switch", .info = qtet_sw_info, .get = qtet_mute_get, .put = qtet_mute_put, .private_value = 0 }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Phantom Power", .info = qtet_sw_info, .get = qtet_php_get, .put = qtet_php_put, .private_value = 0 }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Analog In 1/2 Capture Switch", .info = qtet_ain12_enum_info, .get = qtet_ain12_sw_get, .put = qtet_ain12_sw_put, .private_value = 0 }, QTET_CONTROL("Analog In 3/4 Capture Switch", enum, AIN34_SEL), QTET_CONTROL("PCM In 1/2 Capture Switch", enum, IN12_SEL), QTET_CONTROL("PCM In 3/4 Capture Switch", enum, IN34_SEL), QTET_CONTROL("Coax Output Source", enum, COAX_OUT), QTET_CONTROL("Analog In 1/2 to Monitor 1/2", sw, IN12_MON12), QTET_CONTROL("Analog In 1/2 to Monitor 3/4", sw, IN12_MON34), QTET_CONTROL("Analog In 3/4 to Monitor 1/2", sw, IN34_MON12), QTET_CONTROL("Analog In 3/4 to Monitor 3/4", sw, IN34_MON34), QTET_CONTROL("Output 1/2 to Monitor 3/4", sw, OUT12_MON34), QTET_CONTROL("Output 3/4 to Monitor 1/2", sw, OUT34_MON12), }; static char *slave_vols[] = { PCM_12_PLAYBACK_VOLUME, PCM_34_PLAYBACK_VOLUME, NULL }; static DECLARE_TLV_DB_SCALE(qtet_master_db_scale, -6350, 50, 1); static struct snd_kcontrol *ctl_find(struct snd_card *card, const char *name) { struct snd_ctl_elem_id sid; memset(&sid, 0, sizeof(sid)); /* FIXME: strcpy is bad. */ strcpy(sid.name, name); sid.iface = SNDRV_CTL_ELEM_IFACE_MIXER; return snd_ctl_find_id(card, &sid); } static void add_slaves(struct snd_card *card, struct snd_kcontrol *master, char * const *list) { for (; *list; list++) { struct snd_kcontrol *slave = ctl_find(card, *list); if (slave) snd_ctl_add_slave(master, slave); } } static int qtet_add_controls(struct snd_ice1712 *ice) { struct qtet_spec *spec = ice->spec; int err, i; struct snd_kcontrol *vmaster; err = snd_ice1712_akm4xxx_build_controls(ice); if (err < 0) return err; for (i = 0; i < ARRAY_SIZE(qtet_controls); i++) { err = snd_ctl_add(ice->card, snd_ctl_new1(&qtet_controls[i], ice)); if (err < 0) return err; } /* Create virtual master control */ vmaster = snd_ctl_make_virtual_master("Master Playback Volume", qtet_master_db_scale); if (!vmaster) return -ENOMEM; add_slaves(ice->card, vmaster, slave_vols); err = snd_ctl_add(ice->card, vmaster); if (err < 0) return err; /* only capture SPDIF over AK4113 */ err = snd_ak4113_build(spec->ak4113, ice->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream); if (err < 0) return err; return 0; } static inline int qtet_is_spdif_master(struct snd_ice1712 *ice) { /* CPLD_SYNC_SEL: 0 = internal, 1 = external (i.e. spdif master) */ return (get_cpld(ice) & CPLD_SYNC_SEL) ? 1 : 0; } static unsigned int qtet_get_rate(struct snd_ice1712 *ice) { int i; unsigned char result; result = get_cpld(ice) & CPLD_CKS_MASK; for (i = 0; i < ARRAY_SIZE(cks_vals); i++) if (cks_vals[i] == result) return qtet_rates[i]; return 0; } static int get_cks_val(int rate) { int i; for (i = 0; i < ARRAY_SIZE(qtet_rates); i++) if (qtet_rates[i] == rate) return cks_vals[i]; return 0; } /* setting new rate */ static void qtet_set_rate(struct snd_ice1712 *ice, unsigned int rate) { unsigned int new; unsigned char val; /* switching ice1724 to external clock - supplied by ext. circuits */ val = inb(ICEMT1724(ice, RATE)); outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE)); new = (get_cpld(ice) & ~CPLD_CKS_MASK) | get_cks_val(rate); /* switch to internal clock, drop CPLD_SYNC_SEL */ new &= ~CPLD_SYNC_SEL; /* printk(KERN_DEBUG "QT - set_rate: old %x, new %x\n", get_cpld(ice), new); */ set_cpld(ice, new); } static inline unsigned char qtet_set_mclk(struct snd_ice1712 *ice, unsigned int rate) { /* no change in master clock */ return 0; } /* setting clock to external - SPDIF */ static int qtet_set_spdif_clock(struct snd_ice1712 *ice, int type) { unsigned int old, new; old = new = get_cpld(ice); new &= ~(CPLD_CKS_MASK | CPLD_WORD_SEL); switch (type) { case EXT_SPDIF_TYPE: new |= CPLD_EXT_SPDIF; break; case EXT_WORDCLOCK_1FS_TYPE: new |= CPLD_EXT_WORDCLOCK_1FS; break; case EXT_WORDCLOCK_256FS_TYPE: new |= CPLD_EXT_WORDCLOCK_256FS; break; default: snd_BUG(); } if (old != new) { set_cpld(ice, new); /* changed */ return 1; } return 0; } static int qtet_get_spdif_master_type(struct snd_ice1712 *ice) { unsigned int val; int result; val = get_cpld(ice); /* checking only rate/clock-related bits */ val &= (CPLD_CKS_MASK | CPLD_WORD_SEL | CPLD_SYNC_SEL); if (!(val & CPLD_SYNC_SEL)) { /* switched to internal clock, is not any external type */ result = -1; } else { switch (val) { case (CPLD_EXT_SPDIF): result = EXT_SPDIF_TYPE; break; case (CPLD_EXT_WORDCLOCK_1FS): result = EXT_WORDCLOCK_1FS_TYPE; break; case (CPLD_EXT_WORDCLOCK_256FS): result = EXT_WORDCLOCK_256FS_TYPE; break; default: /* undefined combination of external clock setup */ snd_BUG(); result = 0; } } return result; } /* Called when ak4113 detects change in the input SPDIF stream */ static void qtet_ak4113_change(struct ak4113 *ak4113, unsigned char c0, unsigned char c1) { struct snd_ice1712 *ice = ak4113->change_callback_private; int rate; if ((qtet_get_spdif_master_type(ice) == EXT_SPDIF_TYPE) && c1) { /* only for SPDIF master mode, rate was changed */ rate = snd_ak4113_external_rate(ak4113); /* printk(KERN_DEBUG "ak4113 - input rate changed to %d\n", rate); */ qtet_akm_set_rate_val(ice->akm, rate); } } /* * If clock slaved to SPDIF-IN, setting runtime rate * to the detected external rate */ static void qtet_spdif_in_open(struct snd_ice1712 *ice, struct snd_pcm_substream *substream) { struct qtet_spec *spec = ice->spec; struct snd_pcm_runtime *runtime = substream->runtime; int rate; if (qtet_get_spdif_master_type(ice) != EXT_SPDIF_TYPE) /* not external SPDIF, no rate limitation */ return; /* only external SPDIF can detect incoming sample rate */ rate = snd_ak4113_external_rate(spec->ak4113); if (rate >= runtime->hw.rate_min && rate <= runtime->hw.rate_max) { runtime->hw.rate_min = rate; runtime->hw.rate_max = rate; } } /* * initialize the chip */ static int qtet_init(struct snd_ice1712 *ice) { static const unsigned char ak4113_init_vals[] = { /* AK4113_REG_PWRDN */ AK4113_RST | AK4113_PWN | AK4113_OCKS0 | AK4113_OCKS1, /* AK4113_REQ_FORMAT */ AK4113_DIF_I24I2S | AK4113_VTX | AK4113_DEM_OFF | AK4113_DEAU, /* AK4113_REG_IO0 */ AK4113_OPS2 | AK4113_TXE | AK4113_XTL_24_576M, /* AK4113_REG_IO1 */ AK4113_EFH_1024LRCLK | AK4113_IPS(0), /* AK4113_REG_INT0_MASK */ 0, /* AK4113_REG_INT1_MASK */ 0, /* AK4113_REG_DATDTS */ 0, }; int err; struct qtet_spec *spec; struct snd_akm4xxx *ak; unsigned char val; /* switching ice1724 to external clock - supplied by ext. circuits */ val = inb(ICEMT1724(ice, RATE)); outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE)); spec = kzalloc(sizeof(*spec), GFP_KERNEL); if (!spec) return -ENOMEM; /* qtet is clocked by Xilinx array */ ice->hw_rates = &qtet_rates_info; ice->is_spdif_master = qtet_is_spdif_master; ice->get_rate = qtet_get_rate; ice->set_rate = qtet_set_rate; ice->set_mclk = qtet_set_mclk; ice->set_spdif_clock = qtet_set_spdif_clock; ice->get_spdif_master_type = qtet_get_spdif_master_type; ice->ext_clock_names = ext_clock_names; ice->ext_clock_count = ARRAY_SIZE(ext_clock_names); /* since Qtet can detect correct SPDIF-in rate, all streams can be * limited to this specific rate */ ice->spdif.ops.open = ice->pro_open = qtet_spdif_in_open; ice->spec = spec; /* Mute Off */ /* SCR Initialize*/ /* keep codec power down first */ set_scr(ice, SCR_PHP); udelay(1); /* codec power up */ set_scr(ice, SCR_PHP | SCR_CODEC_PDN); /* MCR Initialize */ set_mcr(ice, 0); /* CPLD Initialize */ set_cpld(ice, 0); ice->num_total_dacs = 2; ice->num_total_adcs = 2; ice->akm = kcalloc(2, sizeof(struct snd_akm4xxx), GFP_KERNEL); ak = ice->akm; if (!ak) return -ENOMEM; /* only one codec with two chips */ ice->akm_codecs = 1; err = snd_ice1712_akm4xxx_init(ak, &akm_qtet_dac, NULL, ice); if (err < 0) return err; err = snd_ak4113_create(ice->card, qtet_ak4113_read, qtet_ak4113_write, ak4113_init_vals, ice, &spec->ak4113); if (err < 0) return err; /* callback for codecs rate setting */ spec->ak4113->change_callback = qtet_ak4113_change; spec->ak4113->change_callback_private = ice; /* AK41143 in Quartet can detect external rate correctly * (i.e. check_flags = 0) */ spec->ak4113->check_flags = 0; proc_init(ice); qtet_set_rate(ice, 44100); return 0; } static unsigned char qtet_eeprom[] = { [ICE_EEP2_SYSCONF] = 0x28, /* clock 256(24MHz), mpu401, 1xADC, 1xDACs, SPDIF in */ [ICE_EEP2_ACLINK] = 0x80, /* I2S */ [ICE_EEP2_I2S] = 0x78, /* 96k, 24bit, 192k */ [ICE_EEP2_SPDIF] = 0xc3, /* out-en, out-int, in, out-ext */ [ICE_EEP2_GPIO_DIR] = 0x00, /* 0-7 inputs, switched to output only during output operations */ [ICE_EEP2_GPIO_DIR1] = 0xff, /* 8-15 outputs */ [ICE_EEP2_GPIO_DIR2] = 0x00, [ICE_EEP2_GPIO_MASK] = 0xff, /* changed only for OUT operations */ [ICE_EEP2_GPIO_MASK1] = 0x00, [ICE_EEP2_GPIO_MASK2] = 0xff, [ICE_EEP2_GPIO_STATE] = 0x00, /* inputs */ [ICE_EEP2_GPIO_STATE1] = 0x7d, /* all 1, but GPIO_CPLD_RW and GPIO15 always zero */ [ICE_EEP2_GPIO_STATE2] = 0x00, /* inputs */ }; /* entry point */ struct snd_ice1712_card_info snd_vt1724_qtet_cards[] = { { .subvendor = VT1724_SUBDEVICE_QTET, .name = "Infrasonic Quartet", .model = "quartet", .chip_init = qtet_init, .build_controls = qtet_add_controls, .eeprom_size = sizeof(qtet_eeprom), .eeprom_data = qtet_eeprom, }, { } /* terminator */ };