/***************************************************************************\ |* *| |* Copyright 1993-1999 NVIDIA, Corporation. All rights reserved. *| |* *| |* NOTICE TO USER: The source code is copyrighted under U.S. and *| |* international laws. Users and possessors of this source code are *| |* hereby granted a nonexclusive, royalty-free copyright license to *| |* use this code in individual and commercial software. *| |* *| |* Any use of this source code must include, in the user documenta- *| |* tion and internal comments to the code, notices to the end user *| |* as follows: *| |* *| |* Copyright 1993-1999 NVIDIA, Corporation. All rights reserved. *| |* *| |* NVIDIA, CORPORATION MAKES NO REPRESENTATION ABOUT THE SUITABILITY *| |* OF THIS SOURCE CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" *| |* WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. NVIDIA, CORPOR- *| |* ATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOURCE CODE, *| |* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGE- *| |* MENT, AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL *| |* NVIDIA, CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT, INCI- *| |* DENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RE- *| |* SULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION *| |* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF *| |* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOURCE CODE. *| |* *| |* U.S. Government End Users. This source code is a "commercial *| |* item," as that term is defined at 48 C.F.R. 2.101 (OCT 1995), *| |* consisting of "commercial computer software" and "commercial *| |* computer software documentation," as such terms are used in *| |* 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Govern- *| |* ment only as a commercial end item. Consistent with 48 C.F.R. *| |* 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), *| |* all U.S. Government End Users acquire the source code with only *| |* those rights set forth herein. *| |* *| \***************************************************************************/ /* * GPL licensing note -- nVidia is allowing a liberal interpretation of * the documentation restriction above, to merely say that this nVidia's * copyright and disclaimer should be included with all code derived * from this source. -- Jeff Garzik <jgarzik@pobox.com>, 01/Nov/99 */ /* $XFree86: xc/programs/Xserver/hw/xfree86/drivers/nv/riva_hw.c,v 1.33 2002/08/05 20:47:06 mvojkovi Exp $ */ #include <linux/kernel.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include "riva_hw.h" #include "riva_tbl.h" #include "nv_type.h" /* * This file is an OS-agnostic file used to make RIVA 128 and RIVA TNT * operate identically (except TNT has more memory and better 3D quality. */ static int nv3Busy ( RIVA_HW_INST *chip ) { return ((NV_RD32(&chip->Rop->FifoFree, 0) < chip->FifoEmptyCount) || NV_RD32(&chip->PGRAPH[0x000006B0/4], 0) & 0x01); } static int nv4Busy ( RIVA_HW_INST *chip ) { return ((NV_RD32(&chip->Rop->FifoFree, 0) < chip->FifoEmptyCount) || NV_RD32(&chip->PGRAPH[0x00000700/4], 0) & 0x01); } static int nv10Busy ( RIVA_HW_INST *chip ) { return ((NV_RD32(&chip->Rop->FifoFree, 0) < chip->FifoEmptyCount) || NV_RD32(&chip->PGRAPH[0x00000700/4], 0) & 0x01); } static void vgaLockUnlock ( RIVA_HW_INST *chip, int Lock ) { U008 cr11; VGA_WR08(chip->PCIO, 0x3D4, 0x11); cr11 = VGA_RD08(chip->PCIO, 0x3D5); if(Lock) cr11 |= 0x80; else cr11 &= ~0x80; VGA_WR08(chip->PCIO, 0x3D5, cr11); } static void nv3LockUnlock ( RIVA_HW_INST *chip, int Lock ) { VGA_WR08(chip->PVIO, 0x3C4, 0x06); VGA_WR08(chip->PVIO, 0x3C5, Lock ? 0x99 : 0x57); vgaLockUnlock(chip, Lock); } static void nv4LockUnlock ( RIVA_HW_INST *chip, int Lock ) { VGA_WR08(chip->PCIO, 0x3D4, 0x1F); VGA_WR08(chip->PCIO, 0x3D5, Lock ? 0x99 : 0x57); vgaLockUnlock(chip, Lock); } static int ShowHideCursor ( RIVA_HW_INST *chip, int ShowHide ) { int cursor; cursor = chip->CurrentState->cursor1; chip->CurrentState->cursor1 = (chip->CurrentState->cursor1 & 0xFE) | (ShowHide & 0x01); VGA_WR08(chip->PCIO, 0x3D4, 0x31); VGA_WR08(chip->PCIO, 0x3D5, chip->CurrentState->cursor1); return (cursor & 0x01); } /****************************************************************************\ * * * The video arbitration routines calculate some "magic" numbers. Fixes * * the snow seen when accessing the framebuffer without it. * * It just works (I hope). * * * \****************************************************************************/ #define DEFAULT_GR_LWM 100 #define DEFAULT_VID_LWM 100 #define DEFAULT_GR_BURST_SIZE 256 #define DEFAULT_VID_BURST_SIZE 128 #define VIDEO 0 #define GRAPHICS 1 #define MPORT 2 #define ENGINE 3 #define GFIFO_SIZE 320 #define GFIFO_SIZE_128 256 #define MFIFO_SIZE 120 #define VFIFO_SIZE 256 typedef struct { int gdrain_rate; int vdrain_rate; int mdrain_rate; int gburst_size; int vburst_size; char vid_en; char gr_en; int wcmocc, wcgocc, wcvocc, wcvlwm, wcglwm; int by_gfacc; char vid_only_once; char gr_only_once; char first_vacc; char first_gacc; char first_macc; int vocc; int gocc; int mocc; char cur; char engine_en; char converged; int priority; } nv3_arb_info; typedef struct { int graphics_lwm; int video_lwm; int graphics_burst_size; int video_burst_size; int graphics_hi_priority; int media_hi_priority; int rtl_values; int valid; } nv3_fifo_info; typedef struct { char pix_bpp; char enable_video; char gr_during_vid; char enable_mp; int memory_width; int video_scale; int pclk_khz; int mclk_khz; int mem_page_miss; int mem_latency; char mem_aligned; } nv3_sim_state; typedef struct { int graphics_lwm; int video_lwm; int graphics_burst_size; int video_burst_size; int valid; } nv4_fifo_info; typedef struct { int pclk_khz; int mclk_khz; int nvclk_khz; char mem_page_miss; char mem_latency; int memory_width; char enable_video; char gr_during_vid; char pix_bpp; char mem_aligned; char enable_mp; } nv4_sim_state; typedef struct { int graphics_lwm; int video_lwm; int graphics_burst_size; int video_burst_size; int valid; } nv10_fifo_info; typedef struct { int pclk_khz; int mclk_khz; int nvclk_khz; char mem_page_miss; char mem_latency; u32 memory_type; int memory_width; char enable_video; char gr_during_vid; char pix_bpp; char mem_aligned; char enable_mp; } nv10_sim_state; static int nv3_iterate(nv3_fifo_info *res_info, nv3_sim_state * state, nv3_arb_info *ainfo) { int iter = 0; int tmp; int vfsize, mfsize, gfsize; int mburst_size = 32; int mmisses, gmisses, vmisses; int misses; int vlwm, glwm, mlwm; int last, next, cur; int max_gfsize ; long ns; vlwm = 0; glwm = 0; mlwm = 0; vfsize = 0; gfsize = 0; cur = ainfo->cur; mmisses = 2; gmisses = 2; vmisses = 2; if (ainfo->gburst_size == 128) max_gfsize = GFIFO_SIZE_128; else max_gfsize = GFIFO_SIZE; max_gfsize = GFIFO_SIZE; while (1) { if (ainfo->vid_en) { if (ainfo->wcvocc > ainfo->vocc) ainfo->wcvocc = ainfo->vocc; if (ainfo->wcvlwm > vlwm) ainfo->wcvlwm = vlwm ; ns = 1000000 * ainfo->vburst_size/(state->memory_width/8)/state->mclk_khz; vfsize = ns * ainfo->vdrain_rate / 1000000; vfsize = ainfo->wcvlwm - ainfo->vburst_size + vfsize; } if (state->enable_mp) { if (ainfo->wcmocc > ainfo->mocc) ainfo->wcmocc = ainfo->mocc; } if (ainfo->gr_en) { if (ainfo->wcglwm > glwm) ainfo->wcglwm = glwm ; if (ainfo->wcgocc > ainfo->gocc) ainfo->wcgocc = ainfo->gocc; ns = 1000000 * (ainfo->gburst_size/(state->memory_width/8))/state->mclk_khz; gfsize = (ns * (long) ainfo->gdrain_rate)/1000000; gfsize = ainfo->wcglwm - ainfo->gburst_size + gfsize; } mfsize = 0; if (!state->gr_during_vid && ainfo->vid_en) if (ainfo->vid_en && (ainfo->vocc < 0) && !ainfo->vid_only_once) next = VIDEO; else if (ainfo->mocc < 0) next = MPORT; else if (ainfo->gocc< ainfo->by_gfacc) next = GRAPHICS; else return (0); else switch (ainfo->priority) { case VIDEO: if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once) next = VIDEO; else if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once) next = GRAPHICS; else if (ainfo->mocc<0) next = MPORT; else return (0); break; case GRAPHICS: if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once) next = GRAPHICS; else if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once) next = VIDEO; else if (ainfo->mocc<0) next = MPORT; else return (0); break; default: if (ainfo->mocc<0) next = MPORT; else if (ainfo->gr_en && ainfo->gocc<0 && !ainfo->gr_only_once) next = GRAPHICS; else if (ainfo->vid_en && ainfo->vocc<0 && !ainfo->vid_only_once) next = VIDEO; else return (0); break; } last = cur; cur = next; iter++; switch (cur) { case VIDEO: if (last==cur) misses = 0; else if (ainfo->first_vacc) misses = vmisses; else misses = 1; ainfo->first_vacc = 0; if (last!=cur) { ns = 1000000 * (vmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz; vlwm = ns * ainfo->vdrain_rate/ 1000000; vlwm = ainfo->vocc - vlwm; } ns = 1000000*(misses*state->mem_page_miss + ainfo->vburst_size)/(state->memory_width/8)/state->mclk_khz; ainfo->vocc = ainfo->vocc + ainfo->vburst_size - ns*ainfo->vdrain_rate/1000000; ainfo->gocc = ainfo->gocc - ns*ainfo->gdrain_rate/1000000; ainfo->mocc = ainfo->mocc - ns*ainfo->mdrain_rate/1000000; break; case GRAPHICS: if (last==cur) misses = 0; else if (ainfo->first_gacc) misses = gmisses; else misses = 1; ainfo->first_gacc = 0; if (last!=cur) { ns = 1000000*(gmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz ; glwm = ns * ainfo->gdrain_rate/1000000; glwm = ainfo->gocc - glwm; } ns = 1000000*(misses*state->mem_page_miss + ainfo->gburst_size/(state->memory_width/8))/state->mclk_khz; ainfo->vocc = ainfo->vocc + 0 - ns*ainfo->vdrain_rate/1000000; ainfo->gocc = ainfo->gocc + ainfo->gburst_size - ns*ainfo->gdrain_rate/1000000; ainfo->mocc = ainfo->mocc + 0 - ns*ainfo->mdrain_rate/1000000; break; default: if (last==cur) misses = 0; else if (ainfo->first_macc) misses = mmisses; else misses = 1; ainfo->first_macc = 0; ns = 1000000*(misses*state->mem_page_miss + mburst_size/(state->memory_width/8))/state->mclk_khz; ainfo->vocc = ainfo->vocc + 0 - ns*ainfo->vdrain_rate/1000000; ainfo->gocc = ainfo->gocc + 0 - ns*ainfo->gdrain_rate/1000000; ainfo->mocc = ainfo->mocc + mburst_size - ns*ainfo->mdrain_rate/1000000; break; } if (iter>100) { ainfo->converged = 0; return (1); } ns = 1000000*ainfo->gburst_size/(state->memory_width/8)/state->mclk_khz; tmp = ns * ainfo->gdrain_rate/1000000; if (abs(ainfo->gburst_size) + ((abs(ainfo->wcglwm) + 16 ) & ~0x7) - tmp > max_gfsize) { ainfo->converged = 0; return (1); } ns = 1000000*ainfo->vburst_size/(state->memory_width/8)/state->mclk_khz; tmp = ns * ainfo->vdrain_rate/1000000; if (abs(ainfo->vburst_size) + (abs(ainfo->wcvlwm + 32) & ~0xf) - tmp> VFIFO_SIZE) { ainfo->converged = 0; return (1); } if (abs(ainfo->gocc) > max_gfsize) { ainfo->converged = 0; return (1); } if (abs(ainfo->vocc) > VFIFO_SIZE) { ainfo->converged = 0; return (1); } if (abs(ainfo->mocc) > MFIFO_SIZE) { ainfo->converged = 0; return (1); } if (abs(vfsize) > VFIFO_SIZE) { ainfo->converged = 0; return (1); } if (abs(gfsize) > max_gfsize) { ainfo->converged = 0; return (1); } if (abs(mfsize) > MFIFO_SIZE) { ainfo->converged = 0; return (1); } } } static char nv3_arb(nv3_fifo_info * res_info, nv3_sim_state * state, nv3_arb_info *ainfo) { long ens, vns, mns, gns; int mmisses, gmisses, vmisses, eburst_size, mburst_size; int refresh_cycle; refresh_cycle = 0; refresh_cycle = 2*(state->mclk_khz/state->pclk_khz) + 5; mmisses = 2; if (state->mem_aligned) gmisses = 2; else gmisses = 3; vmisses = 2; eburst_size = state->memory_width * 1; mburst_size = 32; gns = 1000000 * (gmisses*state->mem_page_miss + state->mem_latency)/state->mclk_khz; ainfo->by_gfacc = gns*ainfo->gdrain_rate/1000000; ainfo->wcmocc = 0; ainfo->wcgocc = 0; ainfo->wcvocc = 0; ainfo->wcvlwm = 0; ainfo->wcglwm = 0; ainfo->engine_en = 1; ainfo->converged = 1; if (ainfo->engine_en) { ens = 1000000*(state->mem_page_miss + eburst_size/(state->memory_width/8) +refresh_cycle)/state->mclk_khz; ainfo->mocc = state->enable_mp ? 0-ens*ainfo->mdrain_rate/1000000 : 0; ainfo->vocc = ainfo->vid_en ? 0-ens*ainfo->vdrain_rate/1000000 : 0; ainfo->gocc = ainfo->gr_en ? 0-ens*ainfo->gdrain_rate/1000000 : 0; ainfo->cur = ENGINE; ainfo->first_vacc = 1; ainfo->first_gacc = 1; ainfo->first_macc = 1; nv3_iterate(res_info, state,ainfo); } if (state->enable_mp) { mns = 1000000 * (mmisses*state->mem_page_miss + mburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz; ainfo->mocc = state->enable_mp ? 0 : mburst_size - mns*ainfo->mdrain_rate/1000000; ainfo->vocc = ainfo->vid_en ? 0 : 0- mns*ainfo->vdrain_rate/1000000; ainfo->gocc = ainfo->gr_en ? 0: 0- mns*ainfo->gdrain_rate/1000000; ainfo->cur = MPORT; ainfo->first_vacc = 1; ainfo->first_gacc = 1; ainfo->first_macc = 0; nv3_iterate(res_info, state,ainfo); } if (ainfo->gr_en) { ainfo->first_vacc = 1; ainfo->first_gacc = 0; ainfo->first_macc = 1; gns = 1000000*(gmisses*state->mem_page_miss + ainfo->gburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz; ainfo->gocc = ainfo->gburst_size - gns*ainfo->gdrain_rate/1000000; ainfo->vocc = ainfo->vid_en? 0-gns*ainfo->vdrain_rate/1000000 : 0; ainfo->mocc = state->enable_mp ? 0-gns*ainfo->mdrain_rate/1000000: 0; ainfo->cur = GRAPHICS; nv3_iterate(res_info, state,ainfo); } if (ainfo->vid_en) { ainfo->first_vacc = 0; ainfo->first_gacc = 1; ainfo->first_macc = 1; vns = 1000000*(vmisses*state->mem_page_miss + ainfo->vburst_size/(state->memory_width/8) + refresh_cycle)/state->mclk_khz; ainfo->vocc = ainfo->vburst_size - vns*ainfo->vdrain_rate/1000000; ainfo->gocc = ainfo->gr_en? (0-vns*ainfo->gdrain_rate/1000000) : 0; ainfo->mocc = state->enable_mp? 0-vns*ainfo->mdrain_rate/1000000 :0 ; ainfo->cur = VIDEO; nv3_iterate(res_info, state, ainfo); } if (ainfo->converged) { res_info->graphics_lwm = (int)abs(ainfo->wcglwm) + 16; res_info->video_lwm = (int)abs(ainfo->wcvlwm) + 32; res_info->graphics_burst_size = ainfo->gburst_size; res_info->video_burst_size = ainfo->vburst_size; res_info->graphics_hi_priority = (ainfo->priority == GRAPHICS); res_info->media_hi_priority = (ainfo->priority == MPORT); if (res_info->video_lwm > 160) { res_info->graphics_lwm = 256; res_info->video_lwm = 128; res_info->graphics_burst_size = 64; res_info->video_burst_size = 64; res_info->graphics_hi_priority = 0; res_info->media_hi_priority = 0; ainfo->converged = 0; return (0); } if (res_info->video_lwm > 128) { res_info->video_lwm = 128; } return (1); } else { res_info->graphics_lwm = 256; res_info->video_lwm = 128; res_info->graphics_burst_size = 64; res_info->video_burst_size = 64; res_info->graphics_hi_priority = 0; res_info->media_hi_priority = 0; return (0); } } static char nv3_get_param(nv3_fifo_info *res_info, nv3_sim_state * state, nv3_arb_info *ainfo) { int done, g,v, p; done = 0; for (p=0; p < 2; p++) { for (g=128 ; g > 32; g= g>> 1) { for (v=128; v >=32; v = v>> 1) { ainfo->priority = p; ainfo->gburst_size = g; ainfo->vburst_size = v; done = nv3_arb(res_info, state,ainfo); if (done && (g==128)) if ((res_info->graphics_lwm + g) > 256) done = 0; if (done) goto Done; } } } Done: return done; } static void nv3CalcArbitration ( nv3_fifo_info * res_info, nv3_sim_state * state ) { nv3_fifo_info save_info; nv3_arb_info ainfo; char res_gr, res_vid; ainfo.gr_en = 1; ainfo.vid_en = state->enable_video; ainfo.vid_only_once = 0; ainfo.gr_only_once = 0; ainfo.gdrain_rate = (int) state->pclk_khz * (state->pix_bpp/8); ainfo.vdrain_rate = (int) state->pclk_khz * 2; if (state->video_scale != 0) ainfo.vdrain_rate = ainfo.vdrain_rate/state->video_scale; ainfo.mdrain_rate = 33000; res_info->rtl_values = 0; if (!state->gr_during_vid && state->enable_video) { ainfo.gr_only_once = 1; ainfo.gr_en = 1; ainfo.gdrain_rate = 0; res_vid = nv3_get_param(res_info, state, &ainfo); res_vid = ainfo.converged; save_info.video_lwm = res_info->video_lwm; save_info.video_burst_size = res_info->video_burst_size; ainfo.vid_en = 1; ainfo.vid_only_once = 1; ainfo.gr_en = 1; ainfo.gdrain_rate = (int) state->pclk_khz * (state->pix_bpp/8); ainfo.vdrain_rate = 0; res_gr = nv3_get_param(res_info, state, &ainfo); res_gr = ainfo.converged; res_info->video_lwm = save_info.video_lwm; res_info->video_burst_size = save_info.video_burst_size; res_info->valid = res_gr & res_vid; } else { if (!ainfo.gr_en) ainfo.gdrain_rate = 0; if (!ainfo.vid_en) ainfo.vdrain_rate = 0; res_gr = nv3_get_param(res_info, state, &ainfo); res_info->valid = ainfo.converged; } } static void nv3UpdateArbitrationSettings ( unsigned VClk, unsigned pixelDepth, unsigned *burst, unsigned *lwm, RIVA_HW_INST *chip ) { nv3_fifo_info fifo_data; nv3_sim_state sim_data; unsigned int M, N, P, pll, MClk; pll = NV_RD32(&chip->PRAMDAC0[0x00000504/4], 0); M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; MClk = (N * chip->CrystalFreqKHz / M) >> P; sim_data.pix_bpp = (char)pixelDepth; sim_data.enable_video = 0; sim_data.enable_mp = 0; sim_data.video_scale = 1; sim_data.memory_width = (NV_RD32(&chip->PEXTDEV[0x00000000/4], 0) & 0x10) ? 128 : 64; sim_data.memory_width = 128; sim_data.mem_latency = 9; sim_data.mem_aligned = 1; sim_data.mem_page_miss = 11; sim_data.gr_during_vid = 0; sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; nv3CalcArbitration(&fifo_data, &sim_data); if (fifo_data.valid) { int b = fifo_data.graphics_burst_size >> 4; *burst = 0; while (b >>= 1) (*burst)++; *lwm = fifo_data.graphics_lwm >> 3; } else { *lwm = 0x24; *burst = 0x2; } } static void nv4CalcArbitration ( nv4_fifo_info *fifo, nv4_sim_state *arb ) { int data, pagemiss, cas,width, video_enable, color_key_enable, bpp, align; int nvclks, mclks, pclks, vpagemiss, crtpagemiss, vbs; int found, mclk_extra, mclk_loop, cbs, m1, p1; int mclk_freq, pclk_freq, nvclk_freq, mp_enable; int us_m, us_n, us_p, video_drain_rate, crtc_drain_rate; int vpm_us, us_video, vlwm, video_fill_us, cpm_us, us_crt,clwm; int craw, vraw; fifo->valid = 1; pclk_freq = arb->pclk_khz; mclk_freq = arb->mclk_khz; nvclk_freq = arb->nvclk_khz; pagemiss = arb->mem_page_miss; cas = arb->mem_latency; width = arb->memory_width >> 6; video_enable = arb->enable_video; color_key_enable = arb->gr_during_vid; bpp = arb->pix_bpp; align = arb->mem_aligned; mp_enable = arb->enable_mp; clwm = 0; vlwm = 0; cbs = 128; pclks = 2; nvclks = 2; nvclks += 2; nvclks += 1; mclks = 5; mclks += 3; mclks += 1; mclks += cas; mclks += 1; mclks += 1; mclks += 1; mclks += 1; mclk_extra = 3; nvclks += 2; nvclks += 1; nvclks += 1; nvclks += 1; if (mp_enable) mclks+=4; nvclks += 0; pclks += 0; found = 0; vbs = 0; while (found != 1) { fifo->valid = 1; found = 1; mclk_loop = mclks+mclk_extra; us_m = mclk_loop *1000*1000 / mclk_freq; us_n = nvclks*1000*1000 / nvclk_freq; us_p = nvclks*1000*1000 / pclk_freq; if (video_enable) { video_drain_rate = pclk_freq * 2; crtc_drain_rate = pclk_freq * bpp/8; vpagemiss = 2; vpagemiss += 1; crtpagemiss = 2; vpm_us = (vpagemiss * pagemiss)*1000*1000/mclk_freq; if (nvclk_freq * 2 > mclk_freq * width) video_fill_us = cbs*1000*1000 / 16 / nvclk_freq ; else video_fill_us = cbs*1000*1000 / (8 * width) / mclk_freq; us_video = vpm_us + us_m + us_n + us_p + video_fill_us; vlwm = us_video * video_drain_rate/(1000*1000); vlwm++; vbs = 128; if (vlwm > 128) vbs = 64; if (vlwm > (256-64)) vbs = 32; if (nvclk_freq * 2 > mclk_freq * width) video_fill_us = vbs *1000*1000/ 16 / nvclk_freq ; else video_fill_us = vbs*1000*1000 / (8 * width) / mclk_freq; cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq; us_crt = us_video +video_fill_us +cpm_us +us_m + us_n +us_p ; clwm = us_crt * crtc_drain_rate/(1000*1000); clwm++; } else { crtc_drain_rate = pclk_freq * bpp/8; crtpagemiss = 2; crtpagemiss += 1; cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq; us_crt = cpm_us + us_m + us_n + us_p ; clwm = us_crt * crtc_drain_rate/(1000*1000); clwm++; } m1 = clwm + cbs - 512; p1 = m1 * pclk_freq / mclk_freq; p1 = p1 * bpp / 8; if ((p1 < m1) && (m1 > 0)) { fifo->valid = 0; found = 0; if (mclk_extra ==0) found = 1; mclk_extra--; } else if (video_enable) { if ((clwm > 511) || (vlwm > 255)) { fifo->valid = 0; found = 0; if (mclk_extra ==0) found = 1; mclk_extra--; } } else { if (clwm > 519) { fifo->valid = 0; found = 0; if (mclk_extra ==0) found = 1; mclk_extra--; } } craw = clwm; vraw = vlwm; if (clwm < 384) clwm = 384; if (vlwm < 128) vlwm = 128; data = (int)(clwm); fifo->graphics_lwm = data; fifo->graphics_burst_size = 128; data = (int)((vlwm+15)); fifo->video_lwm = data; fifo->video_burst_size = vbs; } } static void nv4UpdateArbitrationSettings ( unsigned VClk, unsigned pixelDepth, unsigned *burst, unsigned *lwm, RIVA_HW_INST *chip ) { nv4_fifo_info fifo_data; nv4_sim_state sim_data; unsigned int M, N, P, pll, MClk, NVClk, cfg1; pll = NV_RD32(&chip->PRAMDAC0[0x00000504/4], 0); M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; MClk = (N * chip->CrystalFreqKHz / M) >> P; pll = NV_RD32(&chip->PRAMDAC0[0x00000500/4], 0); M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; NVClk = (N * chip->CrystalFreqKHz / M) >> P; cfg1 = NV_RD32(&chip->PFB[0x00000204/4], 0); sim_data.pix_bpp = (char)pixelDepth; sim_data.enable_video = 0; sim_data.enable_mp = 0; sim_data.memory_width = (NV_RD32(&chip->PEXTDEV[0x00000000/4], 0) & 0x10) ? 128 : 64; sim_data.mem_latency = (char)cfg1 & 0x0F; sim_data.mem_aligned = 1; sim_data.mem_page_miss = (char)(((cfg1 >> 4) &0x0F) + ((cfg1 >> 31) & 0x01)); sim_data.gr_during_vid = 0; sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; sim_data.nvclk_khz = NVClk; nv4CalcArbitration(&fifo_data, &sim_data); if (fifo_data.valid) { int b = fifo_data.graphics_burst_size >> 4; *burst = 0; while (b >>= 1) (*burst)++; *lwm = fifo_data.graphics_lwm >> 3; } } static void nv10CalcArbitration ( nv10_fifo_info *fifo, nv10_sim_state *arb ) { int data, pagemiss, cas,width, video_enable, color_key_enable, bpp, align; int nvclks, mclks, pclks, vpagemiss, crtpagemiss, vbs; int nvclk_fill, us_extra; int found, mclk_extra, mclk_loop, cbs, m1; int mclk_freq, pclk_freq, nvclk_freq, mp_enable; int us_m, us_m_min, us_n, us_p, video_drain_rate, crtc_drain_rate; int vus_m, vus_n, vus_p; int vpm_us, us_video, vlwm, cpm_us, us_crt,clwm; int clwm_rnd_down; int craw, m2us, us_pipe, us_pipe_min, vus_pipe, p1clk, p2; int pclks_2_top_fifo, min_mclk_extra; int us_min_mclk_extra; fifo->valid = 1; pclk_freq = arb->pclk_khz; /* freq in KHz */ mclk_freq = arb->mclk_khz; nvclk_freq = arb->nvclk_khz; pagemiss = arb->mem_page_miss; cas = arb->mem_latency; width = arb->memory_width/64; video_enable = arb->enable_video; color_key_enable = arb->gr_during_vid; bpp = arb->pix_bpp; align = arb->mem_aligned; mp_enable = arb->enable_mp; clwm = 0; vlwm = 1024; cbs = 512; vbs = 512; pclks = 4; /* lwm detect. */ nvclks = 3; /* lwm -> sync. */ nvclks += 2; /* fbi bus cycles (1 req + 1 busy) */ mclks = 1; /* 2 edge sync. may be very close to edge so just put one. */ mclks += 1; /* arb_hp_req */ mclks += 5; /* ap_hp_req tiling pipeline */ mclks += 2; /* tc_req latency fifo */ mclks += 2; /* fb_cas_n_ memory request to fbio block */ mclks += 7; /* sm_d_rdv data returned from fbio block */ /* fb.rd.d.Put_gc need to accumulate 256 bits for read */ if (arb->memory_type == 0) if (arb->memory_width == 64) /* 64 bit bus */ mclks += 4; else mclks += 2; else if (arb->memory_width == 64) /* 64 bit bus */ mclks += 2; else mclks += 1; if ((!video_enable) && (arb->memory_width == 128)) { mclk_extra = (bpp == 32) ? 31 : 42; /* Margin of error */ min_mclk_extra = 17; } else { mclk_extra = (bpp == 32) ? 8 : 4; /* Margin of error */ /* mclk_extra = 4; */ /* Margin of error */ min_mclk_extra = 18; } nvclks += 1; /* 2 edge sync. may be very close to edge so just put one. */ nvclks += 1; /* fbi_d_rdv_n */ nvclks += 1; /* Fbi_d_rdata */ nvclks += 1; /* crtfifo load */ if(mp_enable) mclks+=4; /* Mp can get in with a burst of 8. */ /* Extra clocks determined by heuristics */ nvclks += 0; pclks += 0; found = 0; while(found != 1) { fifo->valid = 1; found = 1; mclk_loop = mclks+mclk_extra; us_m = mclk_loop *1000*1000 / mclk_freq; /* Mclk latency in us */ us_m_min = mclks * 1000*1000 / mclk_freq; /* Minimum Mclk latency in us */ us_min_mclk_extra = min_mclk_extra *1000*1000 / mclk_freq; us_n = nvclks*1000*1000 / nvclk_freq;/* nvclk latency in us */ us_p = pclks*1000*1000 / pclk_freq;/* nvclk latency in us */ us_pipe = us_m + us_n + us_p; us_pipe_min = us_m_min + us_n + us_p; us_extra = 0; vus_m = mclk_loop *1000*1000 / mclk_freq; /* Mclk latency in us */ vus_n = (4)*1000*1000 / nvclk_freq;/* nvclk latency in us */ vus_p = 0*1000*1000 / pclk_freq;/* pclk latency in us */ vus_pipe = vus_m + vus_n + vus_p; if(video_enable) { video_drain_rate = pclk_freq * 4; /* MB/s */ crtc_drain_rate = pclk_freq * bpp/8; /* MB/s */ vpagemiss = 1; /* self generating page miss */ vpagemiss += 1; /* One higher priority before */ crtpagemiss = 2; /* self generating page miss */ if(mp_enable) crtpagemiss += 1; /* if MA0 conflict */ vpm_us = (vpagemiss * pagemiss)*1000*1000/mclk_freq; us_video = vpm_us + vus_m; /* Video has separate read return path */ cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq; us_crt = us_video /* Wait for video */ +cpm_us /* CRT Page miss */ +us_m + us_n +us_p /* other latency */ ; clwm = us_crt * crtc_drain_rate/(1000*1000); clwm++; /* fixed point <= float_point - 1. Fixes that */ } else { crtc_drain_rate = pclk_freq * bpp/8; /* bpp * pclk/8 */ crtpagemiss = 1; /* self generating page miss */ crtpagemiss += 1; /* MA0 page miss */ if(mp_enable) crtpagemiss += 1; /* if MA0 conflict */ cpm_us = crtpagemiss * pagemiss *1000*1000/ mclk_freq; us_crt = cpm_us + us_m + us_n + us_p ; clwm = us_crt * crtc_drain_rate/(1000*1000); clwm++; /* fixed point <= float_point - 1. Fixes that */ /* // // Another concern, only for high pclks so don't do this // with video: // What happens if the latency to fetch the cbs is so large that // fifo empties. In that case we need to have an alternate clwm value // based off the total burst fetch // us_crt = (cbs * 1000 * 1000)/ (8*width)/mclk_freq ; us_crt = us_crt + us_m + us_n + us_p + (4 * 1000 * 1000)/mclk_freq; clwm_mt = us_crt * crtc_drain_rate/(1000*1000); clwm_mt ++; if(clwm_mt > clwm) clwm = clwm_mt; */ /* Finally, a heuristic check when width == 64 bits */ if(width == 1){ nvclk_fill = nvclk_freq * 8; if(crtc_drain_rate * 100 >= nvclk_fill * 102) clwm = 0xfff; /*Large number to fail */ else if(crtc_drain_rate * 100 >= nvclk_fill * 98) { clwm = 1024; cbs = 512; us_extra = (cbs * 1000 * 1000)/ (8*width)/mclk_freq ; } } } /* Overfill check: */ clwm_rnd_down = ((int)clwm/8)*8; if (clwm_rnd_down < clwm) clwm += 8; m1 = clwm + cbs - 1024; /* Amount of overfill */ m2us = us_pipe_min + us_min_mclk_extra; pclks_2_top_fifo = (1024-clwm)/(8*width); /* pclk cycles to drain */ p1clk = m2us * pclk_freq/(1000*1000); p2 = p1clk * bpp / 8; /* bytes drained. */ if((p2 < m1) && (m1 > 0)) { fifo->valid = 0; found = 0; if(min_mclk_extra == 0) { if(cbs <= 32) { found = 1; /* Can't adjust anymore! */ } else { cbs = cbs/2; /* reduce the burst size */ } } else { min_mclk_extra--; } } else { if (clwm > 1023){ /* Have some margin */ fifo->valid = 0; found = 0; if(min_mclk_extra == 0) found = 1; /* Can't adjust anymore! */ else min_mclk_extra--; } } craw = clwm; if(clwm < (1024-cbs+8)) clwm = 1024-cbs+8; data = (int)(clwm); /* printf("CRT LWM: %f bytes, prog: 0x%x, bs: 256\n", clwm, data ); */ fifo->graphics_lwm = data; fifo->graphics_burst_size = cbs; /* printf("VID LWM: %f bytes, prog: 0x%x, bs: %d\n, ", vlwm, data, vbs ); */ fifo->video_lwm = 1024; fifo->video_burst_size = 512; } } static void nv10UpdateArbitrationSettings ( unsigned VClk, unsigned pixelDepth, unsigned *burst, unsigned *lwm, RIVA_HW_INST *chip ) { nv10_fifo_info fifo_data; nv10_sim_state sim_data; unsigned int M, N, P, pll, MClk, NVClk, cfg1; pll = NV_RD32(&chip->PRAMDAC0[0x00000504/4], 0); M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; MClk = (N * chip->CrystalFreqKHz / M) >> P; pll = NV_RD32(&chip->PRAMDAC0[0x00000500/4], 0); M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; NVClk = (N * chip->CrystalFreqKHz / M) >> P; cfg1 = NV_RD32(&chip->PFB[0x00000204/4], 0); sim_data.pix_bpp = (char)pixelDepth; sim_data.enable_video = 0; sim_data.enable_mp = 0; sim_data.memory_type = (NV_RD32(&chip->PFB[0x00000200/4], 0) & 0x01) ? 1 : 0; sim_data.memory_width = (NV_RD32(&chip->PEXTDEV[0x00000000/4], 0) & 0x10) ? 128 : 64; sim_data.mem_latency = (char)cfg1 & 0x0F; sim_data.mem_aligned = 1; sim_data.mem_page_miss = (char)(((cfg1 >> 4) &0x0F) + ((cfg1 >> 31) & 0x01)); sim_data.gr_during_vid = 0; sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; sim_data.nvclk_khz = NVClk; nv10CalcArbitration(&fifo_data, &sim_data); if (fifo_data.valid) { int b = fifo_data.graphics_burst_size >> 4; *burst = 0; while (b >>= 1) (*burst)++; *lwm = fifo_data.graphics_lwm >> 3; } } static void nForceUpdateArbitrationSettings ( unsigned VClk, unsigned pixelDepth, unsigned *burst, unsigned *lwm, RIVA_HW_INST *chip ) { nv10_fifo_info fifo_data; nv10_sim_state sim_data; unsigned int M, N, P, pll, MClk, NVClk; unsigned int uMClkPostDiv; struct pci_dev *dev; dev = pci_get_bus_and_slot(0, 3); pci_read_config_dword(dev, 0x6C, &uMClkPostDiv); pci_dev_put(dev); uMClkPostDiv = (uMClkPostDiv >> 8) & 0xf; if(!uMClkPostDiv) uMClkPostDiv = 4; MClk = 400000 / uMClkPostDiv; pll = NV_RD32(&chip->PRAMDAC0[0x00000500/4], 0); M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; NVClk = (N * chip->CrystalFreqKHz / M) >> P; sim_data.pix_bpp = (char)pixelDepth; sim_data.enable_video = 0; sim_data.enable_mp = 0; dev = pci_get_bus_and_slot(0, 1); pci_read_config_dword(dev, 0x7C, &sim_data.memory_type); pci_dev_put(dev); sim_data.memory_type = (sim_data.memory_type >> 12) & 1; sim_data.memory_width = 64; sim_data.mem_latency = 3; sim_data.mem_aligned = 1; sim_data.mem_page_miss = 10; sim_data.gr_during_vid = 0; sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; sim_data.nvclk_khz = NVClk; nv10CalcArbitration(&fifo_data, &sim_data); if (fifo_data.valid) { int b = fifo_data.graphics_burst_size >> 4; *burst = 0; while (b >>= 1) (*burst)++; *lwm = fifo_data.graphics_lwm >> 3; } } /****************************************************************************\ * * * RIVA Mode State Routines * * * \****************************************************************************/ /* * Calculate the Video Clock parameters for the PLL. */ static int CalcVClock ( int clockIn, int *clockOut, int *mOut, int *nOut, int *pOut, RIVA_HW_INST *chip ) { unsigned lowM, highM, highP; unsigned DeltaNew, DeltaOld; unsigned VClk, Freq; unsigned M, N, P; DeltaOld = 0xFFFFFFFF; VClk = (unsigned)clockIn; if (chip->CrystalFreqKHz == 13500) { lowM = 7; highM = 13 - (chip->Architecture == NV_ARCH_03); } else { lowM = 8; highM = 14 - (chip->Architecture == NV_ARCH_03); } highP = 4 - (chip->Architecture == NV_ARCH_03); for (P = 0; P <= highP; P ++) { Freq = VClk << P; if ((Freq >= 128000) && (Freq <= chip->MaxVClockFreqKHz)) { for (M = lowM; M <= highM; M++) { N = (VClk << P) * M / chip->CrystalFreqKHz; if(N <= 255) { Freq = (chip->CrystalFreqKHz * N / M) >> P; if (Freq > VClk) DeltaNew = Freq - VClk; else DeltaNew = VClk - Freq; if (DeltaNew < DeltaOld) { *mOut = M; *nOut = N; *pOut = P; *clockOut = Freq; DeltaOld = DeltaNew; } } } } } /* non-zero: M/N/P/clock values assigned. zero: error (not set) */ return (DeltaOld != 0xFFFFFFFF); } /* * Calculate extended mode parameters (SVGA) and save in a * mode state structure. */ int CalcStateExt ( RIVA_HW_INST *chip, RIVA_HW_STATE *state, int bpp, int width, int hDisplaySize, int height, int dotClock ) { int pixelDepth; int uninitialized_var(VClk),uninitialized_var(m), uninitialized_var(n), uninitialized_var(p); /* * Save mode parameters. */ state->bpp = bpp; /* this is not bitsPerPixel, it's 8,15,16,32 */ state->width = width; state->height = height; /* * Extended RIVA registers. */ pixelDepth = (bpp + 1)/8; if (!CalcVClock(dotClock, &VClk, &m, &n, &p, chip)) return -EINVAL; switch (chip->Architecture) { case NV_ARCH_03: nv3UpdateArbitrationSettings(VClk, pixelDepth * 8, &(state->arbitration0), &(state->arbitration1), chip); state->cursor0 = 0x00; state->cursor1 = 0x78; state->cursor2 = 0x00000000; state->pllsel = 0x10010100; state->config = ((width + 31)/32) | (((pixelDepth > 2) ? 3 : pixelDepth) << 8) | 0x1000; state->general = 0x00100100; state->repaint1 = hDisplaySize < 1280 ? 0x06 : 0x02; break; case NV_ARCH_04: nv4UpdateArbitrationSettings(VClk, pixelDepth * 8, &(state->arbitration0), &(state->arbitration1), chip); state->cursor0 = 0x00; state->cursor1 = 0xFC; state->cursor2 = 0x00000000; state->pllsel = 0x10000700; state->config = 0x00001114; state->general = bpp == 16 ? 0x00101100 : 0x00100100; state->repaint1 = hDisplaySize < 1280 ? 0x04 : 0x00; break; case NV_ARCH_10: case NV_ARCH_20: case NV_ARCH_30: if((chip->Chipset == NV_CHIP_IGEFORCE2) || (chip->Chipset == NV_CHIP_0x01F0)) { nForceUpdateArbitrationSettings(VClk, pixelDepth * 8, &(state->arbitration0), &(state->arbitration1), chip); } else { nv10UpdateArbitrationSettings(VClk, pixelDepth * 8, &(state->arbitration0), &(state->arbitration1), chip); } state->cursor0 = 0x80 | (chip->CursorStart >> 17); state->cursor1 = (chip->CursorStart >> 11) << 2; state->cursor2 = chip->CursorStart >> 24; state->pllsel = 0x10000700; state->config = NV_RD32(&chip->PFB[0x00000200/4], 0); state->general = bpp == 16 ? 0x00101100 : 0x00100100; state->repaint1 = hDisplaySize < 1280 ? 0x04 : 0x00; break; } /* Paul Richards: below if block borks things in kernel for some reason */ /* Tony: Below is needed to set hardware in DirectColor */ if((bpp != 8) && (chip->Architecture != NV_ARCH_03)) state->general |= 0x00000030; state->vpll = (p << 16) | (n << 8) | m; state->repaint0 = (((width/8)*pixelDepth) & 0x700) >> 3; state->pixel = pixelDepth > 2 ? 3 : pixelDepth; state->offset0 = state->offset1 = state->offset2 = state->offset3 = 0; state->pitch0 = state->pitch1 = state->pitch2 = state->pitch3 = pixelDepth * width; return 0; } /* * Load fixed function state and pre-calculated/stored state. */ #if 0 #define LOAD_FIXED_STATE(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev)/8; i++) \ chip->dev[tbl##Table##dev[i][0]] = tbl##Table##dev[i][1] #define LOAD_FIXED_STATE_8BPP(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_8BPP)/8; i++) \ chip->dev[tbl##Table##dev##_8BPP[i][0]] = tbl##Table##dev##_8BPP[i][1] #define LOAD_FIXED_STATE_15BPP(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_15BPP)/8; i++) \ chip->dev[tbl##Table##dev##_15BPP[i][0]] = tbl##Table##dev##_15BPP[i][1] #define LOAD_FIXED_STATE_16BPP(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_16BPP)/8; i++) \ chip->dev[tbl##Table##dev##_16BPP[i][0]] = tbl##Table##dev##_16BPP[i][1] #define LOAD_FIXED_STATE_32BPP(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_32BPP)/8; i++) \ chip->dev[tbl##Table##dev##_32BPP[i][0]] = tbl##Table##dev##_32BPP[i][1] #endif #define LOAD_FIXED_STATE(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev)/8; i++) \ NV_WR32(&chip->dev[tbl##Table##dev[i][0]], 0, tbl##Table##dev[i][1]) #define LOAD_FIXED_STATE_8BPP(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_8BPP)/8; i++) \ NV_WR32(&chip->dev[tbl##Table##dev##_8BPP[i][0]], 0, tbl##Table##dev##_8BPP[i][1]) #define LOAD_FIXED_STATE_15BPP(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_15BPP)/8; i++) \ NV_WR32(&chip->dev[tbl##Table##dev##_15BPP[i][0]], 0, tbl##Table##dev##_15BPP[i][1]) #define LOAD_FIXED_STATE_16BPP(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_16BPP)/8; i++) \ NV_WR32(&chip->dev[tbl##Table##dev##_16BPP[i][0]], 0, tbl##Table##dev##_16BPP[i][1]) #define LOAD_FIXED_STATE_32BPP(tbl,dev) \ for (i = 0; i < sizeof(tbl##Table##dev##_32BPP)/8; i++) \ NV_WR32(&chip->dev[tbl##Table##dev##_32BPP[i][0]], 0, tbl##Table##dev##_32BPP[i][1]) static void UpdateFifoState ( RIVA_HW_INST *chip ) { int i; switch (chip->Architecture) { case NV_ARCH_04: LOAD_FIXED_STATE(nv4,FIFO); chip->Tri03 = NULL; chip->Tri05 = (RivaTexturedTriangle05 __iomem *)&(chip->FIFO[0x0000E000/4]); break; case NV_ARCH_10: case NV_ARCH_20: case NV_ARCH_30: /* * Initialize state for the RivaTriangle3D05 routines. */ LOAD_FIXED_STATE(nv10tri05,PGRAPH); LOAD_FIXED_STATE(nv10,FIFO); chip->Tri03 = NULL; chip->Tri05 = (RivaTexturedTriangle05 __iomem *)&(chip->FIFO[0x0000E000/4]); break; } } static void LoadStateExt ( RIVA_HW_INST *chip, RIVA_HW_STATE *state ) { int i; /* * Load HW fixed function state. */ LOAD_FIXED_STATE(Riva,PMC); LOAD_FIXED_STATE(Riva,PTIMER); switch (chip->Architecture) { case NV_ARCH_03: /* * Make sure frame buffer config gets set before loading PRAMIN. */ NV_WR32(chip->PFB, 0x00000200, state->config); LOAD_FIXED_STATE(nv3,PFIFO); LOAD_FIXED_STATE(nv3,PRAMIN); LOAD_FIXED_STATE(nv3,PGRAPH); switch (state->bpp) { case 15: case 16: LOAD_FIXED_STATE_15BPP(nv3,PRAMIN); LOAD_FIXED_STATE_15BPP(nv3,PGRAPH); chip->Tri03 = (RivaTexturedTriangle03 __iomem *)&(chip->FIFO[0x0000E000/4]); break; case 24: case 32: LOAD_FIXED_STATE_32BPP(nv3,PRAMIN); LOAD_FIXED_STATE_32BPP(nv3,PGRAPH); chip->Tri03 = NULL; break; case 8: default: LOAD_FIXED_STATE_8BPP(nv3,PRAMIN); LOAD_FIXED_STATE_8BPP(nv3,PGRAPH); chip->Tri03 = NULL; break; } for (i = 0x00000; i < 0x00800; i++) NV_WR32(&chip->PRAMIN[0x00000502 + i], 0, (i << 12) | 0x03); NV_WR32(chip->PGRAPH, 0x00000630, state->offset0); NV_WR32(chip->PGRAPH, 0x00000634, state->offset1); NV_WR32(chip->PGRAPH, 0x00000638, state->offset2); NV_WR32(chip->PGRAPH, 0x0000063C, state->offset3); NV_WR32(chip->PGRAPH, 0x00000650, state->pitch0); NV_WR32(chip->PGRAPH, 0x00000654, state->pitch1); NV_WR32(chip->PGRAPH, 0x00000658, state->pitch2); NV_WR32(chip->PGRAPH, 0x0000065C, state->pitch3); break; case NV_ARCH_04: /* * Make sure frame buffer config gets set before loading PRAMIN. */ NV_WR32(chip->PFB, 0x00000200, state->config); LOAD_FIXED_STATE(nv4,PFIFO); LOAD_FIXED_STATE(nv4,PRAMIN); LOAD_FIXED_STATE(nv4,PGRAPH); switch (state->bpp) { case 15: LOAD_FIXED_STATE_15BPP(nv4,PRAMIN); LOAD_FIXED_STATE_15BPP(nv4,PGRAPH); chip->Tri03 = (RivaTexturedTriangle03 __iomem *)&(chip->FIFO[0x0000E000/4]); break; case 16: LOAD_FIXED_STATE_16BPP(nv4,PRAMIN); LOAD_FIXED_STATE_16BPP(nv4,PGRAPH); chip->Tri03 = (RivaTexturedTriangle03 __iomem *)&(chip->FIFO[0x0000E000/4]); break; case 24: case 32: LOAD_FIXED_STATE_32BPP(nv4,PRAMIN); LOAD_FIXED_STATE_32BPP(nv4,PGRAPH); chip->Tri03 = NULL; break; case 8: default: LOAD_FIXED_STATE_8BPP(nv4,PRAMIN); LOAD_FIXED_STATE_8BPP(nv4,PGRAPH); chip->Tri03 = NULL; break; } NV_WR32(chip->PGRAPH, 0x00000640, state->offset0); NV_WR32(chip->PGRAPH, 0x00000644, state->offset1); NV_WR32(chip->PGRAPH, 0x00000648, state->offset2); NV_WR32(chip->PGRAPH, 0x0000064C, state->offset3); NV_WR32(chip->PGRAPH, 0x00000670, state->pitch0); NV_WR32(chip->PGRAPH, 0x00000674, state->pitch1); NV_WR32(chip->PGRAPH, 0x00000678, state->pitch2); NV_WR32(chip->PGRAPH, 0x0000067C, state->pitch3); break; case NV_ARCH_10: case NV_ARCH_20: case NV_ARCH_30: if(chip->twoHeads) { VGA_WR08(chip->PCIO, 0x03D4, 0x44); VGA_WR08(chip->PCIO, 0x03D5, state->crtcOwner); chip->LockUnlock(chip, 0); } LOAD_FIXED_STATE(nv10,PFIFO); LOAD_FIXED_STATE(nv10,PRAMIN); LOAD_FIXED_STATE(nv10,PGRAPH); switch (state->bpp) { case 15: LOAD_FIXED_STATE_15BPP(nv10,PRAMIN); LOAD_FIXED_STATE_15BPP(nv10,PGRAPH); chip->Tri03 = (RivaTexturedTriangle03 __iomem *)&(chip->FIFO[0x0000E000/4]); break; case 16: LOAD_FIXED_STATE_16BPP(nv10,PRAMIN); LOAD_FIXED_STATE_16BPP(nv10,PGRAPH); chip->Tri03 = (RivaTexturedTriangle03 __iomem *)&(chip->FIFO[0x0000E000/4]); break; case 24: case 32: LOAD_FIXED_STATE_32BPP(nv10,PRAMIN); LOAD_FIXED_STATE_32BPP(nv10,PGRAPH); chip->Tri03 = NULL; break; case 8: default: LOAD_FIXED_STATE_8BPP(nv10,PRAMIN); LOAD_FIXED_STATE_8BPP(nv10,PGRAPH); chip->Tri03 = NULL; break; } if(chip->Architecture == NV_ARCH_10) { NV_WR32(chip->PGRAPH, 0x00000640, state->offset0); NV_WR32(chip->PGRAPH, 0x00000644, state->offset1); NV_WR32(chip->PGRAPH, 0x00000648, state->offset2); NV_WR32(chip->PGRAPH, 0x0000064C, state->offset3); NV_WR32(chip->PGRAPH, 0x00000670, state->pitch0); NV_WR32(chip->PGRAPH, 0x00000674, state->pitch1); NV_WR32(chip->PGRAPH, 0x00000678, state->pitch2); NV_WR32(chip->PGRAPH, 0x0000067C, state->pitch3); NV_WR32(chip->PGRAPH, 0x00000680, state->pitch3); } else { NV_WR32(chip->PGRAPH, 0x00000820, state->offset0); NV_WR32(chip->PGRAPH, 0x00000824, state->offset1); NV_WR32(chip->PGRAPH, 0x00000828, state->offset2); NV_WR32(chip->PGRAPH, 0x0000082C, state->offset3); NV_WR32(chip->PGRAPH, 0x00000850, state->pitch0); NV_WR32(chip->PGRAPH, 0x00000854, state->pitch1); NV_WR32(chip->PGRAPH, 0x00000858, state->pitch2); NV_WR32(chip->PGRAPH, 0x0000085C, state->pitch3); NV_WR32(chip->PGRAPH, 0x00000860, state->pitch3); NV_WR32(chip->PGRAPH, 0x00000864, state->pitch3); NV_WR32(chip->PGRAPH, 0x000009A4, NV_RD32(chip->PFB, 0x00000200)); NV_WR32(chip->PGRAPH, 0x000009A8, NV_RD32(chip->PFB, 0x00000204)); } if(chip->twoHeads) { NV_WR32(chip->PCRTC0, 0x00000860, state->head); NV_WR32(chip->PCRTC0, 0x00002860, state->head2); } NV_WR32(chip->PRAMDAC, 0x00000404, NV_RD32(chip->PRAMDAC, 0x00000404) | (1 << 25)); NV_WR32(chip->PMC, 0x00008704, 1); NV_WR32(chip->PMC, 0x00008140, 0); NV_WR32(chip->PMC, 0x00008920, 0); NV_WR32(chip->PMC, 0x00008924, 0); NV_WR32(chip->PMC, 0x00008908, 0x01ffffff); NV_WR32(chip->PMC, 0x0000890C, 0x01ffffff); NV_WR32(chip->PMC, 0x00001588, 0); NV_WR32(chip->PFB, 0x00000240, 0); NV_WR32(chip->PFB, 0x00000250, 0); NV_WR32(chip->PFB, 0x00000260, 0); NV_WR32(chip->PFB, 0x00000270, 0); NV_WR32(chip->PFB, 0x00000280, 0); NV_WR32(chip->PFB, 0x00000290, 0); NV_WR32(chip->PFB, 0x000002A0, 0); NV_WR32(chip->PFB, 0x000002B0, 0); NV_WR32(chip->PGRAPH, 0x00000B00, NV_RD32(chip->PFB, 0x00000240)); NV_WR32(chip->PGRAPH, 0x00000B04, NV_RD32(chip->PFB, 0x00000244)); NV_WR32(chip->PGRAPH, 0x00000B08, NV_RD32(chip->PFB, 0x00000248)); NV_WR32(chip->PGRAPH, 0x00000B0C, NV_RD32(chip->PFB, 0x0000024C)); NV_WR32(chip->PGRAPH, 0x00000B10, NV_RD32(chip->PFB, 0x00000250)); NV_WR32(chip->PGRAPH, 0x00000B14, NV_RD32(chip->PFB, 0x00000254)); NV_WR32(chip->PGRAPH, 0x00000B18, NV_RD32(chip->PFB, 0x00000258)); NV_WR32(chip->PGRAPH, 0x00000B1C, NV_RD32(chip->PFB, 0x0000025C)); NV_WR32(chip->PGRAPH, 0x00000B20, NV_RD32(chip->PFB, 0x00000260)); NV_WR32(chip->PGRAPH, 0x00000B24, NV_RD32(chip->PFB, 0x00000264)); NV_WR32(chip->PGRAPH, 0x00000B28, NV_RD32(chip->PFB, 0x00000268)); NV_WR32(chip->PGRAPH, 0x00000B2C, NV_RD32(chip->PFB, 0x0000026C)); NV_WR32(chip->PGRAPH, 0x00000B30, NV_RD32(chip->PFB, 0x00000270)); NV_WR32(chip->PGRAPH, 0x00000B34, NV_RD32(chip->PFB, 0x00000274)); NV_WR32(chip->PGRAPH, 0x00000B38, NV_RD32(chip->PFB, 0x00000278)); NV_WR32(chip->PGRAPH, 0x00000B3C, NV_RD32(chip->PFB, 0x0000027C)); NV_WR32(chip->PGRAPH, 0x00000B40, NV_RD32(chip->PFB, 0x00000280)); NV_WR32(chip->PGRAPH, 0x00000B44, NV_RD32(chip->PFB, 0x00000284)); NV_WR32(chip->PGRAPH, 0x00000B48, NV_RD32(chip->PFB, 0x00000288)); NV_WR32(chip->PGRAPH, 0x00000B4C, NV_RD32(chip->PFB, 0x0000028C)); NV_WR32(chip->PGRAPH, 0x00000B50, NV_RD32(chip->PFB, 0x00000290)); NV_WR32(chip->PGRAPH, 0x00000B54, NV_RD32(chip->PFB, 0x00000294)); NV_WR32(chip->PGRAPH, 0x00000B58, NV_RD32(chip->PFB, 0x00000298)); NV_WR32(chip->PGRAPH, 0x00000B5C, NV_RD32(chip->PFB, 0x0000029C)); NV_WR32(chip->PGRAPH, 0x00000B60, NV_RD32(chip->PFB, 0x000002A0)); NV_WR32(chip->PGRAPH, 0x00000B64, NV_RD32(chip->PFB, 0x000002A4)); NV_WR32(chip->PGRAPH, 0x00000B68, NV_RD32(chip->PFB, 0x000002A8)); NV_WR32(chip->PGRAPH, 0x00000B6C, NV_RD32(chip->PFB, 0x000002AC)); NV_WR32(chip->PGRAPH, 0x00000B70, NV_RD32(chip->PFB, 0x000002B0)); NV_WR32(chip->PGRAPH, 0x00000B74, NV_RD32(chip->PFB, 0x000002B4)); NV_WR32(chip->PGRAPH, 0x00000B78, NV_RD32(chip->PFB, 0x000002B8)); NV_WR32(chip->PGRAPH, 0x00000B7C, NV_RD32(chip->PFB, 0x000002BC)); NV_WR32(chip->PGRAPH, 0x00000F40, 0x10000000); NV_WR32(chip->PGRAPH, 0x00000F44, 0x00000000); NV_WR32(chip->PGRAPH, 0x00000F50, 0x00000040); NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000008); NV_WR32(chip->PGRAPH, 0x00000F50, 0x00000200); for (i = 0; i < (3*16); i++) NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); NV_WR32(chip->PGRAPH, 0x00000F50, 0x00000040); NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); NV_WR32(chip->PGRAPH, 0x00000F50, 0x00000800); for (i = 0; i < (16*16); i++) NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); NV_WR32(chip->PGRAPH, 0x00000F40, 0x30000000); NV_WR32(chip->PGRAPH, 0x00000F44, 0x00000004); NV_WR32(chip->PGRAPH, 0x00000F50, 0x00006400); for (i = 0; i < (59*4); i++) NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); NV_WR32(chip->PGRAPH, 0x00000F50, 0x00006800); for (i = 0; i < (47*4); i++) NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); NV_WR32(chip->PGRAPH, 0x00000F50, 0x00006C00); for (i = 0; i < (3*4); i++) NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); NV_WR32(chip->PGRAPH, 0x00000F50, 0x00007000); for (i = 0; i < (19*4); i++) NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); NV_WR32(chip->PGRAPH, 0x00000F50, 0x00007400); for (i = 0; i < (12*4); i++) NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); NV_WR32(chip->PGRAPH, 0x00000F50, 0x00007800); for (i = 0; i < (12*4); i++) NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); NV_WR32(chip->PGRAPH, 0x00000F50, 0x00004400); for (i = 0; i < (8*4); i++) NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); NV_WR32(chip->PGRAPH, 0x00000F50, 0x00000000); for (i = 0; i < 16; i++) NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); NV_WR32(chip->PGRAPH, 0x00000F50, 0x00000040); for (i = 0; i < 4; i++) NV_WR32(chip->PGRAPH, 0x00000F54, 0x00000000); NV_WR32(chip->PCRTC, 0x00000810, state->cursorConfig); if(chip->flatPanel) { if((chip->Chipset & 0x0ff0) == 0x0110) { NV_WR32(chip->PRAMDAC, 0x0528, state->dither); } else if((chip->Chipset & 0x0ff0) >= 0x0170) { NV_WR32(chip->PRAMDAC, 0x083C, state->dither); } VGA_WR08(chip->PCIO, 0x03D4, 0x53); VGA_WR08(chip->PCIO, 0x03D5, 0); VGA_WR08(chip->PCIO, 0x03D4, 0x54); VGA_WR08(chip->PCIO, 0x03D5, 0); VGA_WR08(chip->PCIO, 0x03D4, 0x21); VGA_WR08(chip->PCIO, 0x03D5, 0xfa); } VGA_WR08(chip->PCIO, 0x03D4, 0x41); VGA_WR08(chip->PCIO, 0x03D5, state->extra); } LOAD_FIXED_STATE(Riva,FIFO); UpdateFifoState(chip); /* * Load HW mode state. */ VGA_WR08(chip->PCIO, 0x03D4, 0x19); VGA_WR08(chip->PCIO, 0x03D5, state->repaint0); VGA_WR08(chip->PCIO, 0x03D4, 0x1A); VGA_WR08(chip->PCIO, 0x03D5, state->repaint1); VGA_WR08(chip->PCIO, 0x03D4, 0x25); VGA_WR08(chip->PCIO, 0x03D5, state->screen); VGA_WR08(chip->PCIO, 0x03D4, 0x28); VGA_WR08(chip->PCIO, 0x03D5, state->pixel); VGA_WR08(chip->PCIO, 0x03D4, 0x2D); VGA_WR08(chip->PCIO, 0x03D5, state->horiz); VGA_WR08(chip->PCIO, 0x03D4, 0x1B); VGA_WR08(chip->PCIO, 0x03D5, state->arbitration0); VGA_WR08(chip->PCIO, 0x03D4, 0x20); VGA_WR08(chip->PCIO, 0x03D5, state->arbitration1); VGA_WR08(chip->PCIO, 0x03D4, 0x30); VGA_WR08(chip->PCIO, 0x03D5, state->cursor0); VGA_WR08(chip->PCIO, 0x03D4, 0x31); VGA_WR08(chip->PCIO, 0x03D5, state->cursor1); VGA_WR08(chip->PCIO, 0x03D4, 0x2F); VGA_WR08(chip->PCIO, 0x03D5, state->cursor2); VGA_WR08(chip->PCIO, 0x03D4, 0x39); VGA_WR08(chip->PCIO, 0x03D5, state->interlace); if(!chip->flatPanel) { NV_WR32(chip->PRAMDAC0, 0x00000508, state->vpll); NV_WR32(chip->PRAMDAC0, 0x0000050C, state->pllsel); if(chip->twoHeads) NV_WR32(chip->PRAMDAC0, 0x00000520, state->vpll2); } else { NV_WR32(chip->PRAMDAC, 0x00000848 , state->scale); } NV_WR32(chip->PRAMDAC, 0x00000600 , state->general); /* * Turn off VBlank enable and reset. */ NV_WR32(chip->PCRTC, 0x00000140, 0); NV_WR32(chip->PCRTC, 0x00000100, chip->VBlankBit); /* * Set interrupt enable. */ NV_WR32(chip->PMC, 0x00000140, chip->EnableIRQ & 0x01); /* * Set current state pointer. */ chip->CurrentState = state; /* * Reset FIFO free and empty counts. */ chip->FifoFreeCount = 0; /* Free count from first subchannel */ chip->FifoEmptyCount = NV_RD32(&chip->Rop->FifoFree, 0); } static void UnloadStateExt ( RIVA_HW_INST *chip, RIVA_HW_STATE *state ) { /* * Save current HW state. */ VGA_WR08(chip->PCIO, 0x03D4, 0x19); state->repaint0 = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x1A); state->repaint1 = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x25); state->screen = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x28); state->pixel = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x2D); state->horiz = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x1B); state->arbitration0 = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x20); state->arbitration1 = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x30); state->cursor0 = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x31); state->cursor1 = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x2F); state->cursor2 = VGA_RD08(chip->PCIO, 0x03D5); VGA_WR08(chip->PCIO, 0x03D4, 0x39); state->interlace = VGA_RD08(chip->PCIO, 0x03D5); state->vpll = NV_RD32(chip->PRAMDAC0, 0x00000508); state->vpll2 = NV_RD32(chip->PRAMDAC0, 0x00000520); state->pllsel = NV_RD32(chip->PRAMDAC0, 0x0000050C); state->general = NV_RD32(chip->PRAMDAC, 0x00000600); state->scale = NV_RD32(chip->PRAMDAC, 0x00000848); state->config = NV_RD32(chip->PFB, 0x00000200); switch (chip->Architecture) { case NV_ARCH_03: state->offset0 = NV_RD32(chip->PGRAPH, 0x00000630); state->offset1 = NV_RD32(chip->PGRAPH, 0x00000634); state->offset2 = NV_RD32(chip->PGRAPH, 0x00000638); state->offset3 = NV_RD32(chip->PGRAPH, 0x0000063C); state->pitch0 = NV_RD32(chip->PGRAPH, 0x00000650); state->pitch1 = NV_RD32(chip->PGRAPH, 0x00000654); state->pitch2 = NV_RD32(chip->PGRAPH, 0x00000658); state->pitch3 = NV_RD32(chip->PGRAPH, 0x0000065C); break; case NV_ARCH_04: state->offset0 = NV_RD32(chip->PGRAPH, 0x00000640); state->offset1 = NV_RD32(chip->PGRAPH, 0x00000644); state->offset2 = NV_RD32(chip->PGRAPH, 0x00000648); state->offset3 = NV_RD32(chip->PGRAPH, 0x0000064C); state->pitch0 = NV_RD32(chip->PGRAPH, 0x00000670); state->pitch1 = NV_RD32(chip->PGRAPH, 0x00000674); state->pitch2 = NV_RD32(chip->PGRAPH, 0x00000678); state->pitch3 = NV_RD32(chip->PGRAPH, 0x0000067C); break; case NV_ARCH_10: case NV_ARCH_20: case NV_ARCH_30: state->offset0 = NV_RD32(chip->PGRAPH, 0x00000640); state->offset1 = NV_RD32(chip->PGRAPH, 0x00000644); state->offset2 = NV_RD32(chip->PGRAPH, 0x00000648); state->offset3 = NV_RD32(chip->PGRAPH, 0x0000064C); state->pitch0 = NV_RD32(chip->PGRAPH, 0x00000670); state->pitch1 = NV_RD32(chip->PGRAPH, 0x00000674); state->pitch2 = NV_RD32(chip->PGRAPH, 0x00000678); state->pitch3 = NV_RD32(chip->PGRAPH, 0x0000067C); if(chip->twoHeads) { state->head = NV_RD32(chip->PCRTC0, 0x00000860); state->head2 = NV_RD32(chip->PCRTC0, 0x00002860); VGA_WR08(chip->PCIO, 0x03D4, 0x44); state->crtcOwner = VGA_RD08(chip->PCIO, 0x03D5); } VGA_WR08(chip->PCIO, 0x03D4, 0x41); state->extra = VGA_RD08(chip->PCIO, 0x03D5); state->cursorConfig = NV_RD32(chip->PCRTC, 0x00000810); if((chip->Chipset & 0x0ff0) == 0x0110) { state->dither = NV_RD32(chip->PRAMDAC, 0x0528); } else if((chip->Chipset & 0x0ff0) >= 0x0170) { state->dither = NV_RD32(chip->PRAMDAC, 0x083C); } break; } } static void SetStartAddress ( RIVA_HW_INST *chip, unsigned start ) { NV_WR32(chip->PCRTC, 0x800, start); } static void SetStartAddress3 ( RIVA_HW_INST *chip, unsigned start ) { int offset = start >> 2; int pan = (start & 3) << 1; unsigned char tmp; /* * Unlock extended registers. */ chip->LockUnlock(chip, 0); /* * Set start address. */ VGA_WR08(chip->PCIO, 0x3D4, 0x0D); VGA_WR08(chip->PCIO, 0x3D5, offset); offset >>= 8; VGA_WR08(chip->PCIO, 0x3D4, 0x0C); VGA_WR08(chip->PCIO, 0x3D5, offset); offset >>= 8; VGA_WR08(chip->PCIO, 0x3D4, 0x19); tmp = VGA_RD08(chip->PCIO, 0x3D5); VGA_WR08(chip->PCIO, 0x3D5, (offset & 0x01F) | (tmp & ~0x1F)); VGA_WR08(chip->PCIO, 0x3D4, 0x2D); tmp = VGA_RD08(chip->PCIO, 0x3D5); VGA_WR08(chip->PCIO, 0x3D5, (offset & 0x60) | (tmp & ~0x60)); /* * 4 pixel pan register. */ offset = VGA_RD08(chip->PCIO, chip->IO + 0x0A); VGA_WR08(chip->PCIO, 0x3C0, 0x13); VGA_WR08(chip->PCIO, 0x3C0, pan); } static void nv3SetSurfaces2D ( RIVA_HW_INST *chip, unsigned surf0, unsigned surf1 ) { RivaSurface __iomem *Surface = (RivaSurface __iomem *)&(chip->FIFO[0x0000E000/4]); RIVA_FIFO_FREE(*chip,Tri03,5); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000003); NV_WR32(&Surface->Offset, 0, surf0); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000004); NV_WR32(&Surface->Offset, 0, surf1); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000013); } static void nv4SetSurfaces2D ( RIVA_HW_INST *chip, unsigned surf0, unsigned surf1 ) { RivaSurface __iomem *Surface = (RivaSurface __iomem *)&(chip->FIFO[0x0000E000/4]); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000003); NV_WR32(&Surface->Offset, 0, surf0); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000004); NV_WR32(&Surface->Offset, 0, surf1); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000014); } static void nv10SetSurfaces2D ( RIVA_HW_INST *chip, unsigned surf0, unsigned surf1 ) { RivaSurface __iomem *Surface = (RivaSurface __iomem *)&(chip->FIFO[0x0000E000/4]); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000003); NV_WR32(&Surface->Offset, 0, surf0); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000004); NV_WR32(&Surface->Offset, 0, surf1); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000014); } static void nv3SetSurfaces3D ( RIVA_HW_INST *chip, unsigned surf0, unsigned surf1 ) { RivaSurface __iomem *Surface = (RivaSurface __iomem *)&(chip->FIFO[0x0000E000/4]); RIVA_FIFO_FREE(*chip,Tri03,5); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000005); NV_WR32(&Surface->Offset, 0, surf0); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000006); NV_WR32(&Surface->Offset, 0, surf1); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000013); } static void nv4SetSurfaces3D ( RIVA_HW_INST *chip, unsigned surf0, unsigned surf1 ) { RivaSurface __iomem *Surface = (RivaSurface __iomem *)&(chip->FIFO[0x0000E000/4]); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000005); NV_WR32(&Surface->Offset, 0, surf0); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000006); NV_WR32(&Surface->Offset, 0, surf1); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000014); } static void nv10SetSurfaces3D ( RIVA_HW_INST *chip, unsigned surf0, unsigned surf1 ) { RivaSurface3D __iomem *Surfaces3D = (RivaSurface3D __iomem *)&(chip->FIFO[0x0000E000/4]); RIVA_FIFO_FREE(*chip,Tri03,4); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000007); NV_WR32(&Surfaces3D->RenderBufferOffset, 0, surf0); NV_WR32(&Surfaces3D->ZBufferOffset, 0, surf1); NV_WR32(&chip->FIFO[0x00003800], 0, 0x80000014); } /****************************************************************************\ * * * Probe RIVA Chip Configuration * * * \****************************************************************************/ static void nv3GetConfig ( RIVA_HW_INST *chip ) { /* * Fill in chip configuration. */ if (NV_RD32(&chip->PFB[0x00000000/4], 0) & 0x00000020) { if (((NV_RD32(chip->PMC, 0x00000000) & 0xF0) == 0x20) && ((NV_RD32(chip->PMC, 0x00000000) & 0x0F) >= 0x02)) { /* * SDRAM 128 ZX. */ chip->RamBandwidthKBytesPerSec = 800000; switch (NV_RD32(chip->PFB, 0x00000000) & 0x03) { case 2: chip->RamAmountKBytes = 1024 * 4; break; case 1: chip->RamAmountKBytes = 1024 * 2; break; default: chip->RamAmountKBytes = 1024 * 8; break; } } else { chip->RamBandwidthKBytesPerSec = 1000000; chip->RamAmountKBytes = 1024 * 8; } } else { /* * SGRAM 128. */ chip->RamBandwidthKBytesPerSec = 1000000; switch (NV_RD32(chip->PFB, 0x00000000) & 0x00000003) { case 0: chip->RamAmountKBytes = 1024 * 8; break; case 2: chip->RamAmountKBytes = 1024 * 4; break; default: chip->RamAmountKBytes = 1024 * 2; break; } } chip->CrystalFreqKHz = (NV_RD32(chip->PEXTDEV, 0x00000000) & 0x00000040) ? 14318 : 13500; chip->CURSOR = &(chip->PRAMIN[0x00008000/4 - 0x0800/4]); chip->VBlankBit = 0x00000100; chip->MaxVClockFreqKHz = 256000; /* * Set chip functions. */ chip->Busy = nv3Busy; chip->ShowHideCursor = ShowHideCursor; chip->LoadStateExt = LoadStateExt; chip->UnloadStateExt = UnloadStateExt; chip->SetStartAddress = SetStartAddress3; chip->SetSurfaces2D = nv3SetSurfaces2D; chip->SetSurfaces3D = nv3SetSurfaces3D; chip->LockUnlock = nv3LockUnlock; } static void nv4GetConfig ( RIVA_HW_INST *chip ) { /* * Fill in chip configuration. */ if (NV_RD32(chip->PFB, 0x00000000) & 0x00000100) { chip->RamAmountKBytes = ((NV_RD32(chip->PFB, 0x00000000) >> 12) & 0x0F) * 1024 * 2 + 1024 * 2; } else { switch (NV_RD32(chip->PFB, 0x00000000) & 0x00000003) { case 0: chip->RamAmountKBytes = 1024 * 32; break; case 1: chip->RamAmountKBytes = 1024 * 4; break; case 2: chip->RamAmountKBytes = 1024 * 8; break; case 3: default: chip->RamAmountKBytes = 1024 * 16; break; } } switch ((NV_RD32(chip->PFB, 0x00000000) >> 3) & 0x00000003) { case 3: chip->RamBandwidthKBytesPerSec = 800000; break; default: chip->RamBandwidthKBytesPerSec = 1000000; break; } chip->CrystalFreqKHz = (NV_RD32(chip->PEXTDEV, 0x00000000) & 0x00000040) ? 14318 : 13500; chip->CURSOR = &(chip->PRAMIN[0x00010000/4 - 0x0800/4]); chip->VBlankBit = 0x00000001; chip->MaxVClockFreqKHz = 350000; /* * Set chip functions. */ chip->Busy = nv4Busy; chip->ShowHideCursor = ShowHideCursor; chip->LoadStateExt = LoadStateExt; chip->UnloadStateExt = UnloadStateExt; chip->SetStartAddress = SetStartAddress; chip->SetSurfaces2D = nv4SetSurfaces2D; chip->SetSurfaces3D = nv4SetSurfaces3D; chip->LockUnlock = nv4LockUnlock; } static void nv10GetConfig ( RIVA_HW_INST *chip, unsigned int chipset ) { struct pci_dev* dev; u32 amt; #ifdef __BIG_ENDIAN /* turn on big endian register access */ if(!(NV_RD32(chip->PMC, 0x00000004) & 0x01000001)) NV_WR32(chip->PMC, 0x00000004, 0x01000001); #endif /* * Fill in chip configuration. */ if(chipset == NV_CHIP_IGEFORCE2) { dev = pci_get_bus_and_slot(0, 1); pci_read_config_dword(dev, 0x7C, &amt); pci_dev_put(dev); chip->RamAmountKBytes = (((amt >> 6) & 31) + 1) * 1024; } else if(chipset == NV_CHIP_0x01F0) { dev = pci_get_bus_and_slot(0, 1); pci_read_config_dword(dev, 0x84, &amt); pci_dev_put(dev); chip->RamAmountKBytes = (((amt >> 4) & 127) + 1) * 1024; } else { switch ((NV_RD32(chip->PFB, 0x0000020C) >> 20) & 0x000000FF) { case 0x02: chip->RamAmountKBytes = 1024 * 2; break; case 0x04: chip->RamAmountKBytes = 1024 * 4; break; case 0x08: chip->RamAmountKBytes = 1024 * 8; break; case 0x10: chip->RamAmountKBytes = 1024 * 16; break; case 0x20: chip->RamAmountKBytes = 1024 * 32; break; case 0x40: chip->RamAmountKBytes = 1024 * 64; break; case 0x80: chip->RamAmountKBytes = 1024 * 128; break; default: chip->RamAmountKBytes = 1024 * 16; break; } } switch ((NV_RD32(chip->PFB, 0x00000000) >> 3) & 0x00000003) { case 3: chip->RamBandwidthKBytesPerSec = 800000; break; default: chip->RamBandwidthKBytesPerSec = 1000000; break; } chip->CrystalFreqKHz = (NV_RD32(chip->PEXTDEV, 0x0000) & (1 << 6)) ? 14318 : 13500; switch (chipset & 0x0ff0) { case 0x0170: case 0x0180: case 0x01F0: case 0x0250: case 0x0280: case 0x0300: case 0x0310: case 0x0320: case 0x0330: case 0x0340: if(NV_RD32(chip->PEXTDEV, 0x0000) & (1 << 22)) chip->CrystalFreqKHz = 27000; break; default: break; } chip->CursorStart = (chip->RamAmountKBytes - 128) * 1024; chip->CURSOR = NULL; /* can't set this here */ chip->VBlankBit = 0x00000001; chip->MaxVClockFreqKHz = 350000; /* * Set chip functions. */ chip->Busy = nv10Busy; chip->ShowHideCursor = ShowHideCursor; chip->LoadStateExt = LoadStateExt; chip->UnloadStateExt = UnloadStateExt; chip->SetStartAddress = SetStartAddress; chip->SetSurfaces2D = nv10SetSurfaces2D; chip->SetSurfaces3D = nv10SetSurfaces3D; chip->LockUnlock = nv4LockUnlock; switch(chipset & 0x0ff0) { case 0x0110: case 0x0170: case 0x0180: case 0x01F0: case 0x0250: case 0x0280: case 0x0300: case 0x0310: case 0x0320: case 0x0330: case 0x0340: chip->twoHeads = TRUE; break; default: chip->twoHeads = FALSE; break; } } int RivaGetConfig ( RIVA_HW_INST *chip, unsigned int chipset ) { /* * Save this so future SW know whats it's dealing with. */ chip->Version = RIVA_SW_VERSION; /* * Chip specific configuration. */ switch (chip->Architecture) { case NV_ARCH_03: nv3GetConfig(chip); break; case NV_ARCH_04: nv4GetConfig(chip); break; case NV_ARCH_10: case NV_ARCH_20: case NV_ARCH_30: nv10GetConfig(chip, chipset); break; default: return (-1); } chip->Chipset = chipset; /* * Fill in FIFO pointers. */ chip->Rop = (RivaRop __iomem *)&(chip->FIFO[0x00000000/4]); chip->Clip = (RivaClip __iomem *)&(chip->FIFO[0x00002000/4]); chip->Patt = (RivaPattern __iomem *)&(chip->FIFO[0x00004000/4]); chip->Pixmap = (RivaPixmap __iomem *)&(chip->FIFO[0x00006000/4]); chip->Blt = (RivaScreenBlt __iomem *)&(chip->FIFO[0x00008000/4]); chip->Bitmap = (RivaBitmap __iomem *)&(chip->FIFO[0x0000A000/4]); chip->Line = (RivaLine __iomem *)&(chip->FIFO[0x0000C000/4]); chip->Tri03 = (RivaTexturedTriangle03 __iomem *)&(chip->FIFO[0x0000E000/4]); return (0); }